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sults from controlled experiments with human subjects transfer
from one kind of population to another [4].

The current study reproduces the honeypot experiments and
econometric analysis presented by Aggarwal et al. [3], but
with a population of high-achieving students from science
and technology programs. Arguably, this population is more
relevant when evaluating network defense than the pool of
unknown subjects from Amazon Mechanical Turk;1 presum-
ably, their cognitive profile is more similar to that of actual
adversaries in network defense. The results suggest that the
proposed adaptive honeypot allocation strategies considered,
are less effective against the studied population.

II. DEFENSE STRATEGIES

As cyber adversaries become more dynamic, adapting their
behavior to the defense they encounter, a static cyber defense
policy may be outdated soon after it is deployed. This section
briefly reviews some adaptive strategies for allocating limited
security resources (e.g., honeypots) to defend assets (e.g.,
databases on a network) against an adaptive adversary (e.g.,
a network intruder) considered in the literature. The selection
of strategies is inspired by the work by Aggarwal et al. [3].

A. Static Pure (SP)

An allocation strategy that might suggest itself immediately
to a defender is to distribute the available security resources
over the most valuable assets. This static, somewhat naive
strategy, here referred to as static pure (SP), is introduced in
the experiments below as a baseline to compare other, less
predictable strategies with.

B. Static Equilibrium (SE)

The problem of allocating resources (to defend assets
against an attacker) can be viewed as a double-sided game
in which one player (the defender) chooses between a number
of possible allocations while the other player (the adversary)
chooses between a number of assets to attack [5]. The optimal
strategy for the defender in such a game, according to the
classical game-theoretic solution (Nash), is to randomize allo-
cations in such a way as to provide the adversary with the same
expected payoff no matter what asset the attacker chooses to
attack. This leaves the adaptive adversary with nothing to adapt
to; there is no bias or tendency in the behavior of the defender
for the adversary to exploit.

1https://www.mturk.com/.

Abstract—Recent experimental studies have explored how well 
adaptive honeypot allocation strategies defend against human 
adversaries. As the experimental subjects were drawn from an 
unknown, nondescript pool of subjects using Amazon Mechanical 
Turk, the relevance to defense against real-world adversaries 
is unclear. The present study reproduces the experiments with 
more relevant experimental subjects. The results suggest that the 
strategies considered are less effective against attackers from the 
current population. In particular, their ability to predict the next 
attack decreased steadily over time, that is, the human subjects 
from this population learned to attack less and less predictably.

Index Terms—Cybersecurity; honeypot; game theory; defense 
strategy; behavioral learning.

I. INTRODUCTION

Deception and the prospects for reasoning about well-
thought-out adversarial actions, play an increasingly important 
role in cyber defense [1]. The subject is today an important 
part of nations’ counterintelligence and security efforts. For
deception mechanisms to successfully deceive adversaries, 
their application (timing, location, configuration, etc.) must be 
unpredictable; a mock-up that is always deployed at the same 
location, and with the same appearance, will fool no one.

Honeypots, fake hosts introduced into a network to attract 
attackers, are an established form of deception mechanism 
in network defense [2]. Recent work explores how effective 
various honeypot allocation strategies are at outwitting human
adversaries [3]. Each strategy is evaluated based on how well 
it defends against a human adversary in a game simulating the 
interaction between an attacker and a defender in a computer 
network. The experiments are performed using a large pool of
experimental subjects at low cost. Unfortunately, however, the 
subjects remain completely unknown. It is unclear, therefore,
to what extent the population is relevant to the performance
of honeypot allocation strategies, i.e., real world adversaries 
such as hackers, have the same cognitive profile a s t he pool
of unknown subjects participating in the experiments. It is an 
open and contested question as to what extent, in general, re-
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C. Learning with Linear Rewards (LLR)

The resource allocation problem can alternatively be seen
as a multi-armed bandit (MAB) [6]. Each possible allocation
forms an arm of the bandit machine, with its effect determined
by the unknown, possibly stochastic, behavior of the adversary.
With the allocation problem viewed as an MAB, the goal of the
defender (gambler) is to minimize the adversary’s long-term
reward over repeated interactions by balancing the trade-off
between exploitation (choosing resource allocations that have
the best observed record so far) and exploration (choosing
less explored allocations). Learning with linear rewards is for
that purpose an adaptive strategy [7]. It generally favors the
action that seems optimal given the rewards observed so far,
but occasionally chooses an, at the time, suboptimal action, to
explore new alternatives.

Pseudocode for the algorithm is presented in Algorithm 1.
Here, F is the set of all possible actions and Aa is the index
set {i : ai ̸= 0, 1 ≤ i ≤ N} where the action a is a vector
of size 1 × N with ai = 1 if arm indexed i is to be pulled
and ai = 0 otherwise. The total number of different arms is
denoted N , θ is the vector that contains the mean observed
reward for each arm, m is the vector containing the number
of times each arm has been included in an action, and 01×N

is a zero matrix of size 1×N .

Algorithm 1 Pseudocode for LLR
1: Initialize: θ = 01×N , m = 01×N , if max

a
|Aa| is known,

let L = max
a
|Aa|; else L = N

2: for t = 1 to N do
3: Play any action a such that t ∈ Aa

4: Update θ,m accordingly
5: end for
6: for t = N + 1 to ∞ do
7: Play an action a which solves the maximization:
8: a = argmax

a∈F

∑
i∈Aa

θi

√
(L+1) log(t)

mi

9: Update θ, m accordingly
10: end for

D. Best Response with Thompson Sampling (BR-TS)

Best response with Thompson sampling is an adaptive
strategy that chooses the action with the highest estimated
reward by predicting the adversaries’ behavior [3], [8]. As
the adversary behavior model, Thompson sampling for the
MAB problem is used, where it has been shown to be a
good predictor of human behavior in games [9], [10]. Since
Thompson sampling is being used as a predictor, the actions
of the attacker might not be known. In that case, the game is
simulated thousands of times with the action sampled from
a prior attack distribution, to predict the action taken by
the adversary. The goal in this implementation of Thompson
sampling is to minimize the possible reward for the attacker
in the single round ahead; later rounds are not considered.

E. Probabilistic Best Response with Thompson Sampling
(PBR-TS)

Probabilistic best response with Thompson sampling is an
adaptive strategy, which uses randomization [3]. It is similar to
the BR-TS strategy described above. The difference between
the two methods is that PBR-TS samples the action from the
distribution of possible rewards, instead of choosing the one
with the highest expected reward as BR-TS does. An action
which yields a higher expected reward results in a greater
probability of being played by the defender.

F. Follow the Regularized Leader (FTRL)

Follow the regularized leader is an adaptive strategy that
takes into consideration that the attack actively changes its
perception of the expected reward for each arm, resulting in a
change in attack distribution as the game progresses [11]. To
avoid overfitting the model based on previously chosen arms, a
regularizer has been added. Viewing the allocation of security
resources as a MAB, as in the case for the LLR strategy, results
in the FTRL algorithm presented in Algorithm 2.

Algorithm 2 Pseudocode for FTRL
1: Input: γ ∈ (0, 1], sampling scheme P
2: Initialize: L = 01×N

3: for t = 1 to ∞ do
4: ηt =

1√
t

5: xt = argmin
x∈Conv(x)

⟨x, Lt−1⟩+ η−1
t ψ(x)

6: Sample action a from P (xt)
7: Observe result ot = a ◦ lt
8: for i = 1 to N do
9: l̂ti ← (oti+1)

xti
− 1

10: end for
11: Lt = Lt−1 + l̂t
12: end for

In Algorithm 2, the regularized leader xt is computed with
the cumulative estimated loss Lt−1 and regularizer ψ(x) [3].
The regularizer is defined as:

ψ(x) =
N∑
i=1

−
√
xi + γ(1− xi) log(1− xi),

where N is the total number of arms. The regularizer is applied
with the learning rate ηt. The loss vector lt is created by the
environment based on the adversary’s action, and a ◦ lt is the
observed result of the action chosen by the algorithm where
◦ is the elementwise multiplication operator.

III. METHOD

The effectiveness of each defense strategy above, as a policy
for allocating honeypots in a computer network, was evaluated
based on how well it defends against human adversaries in an
artificial game simulating the interaction between an attacker
and a defender. In the following, the game, implementation
details, experimental settings, and evaluation metrics, are de-
scribed.
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A. HoneyGame

The HoneyGame [12] is a simple two-player game intended
as an abstraction of the interaction between an attacker and
a defender in a computer network. The game consists of a
network of six nodes, each with a cost of defending the node,
cdi , and a cost of attacking the node, cai . The value of a node
is the sum of the cost of defending and attacking the node:
vi = cdi + c

a
i . For the adversary, the possible reward of a node

is equal to the cost of defending, cdi , and the possible loss is
equal to the cost of attacking, cai . The sixth option, pass, has
cdi = 0 and cai = 0. The node parameters cdi , cai and vi for
each node i is presented in Table I.

TABLE I
NODE PARAMETERS IN THE HONEYGAME.

Node 1 Node 2 Node 3 Node 4 Node 5 Pass

cdi 10 20 15 15 20 0
cai 5 20 10 5 15 0
vi 15 40 25 20 35 0

In each round, the defender spends a maximum budget of
D = 40, to place honeypots on a subset of the nodes. The
placement of honeypots on a subset of the nodes is called an
action, a. The attacker then chooses a node to play. If the
attacker chooses a node without a honeypot, he/she receives
the reward cdi while the defender incurs a loss of 0. However,
if the chosen node is a honeypot, he/she receives the loss
−cai and the defender acquires a reward of vi. If the attacker
chooses pass, he/she does not receive a reward nor a loss.

The game is carried out over 50 rounds, where the attacker is
given the node options presented above as well as the current
round number, total points, and time remaining that round.
The attacker is not presented with the previous placements of
honeypots nor which strategy he/she plays against.

B. Defense Strategy Implementation

Static Pure: In a single round of the game where the
opponent’s strategy is unknown, using a deterministic action
maximizing the defender’s expected reward, results in placing
the honeypots on the nodes with the highest values. With the
defense budget D = 40 and the node parameters presented in
Table I, this results in the honeypots being placed on nodes 2
and 5. This pure strategy is implemented in all 50 rounds of
the game.

Static Equilibrium: The distribution of a mixed strategy
Nash equilibrium for a single round of the game [3] is
presented in Table II. The static equilibrium defender samples
an action a randomly from this distribution in each round.

TABLE II
STATIC EQUILIBRIUM DISTRIBUTION [3].

Action (defended nodes) {1, 3, 4} {2, 3} {2, 5} {3, 5}
Probability ≈ 0.303 ≈ 0.095 ≈ 0.557 ≈ 0.045

Learning with Linear Rewards: Connecting the Hon-
eyGame with the notion of MAB, the pulling of arms on the
MAB can be seen as the placement of honeypots on nodes.
When implementing Algorithm 1 as a defense strategy in the
HoneyGame, L is the maximum number of honeypots placed
on nodes in a round; here L = 3 for the action a = {1, 3, 4},
θ is a vector that contains the mean observed reward for each
node, m is the vector containing the number of times each
node has been defended, and N = 5 due to there being 5
possible nodes honeypots can be placed at.

Best Response with Thompson Sampling: The imple-
mentation of the defense strategy BR-TS in HoneyGame
results in Algorithm 3. For every round t, the resulting attack
distribution D over the N = 5 different nodes, is computed
from nsim = 1500 simulations. Thompson sampling is used
in every simulation to predict the action of the adversary. In
the case where the attacked node is unknown, the action is
sampled from a uniform distribution. The defender chooses
the action that results in the highest estimated reward based
on D.

Algorithm 3 Pseudocode for BR-TS/PBR-TS
1: Initialize: S = 01×N , F = 01×N

2: for t = 1 to ∞ do
3: D = 01×N

4: for n = 1 to nsim do
5: for all previous rounds t do
6: if chosen node i is a honeypot then
7: Fi(t+ 1)← Fi(t) + 1
8: else if chosen node is not a honeypot then
9: Sample node i from a uniform distribution over

nodes without honeypots
10: Si(t+ 1)← Si(t) + 1
11: end if
12: end for
13: µi ← Beta(Si + 1, Fi + 1), ∀i
14: Di = Di +

1
nsim

where i = argmax
i′

µi′

15: end for
16: BR-TS: Choose action a that would result in the highest

expected reward for the attacker if played next round,
based on the attack distribution and value vi of the node
or
PBR-TS: Choose action a by sampling from the distri-
bution of possible rewards

17: end for

Probabilistic Best Response with Thompson Sampling:
The difference between the two methods PBR-TS and BR-TS
is in how they choose which nodes to place honeypots on.
When PBR-TS chooses which action to play, it samples from
the distribution of possible rewards, instead of choosing the
greatest one as BR-TS does. An action which yields a higher
expected reward has a greater probability of being played by
the defender. The resulting algorithm is presented alongside
BR-TS in Algorithm 3.
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Follow the Regularized Leader: To implement FTRL as a
defense strategy, Algorithm 2 is adapted to HoneyGame where
action a is sampled from the sampling scheme P . P (xt) is
sampled by calculating the action closest to the argument xt,
i.e., the action a that minimizes the distance to xt in the 5D
space. The parameter γ is set to 0.999.

C. Experiment

A total of 124 games were played by students from science
and technology programs at the Royal Institute of Technology
in Stockholm, Sweden. In groups of 5–10 students, each
player was given a base reward of two chocolate bars for
participating, and the player with the highest score received
three additional bars.

Every participant filled out a form where information about
their age, highest achieved university degree, occupation, and
average university grade, was collected. The participants were
then informed about the rules of HoneyGame. The game was
played as described in Section III-A, with a randomly selected
defense strategy, and a time limit of 30 seconds per round,
using a graphical user interface similar to Table I.

The participants’ ages ranged from 20 to 49; 98 in ages 20–
24, 20 in ages 25–29, and 6 in ages 30–49. Between 16 and
28 games were played against each strategy; 16 against SP,
19 against SE, 20 against LLR, 22 against BR-TS, 28 against
PBR-TS, and 19 against FTRL. The total time per game was
calculated to 56.8± 8.3 seconds.

D. Evaluation

From the data collected during the experiments, the average
points, the proportion of attacks on honeypots, and the switch-
ing behavior, were visualized and studied for every strategy
according to Fig. 1–4.

To validate the statistical significance of the results for the
total points per strategy, permutation tests were performed.
Here, the hypothesis is that the average points from two differ-
ent defense strategies differ significantly. The null hypothesis
is that the samples of total points from the two different
strategies come from the same distribution. The significance
level α = 0.05 was used.

IV. RESULTS

The average points per strategy is presented in Fig. 1. The
mean and standard deviation for each strategy were calculated
to: 627.2±95.1 for SP, 294.2±133.1 for SE, 156.2±89.7 for
LLR, 558.0±220.0 for BR-TS, 297.7±126.3 for PBR-TS, and
404.5± 153.2 for FTRL. This is also shown at the bottom of
each bar. The results from the permutation tests are presented
in Table III. All p-values are below the significance level
α = 0.05, apart from the strategy-pairs SP—BR-TS and SE—
PBR-TS.

The proportion of attacks on honeypots, i.e., the number
of times the attacker chose a honeypot divided by the total
number of attacks, per block and strategy is shown in Fig. 2.
Here, a block consists of ten rounds, i.e., block one refers to
round 1–10, block two refers to round 11–20, etc.
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Fig. 1. Average points per strategy scored by attackers.

TABLE III
RESULTING P-VALUE OF PERMUTATION TESTS OF STRATEGY-PAIRS, FOR

THE TOTAL POINTS PER STRATEGY.

SP SE LLR BR-TS PBR-TS FTRL

SP – 0.0002 0.0002 0.26 0.0002 0.0002

SE 0.0002 – 0.0008 0.0004 0.95 0.027

LLR 0.0002 0.0008 – 0.0002 0.0006 0.0002

BR-TS 0.26 0.0004 0.0002 – 0.0002 0.023

PBR-TS 0.0002 0.95 0.0006 0.0002 – 0.016

FTRL 0.0002 0.027 0.0002 0.023 0.016 –
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Fig. 2. Proportion of attacks on honeypots per block and strategy.

Fig. 3 shows the switching behavior for the six strategies,
i.e., the likelihood of someone staying on the same node or
switching node based on whether their previous attack hit
a honeypot or not. The top boxes show the probability of
shifting which node to attack; the top left box is representing
Honeypot–Shift behavior and the top right box is representing
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Fig. 3. Attacker switching behavior for SP, SE, LLR, BR-TS, PBR-TS, and FTRL. The numbers represent the proportion (%) per behavior.

Not honeypot–Shift behavior. The bottom boxes show the
probability of staying at the same node; the bottom left box is
representing Honeypot–Stay behavior and the bottom right box
is representing Not honeypot–Stay behavior. A visualization
of how the switching behavior evolved over time can be seen
in Fig. 4. The plots corresponding to the same behavior are
located in the same place as the boxes in Fig. 3, i.e., the top left
plot indicates Honeypot–Shift behavior, and so on. Specifically,
Fig. 4(d) shows how the switching behavior changes over time
specifically for the Not honeypot–Stay case. Fig. 4(c) shows
how the switching behavior changes over time specifically for
the Honeypot–Stay attacker strategy. As before, the game is
divided into five blocks of ten rounds each.

V. DISCUSSION

In the following, the performance of the strategies and the
observed attacker behavior are discussed and analyzed.

A. Performance of the Defense Strategies

The experiment resulted in various total points for the
attacker, dependent on the strategy they played against (see
Fig. 1). SP resulted in the highest mean points for the attacker.
It also resulted in the second lowest standard deviation, indi-
cating that most players against SP received many total points.
Comparing SP to the strategy with the second highest average
total points, BR-TS, it is noticeable that BR-TS has a higher

standard deviation, the largest of all strategies. This suggests
that some attackers could get as many points against BR-TS
as other players got against SP. However, it also indicates that
some players did not get as many points against BR-TS as
those who played against SP. BR-TS therefore seems like an
inconsistent strategy, considering the points for the attacker.

The permutation test for the strategies SP and BR-TS re-
sulted in a p-value of 0.26, a value above the significance level
(see Table III). Therefore, we cannot reject the null hypothesis
for SP and BR-TS; hence, the samples of total points for SP
and BR-TS could come from the same distribution.

In Fig. 2, the proportions of honeypot attacks are seem-
ingly the same for SP and BR-TS in blocks one and five.
However, the proportions of attacks on honeypots decreased
more rapidly for SP, suggesting that the attacker learned how to
play against SP faster than against BR-TS. From block two and
onwards, the proportion of attacks on honeypots is below 10%
for SP. This proportion is, however, not reached for BR-TS
until block five.

The strategy which the players achieved the third highest
average points against was FTRL, as seen in Fig. 1. FTRL
had a mean of 404.5± 153.2 points, roughly 100 points less
than BR-TS but also 100 points more than the strategy with the
fourth highest total points. The standard deviation of 153.2 sits
between the standard deviation of SP and BR-TS, suggesting
that FTRL is more consistent than BR-TS but not as consistent
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(a) Attacker switching behavior for the Honeypot–Shift strategy.
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(b) Attacker switching behavior for the Not honeypot–Shift strategy.
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(c) Attacker switching behavior for the Honeypot–Stay strategy.
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(d) Attacker switching behavior for the Not honeypot–Stay strategy.

Fig. 4. Attacker switching behavior per block for SP ( ), SE ( ), LLR ( ), BR-TS ( ), PBR-TS ( ), and FTRL ( ).

as SP. The solution, xt, to the minimization problem:

xt = argmin
x∈Conv(x)

⟨x, Lt−1⟩+ η−1
t ψ(x),

often had all values close to one. In most cases, xt was closest
to the point (1, 0, 1, 1, 0) and the algorithm therefore favored
the action {1, 3, 4}. This is because it is the only valid action
with more than two nodes defended. Only occasionally FTRL
chose to defend another set of nodes.

The strategies resulting in the second and third least average
points were SE and PBR-TS. PBR-TS had a mean total points
of 297.7 ± 126.3, and SE had a mean of 294.2 ± 133.1.
Hence, these strategies performed similarly. This is supported
by the result from the permutation test, where this strategy-pair
resulted in the p-value 0.95 (see Table III). The null hypothesis
could, therefore, not be rejected for this strategy pair. Both

SE and PBR-TS use randomization when placing honeypots,
making it more difficult for attackers to find non-honeypot
nodes. Due to the randomness used, it could be assumed
that the attackers’ performances vary against these algorithms.
Similar to the average points, the proportions of attacks on
honeypots in Fig. 2 are also evenly matched between SE and
PBR-TS.

The defense algorithm that resulted in the least average
points for the attacker was LLR (156.2± 89.7). From Fig. 1,
one can see that the average points were almost half of the
second-best defense algorithm. LLR also has the smallest
standard deviation of the strategies. Compared to SP, which
resulted in the highest average points, the difference in stan-
dard deviation is negligible. Percentage-wise, SP is, therefore,
the most consistent strategy. From Fig. 2, it is clear that LLR
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was the best performing strategy, as it has proportionally the
most number of attacks on honeypots in all blocks apart from
the first one, where it is marginally lower than FTRL.

To conclude, the ability of the adaptive strategies (LLR,
PBR-TS, BR-TS, and FTRL) to predict attacks decreased over
time (see Fig. 2); the human adversary seemed to learn how to
attack less and less predictably. By contrast, no such learning
could be observed in the subjects studied by Aggarwal et
al. [3]. Indeed, in their study, FTRL gained in efficiency and
LLR sustained its efficiency over time.2

B. Behavior of the Attacker

The switching behavior of the attacker in Fig. 3 shows that
the Not honeypot–Stay behavior is common in the strategies
SP (80%) and BR-TS (57%). As described in Section III-B,
SP always chooses the action {2, 5}; therefore, an attacker
should find it easy to circumvent it. The results confirm this as
it had the highest total points and the highest Not honeypot–
Stay percentage. SP showed similar results in the study by
Aggarwal et al. [3], where the strategy resulted in 75% for
Not honeypot–Stay behavior. The idea that the participants
learned over time is supported by the results in Fig. 4(d),
where the behavior Not honeypot–Stay increased over time
for SP and BR-TS. The proportion of attacks on honeypots
(see Fig. 2) also decreased for the two strategies during the
game, supporting the idea that the attacker learned where not
to attack.

When playing against FTRL, the attacker leaned more
towards Shift behavior; both when previously choosing a
honeypot (27% for Shift and 9% for Stay) and not hitting
a honeypot (39% for Shift and 25% for Stay), as seen in
Fig. 3. The preference to Shift rather than to Stay when
hitting a honeypot was also presented by Aggarwal et al. [3].
However, the preference to do the same thing when not hitting
a honeypot was not reported by Aggarwal et al. [3]. They
instead received no difference between Not honeypot–Stay
and Not honeypot–Shift behaviors. The algorithm often, but
not always, chose to play the action {1, 3, 4}. However, the
attackers did not notice that the strategy was almost static.
This observation is supported by the non-changing behaviors
reported over the game’s duration. Neither did the proportion
of attacks on honeypots change significantly during the game
(see Fig. 2).

The strategies utilizing randomization to place honeypots,
SE and PBR-TS, both resulted in a relatively even distribution
of Stay and Shift behaviors; both when the attacker hit a
honeypot or not (see Fig. 3). The attackers were slightly more
prone to stay if they did not hit a honeypot and more prone

2Here the strategies PBR-TS and BR-TS are disregarded, since the imple-
mentation by Aggarwal et al. [3] differs from the one herein, cf. Section II.
Moreover, as implemented by Aggarwal et al. [3], PBR-TS and BR-TS begin
their interaction with each subject with a model that has been fine-tuned be-
forehand to match the expected initial behavior of subjects. Therefore, initially,
PBR-TS and BR-TS perform well. On the other hand, their initial behavior is
also very rigid—preferring a small number of possible allocations—making
it almost impossible for a subject to fail and notice this preference and adapt,
thereby rapidly reducing the effectiveness of the strategy.

to shift if they did. There are no discernible changes in the
attacking behavior over time for either SE or PBR-TS. This is
consistent with the findings presented by Aggarwal et al. [3],
both for overall behavior and over time. Due to the randomness
of these strategies, it can be assumed that the attacker did not
find a pattern to increase attack performance, resulting in a
lower amount of total points (see Fig. 1) and no change in the
proportion of attacks on honeypots (see Fig. 2) for these two
strategies.

The strategy that resulted in the lowest total points for
the attacker (see Fig. 1), LLR, also resulted in the attacker’s
behavior being independent on whether he/she hit a honeypot.
Fig. 3 shows the proportions for Honeypot–Stay/Honeypot–
Shift compared to Not honeypot–Stay/Not honeypot–Shift,
which are almost identical. The attacker exhibited a higher
inclination to Shift than to Stay regardless of whether he/she
hit a honeypot. Similar to SE and PBR-TS, no considerable
change in attacking behavior can be seen for LLR in Fig. 4, im-
plying that the attacker did not find a performance-increasing
strategy.

VI. CONCLUSIONS

Previous research has shown that authorities are poorly pre-
pared for antagonistic deceptive cyber behavior, with examples
related to, e.g., critical infrastructure [13] and the financial
system [14]. Such unpredictable antagonistic behavior requires
that one’s own organization also acts unpredictably, and have
a plan for strategic modeling and use of deception and infor-
mation manipulation. In this regard, honeypots are valuable
tools in a cybersecurity arsenal, which can be used to lure
hackers, cybercriminals, and malicious actors, in a controlled
and monitored environment [2]. Honeypots help organizations
gain insights into cyber threats, enhance their security posture,
and provide a proactive approach to identifying and mitigating
risks. However, their deployment should be carefully planned
and managed, and honeypots must be strategically placed
in an unpredictable manner to effectively deceive and deter
hackers [15]. Random and unexpected deployment locations
enhance their efficacy by keeping malicious actors guessing,
making it more challenging for them to distinguish between
genuine assets and traps within the attacked network.

The study described in this paper has explored how effec-
tively different honeypot allocation strategies defend against
human adversaries in a game simulating the interaction be-
tween an attacker and a defender in a computer network. The
study reproduced experiments from the literature, but with
experimental subjects more relevant to cyber defense.

In the study, the ability of adaptive defense strategies to
predict attacks decreased over time; the human adversary
learned to attack less and less predictably. By contrast, no
such learning could be observed in the subjects in previous
studies. Indeed, FTRL gained in efficiency, and LLR sustained
its efficiency over time in the earlier studies.

The static and almost static algorithms, SP and BR-TS,
performed the worst in this study. BR-TS intends not to be
static, but in reality it became almost static due to the lack
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of a prior attack distribution. As with BR-TS, the strategy
FTRL could not be implemented as desired, resulting in a
worse result than in earlier studies. For FTRL, the absence of a
distribution to sample honeypot placements from, is suspected
to be the reason for this difference.

As expected, the strategies where randomization was used,
SE and PBR-TS, performed considerably better. There was
no distinct change in the behavior of the attacker during the
course of the game for these strategies. The fact that no pattern
of honeypot locations could be detected may explain this.

The best-performing strategy, however, was LLR. While
the effectiveness of LLR decreased over time, steadily ap-
proaching that of the static equilibrium (SE), its effectiveness
stayed slightly above the equilibrium even towards the end of
the fifty interactions long experiment, suggesting that LLR
retained some ability to exploit the behavior of subjects
even after repeated interactions. Perhaps the subjects would
eventually have learned how to outsmart LLR, pushing its
effectiveness below that of the equilibrium. To answer this,
further experiments, with an increased number of interactions
between defender and attacker, will be needed.

A. Future Work

Further research ought to focus on improving BR-TS, and
potentially also PBR-TS, by using a prior attack distribution.
When implemented, a comparison to earlier BR-TS studies
should be made to evaluate the improved implementation. Fu-
ture work should also investigate the possibility of presenting
an attack distribution to be used in FTRL, when sampling
honeypot placements. This distribution should be weighted in
a way that does not favor the action {1, 3, 4} as much as in
the implementation reported on herein.

Another focus for future studies would be to include new
strategies for comparison with the ones already examined. The
new strategies could either be already existing strategies (that
were not included in the present study), or newly developed
strategies. Strategies that are constructed from scratch should
include the properties that were found to be successful within
this work in terms of being adaptive and including a certain
degree of randomness.

Finally, future work should be directed to evaluating the
different defense strategies within different populations. In this
regard, it would be interesting to test the strategies relative to
a group of test subjects being experienced in cybersecurity, to
investigate how the strategies perform against a group that
can be compared to more experienced hackers. This since
it is more likely that cyberattacks are performed by people
possessing more experience within cybersecurity compared
to university students, and thereby potentially being able to
exploit defense strategies in both better and different ways.
Testing the strategies on, e.g., personnel active with daily
operational work in CERTs (computer emergency response
teams), would therefore be a kind of ultimate test of the
strategies’ performance in reality.
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