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Abstract—In the domain of cybersecurity, machine learning
can offer advanced threat detection. However, the volume of
unlabeled data poses challenges for efficient data management.
This study investigates the potential for active learning to reduce
the effort required for manual data labeling. Through different
query strategies, the most informative unlabeled data points
were selected for labeling. The performance of different query
strategies was assessed by testing a transformer model’s ability to
accurately distinguish tweets mentioning names of advanced per-
sistent threats. The findings suggest that the K-means diversity-
based query strategy outperformed both the uncertainty-based
approach and the random data point selection, when the amount
of labeled training data was limited. This study also evaluated
the cost-effective active learning approach, which incorporates
high-confidence data points into the training dataset. However,
this was shown to be the least effective strategy.

Index Terms—Active learning; natural language processing;
cybersecurity; advanced persistent threat.

I. INTRODUCTION

Machine learning (ML) holds great promise for detecting
and responding to increasingly sophisticated cyberthreats. The
large volume of available data can also present challenges
for effective data management, however. Annotating data
typically requires a significant amount of time and resources,
particularly if the task necessitates specialized knowledge.
Active learning (AL) can reduce the necessary amount of
labeled data by introducing human interaction in the training
process. Through different query strategies, AL investigates
the selection of data points by identifying the most informative
samples to be labeled [1].

This work studies the potential and application of AL, to
increase model performance for a binary text classification
task. The aim is to fine-tune a transformer model for the
purpose of classifying tweets to determine if an advanced
persistent threat (APT) is mentioned. Incorporating AL in
the training process seeks to avoid the laborious process of
labeling data points that do not contribute further to spanning
the outcome space. The main objective is to study which
AL approaches and strategies that are suitable for continuous
improvement of identification of APTs in tweets. Hence, the
research question studied is the following:

• What active learning approaches are effective for contin-
uous improvement of classification of advanced persistent
threats in tweets?

II. BACKGROUND

This study focuses on the application of AL approaches
for classifying tweets to identify potential threat actors within
a cybersecurity context. Understanding the cyber perspective,
the importance of identifying threat actors, and how it relates
to continuous updating of a machine learning classifier, is
therefore crucial for the purpose of this work.

A. Active Learning

AL aims to reduce the labeling effort required to train a
model [1]. Rather than labeling the entire dataset, only a small
subset is labeled by querying an oracle. The oracle can be a
human or a computer software. AL strategies choose which
data points to label based on some type of informativeness
criteria. The goal is to select a representative set of labeled
instances that capture the underlying distribution of the entire
dataset. The performance of the model trained on this smaller
set of labeled data can, with an optimal selection of data points,
be comparable to a model trained on a much larger labeled
dataset [1]. Fig. 1 illustrates an iterative training process of
active learning, which is commonly employed. The training
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Fig. 1. Active learning cycle.
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process is repeated until the model performs robustly, the
labeling budget is used, or certain criteria are met. The labeling
budget is often a percentage of the total amount of data [2].
The choice of AL strategy is dependent on the problem at
hand. It can be difficult to estimate whether one strategy
performs better than another before they have been put to the
test. Settles [3] states that random sampling, which typically
is used as a baseline, might be advisable if the problem is not
well understood.

Several surveys explore AL within natural language pro-
cessing (NLP) applications. Olsson [4] presents an overview
of the area, especially focusing on the theory and methodology
that different AL approaches use for data selection. Much of
the content can be generalized to AL in other applications as
well, and is not specific to NLP. Miller et al. [5] present an
overview, as well as simulation studies to investigate perfor-
mance, efficiency, and practical applicability. They use support
vector machines (SVMs) with data from Twitter, Wikipedia
talk pages, and news articles in their experiments. Margin
sampling, that is, uncertainty sampling based on the distance
from the data points to the SVM hyperplanes, performs the
best in their experiments. They also find that the length and
style of the text data affect the results. In Wang et al.’s [6]
study, human-in-the-loop NLP frameworks are discussed from
both the ML perspective and the human-computer interaction
perspective. They classify the surveyed papers in terms of
task, goal, human interaction, and feedback learning method.
Zhang et al. [7] showcase how the number of publications
focusing on AL in the ACL Anthology1 has increased over
the last 15 years, indicating an increased interest in the
subject. They discuss the current status of AL in NLP, as well
as suggested future directions. Stiennon et al. [8] introduce
a human feedback model for producing summaries of text
data. In experiments with data from Reddit, they show that
their model improves the quality of summaries, compared to
supervised learning.

In this work, a relatively small amount of data is used to
train an NLP model. The experiments are simulations using an
already annotated dataset, aiming to replicate a scenario with
a human expert annotating the data samples gradually, as they
are selected over time by the AL strategy. For AL in general,
however, it is important to also take the annotation cost into
account, and arguably even more so when expert knowledge
is needed for the annotation process.

B. The Cyberthreat

Traditional cyberthreat detection methods rely on preventive
work and network monitoring [9]. However, identifying and
remediating cyberattacks take time. As threat actors grow more
complex, new complementary technologies and methods are
needed to identify and counter cyberattacks [10]. Cyber actors
use social media, open forums, and the darknet to plan attacks,
and the results of attacks are often sold or exposed online.

1https://aclanthology.org/.

Analyzing unstructured data from open sources can thus assist
in predicting cyberattacks and cyberthreats.

APT is a term that is used to label a specific type of threat
actor. An APT is usually a particularly well-resourced, stealthy
adversary who is able to target specific information, and also
eventually acquire it through persistent efforts [11]. The APT
will typically succeed even if the target is a competent high-
profile company or even a government. APTs are typically
conducting long-term campaigns that involve multiple stages,
utilizing the full range of their capabilities. According to U.S.
National Institute of Standards and Technology [12], APTs
demonstrate a high level of expertise while they also possess
large amounts of resources, enabling them to leverage multiple
attack vectors, such as cyber, physical, and deceptive tactics.
These attacks primarily involve infiltrating the targeted entity’s
information technology infrastructure to gain confidential in-
formation, disrupt vital aspects of a mission or organization, or
position themselves to achieve similar objectives in the future.

APTs are typically given a name or a number by the first
organization that discovers and publishes findings about them.
However, these organizations, often antivirus and other types
of cybersecurity companies, normally use their own naming
conventions for an APT, regardless of who named it first [13].
This can lead to serious confusion. APT28, for example, has
multiple aliases, such as Fancy Bear, Strontium, Pawn Storm,
Sofacy, Sednit, and Tsar Team [13]. APT28, mentioned here
as an example of an active APT, is a Russian-associated group
that has been extensively documented and analyzed due to its
involvement in multiple high-profile cyberattacks. The group
has a long history of performing attacks with the common goal
of promoting the political interests of the Russian government.

Cyber intelligence analysts have various roles. Some seek
to assess the various APTs’ capabilities to make threat assess-
ments by analyzing and evaluating computer networks and
systems [9]. They typically use various tools and techniques
to monitor network traffic and activity, to detect patterns
or anomalies that may indicate a cyberattack or a security
breach. Actions to prevent or mitigate cyberattacks can then
take place at different levels. At the strategic level, long-term
measures are required, for example, replacing an entire system,
or overhauling an architecture, due to an excessive number of
security risks [14]. At the tactical level, responses are often
more time-sensitive. Associated necessary measures should be
implemented more swiftly, for example, updates of firewall
rules or changes in routing tables.

Intelligence analysts possess considerable expertise in iden-
tifying and recognizing APTs. As such, they are potential users
of the outcome of this project, where the intelligence analysts
fulfill the role of labeling data points. Through this process,
the analysts can make valuable contributions to the training
of the system through AL approaches, without necessarily
having to share secret data with a system designer. This, in
turn, secures that the system continues to stay pertinent, while
accommodating additional data.
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III. ACTIVE LEARNING STRATEGIES

Four AL strategies are studied in the experiments, including
the random strategy. The random query strategy (AL-random)
selects data points randomly for labeling, and is used as a
baseline for comparison with the other strategies. The other
strategies are uncertainty sampling with entropy for uncer-
tainty measurement (AL-entropy), diversity sampling using K-
means (AL-kmeans), and CEAL (CEAL-entropy).

Uncertainty sampling is based on selecting the samples that
the model is most uncertain about how to classify. Thus,
instances where the model is highly uncertain are supposed to
be maximally informative [1]. A common approach to evaluate
the predictions made by a model is to assess the probabilistic
distribution of the classes. There are several uncertainty-based
query strategies to measure this, such as least confidence,
margin of confidence, and entropy. Entropy, a measure of
impurity of a system [15], is widely used in ML as a measure
of uncertainty of a model.

Uncertainty sampling is prone to selecting outliers and data
that may not accurately represent the dataset [16]. Conversely,
diversity sampling mitigates these concerns by identifying
a subset of samples that comprehensively cover the entire
dataset. Depending on the methodology employed to con-
struct the subset, there exists a variety of diversity sampling
techniques. One technique is cluster-based sampling, which is
a method used to find structures among the unlabeled data
points, where a commonly used strategy is K-means.

In addition to only selecting data points that the model is
least confident about, cost-effective active learning (CEAL)
also considers samples where the model is most confident [17].
For instance, if the model predicts a data point belonging to a
class with certainty 0.5, it is a likely candidate for uncertainty
sampling. However, if the prediction is 1, we can infer that the
model is maximally confident in its classification. In each AL
cycle, the CEAL technique selects samples at both extremes:
those with the highest uncertainty, and those with the lowest.
For the latter, CEAL suggests provisionally labeling them
based on the model’s predictions, creating so-called pseudola-
beled samples [17]. Subsequently, both the pseudolabeled sam-
ples and the oracle-labeled data points are added to the labeled
training dataset, which is used to train a new model. Upon
completing the training of the new model, the pseudolabeled
samples are eliminated from the training dataset, and a new
CEAL cycle is initiated. This process is depicted in Fig. 2. The
unlabeled samples with an uncertainty measurement below a
predetermined threshold δ are considered the most certain. The
threshold for high-confidence sample selection is updated at
each epoch, according to Equation 1. This is to be done to
ensure that the labeling process remains dependable [17]. The
threshold δ is defined by:

δ =

{
δ0, for t = 0,

δ − dr × t, for t > 0.
(1)

where δ0 is the initial threshold, dr controls the threshold
decay rate, and t is the current epoch.

Model

Oracle

Pseudolabeled
samples

Unlabeled data pool

Labeled data

Fig. 2. Cost-effective active learning.

IV. METHOD

This section describes the model used, the data, and the
experimental setup.

A. DistilBERT for Text Classification

DistilBERT is an open source NLP framework used for
the text classification part of the experiments. DistilBERT
is smaller, faster, cheaper, and lighter than its predecessor
BERT [18]. By using a small model, the time and resource
costs associated with model training can be reduced while still
maintaining high performance. The pre-trained transformer
DistilBERT, as described, was used through the Hugging Face
library [19]. The tweets were tokenized and [CLS] and [SEP]
tokens, used for classification and sentence separation, were
added. The [CLS] token captures the entire context of the
input for simple downstream tasks, such as classification. For
sentence representations used in classification tasks, the size
of the [CLS] token is equal to the number of data points ×
the number of hidden states. The tokenized input was padded
to match the length of the longest tweet in the dataset. An
attention mask was also created to distinguish the padded
tokens from the non-padded ones. The stochastic optimizer
Adam [20] was utilized. A small search was conducted to
identify an optimal learning rate for this classification task.
Various learning rates were tested, focusing on values near
the suggested learning rates mentioned for the original BERT
model [21]. The search resulted in an optimal learning rate
of 2e-5. A single linear layer was added at the output hidden
state of the [CLS] token, on top of the DistilBERT model, to
perform classification.

The pre-trained model and the additional untrained classi-
fication layer were trained and updated at every iteration for
the specific task. The cross-entropy loss was used to measure
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the performance of the model, calculated by comparing the
divergence between the predicted probability and the actual
label.

B. Dataset

The dataset used in the experiments contains approximately
35000 labeled tweets [22]. Cyber-related tweets were iden-
tified by their association with keywords such as “cyber”
and “malware.” An existing infrastructure for data download
and rule-based detection of known APTs was leveraged to
download vast amounts of cyber-related tweets and automati-
cally categorize them into two groups: texts with and without
(known) APTs.

The dataset contains a total of 70 different APTs. A lan-
guage detector from the fastText [23] library was utilized to
identify and discard all tweets where English was not the most
probable language. To enhance the model in locating APTs,
distracting elements in all tweets were eliminated. Links, email
addresses, phone numbers, and usernames were replaced with
their respective masking tokens (LINK, MAIL, PHONE, and
USER). Emojis were then converted to descriptive ones (for
example, � was changed to :thumbs up:) using the demoji
Python package.2 Duplicate tweets were removed, and the
tweets were also normalized, for example, replacing “a . m .”
and “p . m .” with “a.m.” and “p.m.”

Approximately 19000 tweets remained after the cleaning.
The entire dataset contained twice as many tweets belonging
to the negative class as the positive class. To prevent the model
from overtraining on a small number of negative examples, a
skewed distribution with three times more negative examples
was chosen for the training. An even distribution between
positive and negative was chosen for the validation set. For
the unlabeled pool dataset, the remaining data was added,
resulting in 66 percent negative samples. For clarification, this
is presented in Table I.

TABLE I
DATA DISTRIBUTION PER CLASS.

Dataset Positive Negative

Training 25% 75%
Validation 50% 50%
Unlabeled pool 34% 66%

C. Experimental Setup

Algorithm 1 shows that the total number of data points
added to the training dataset L is K × N , where K is
the number of samples in a batch and N is the number
of epochs. The F-score and the accuracy were accumulated
over all batches and logged at each epoch for the validation
dataset. To obtain a fair evaluation and comparison between
AL approaches, the training was averaged over three runs with
ten different seeds (101, 102, . . . , 110). The stopping criterion
for training was when the maximum number of epochs was

2https://pypi.org/project/demoji/.

achieved. At every iteration, the model M is fine-tuned and
thereby updated. At the end of every epoch, data points chosen
according to a query strategy are added to the training dataset.
The pseudosamples, that is, samples chosen by CEAL, are also
added.

Algorithm 1 Cost-effective active learning
Input:
M ← Pre-trained transformer model,
U ← Unlabeled pool dataset,
L ← Initially labeled dataset,
V ← Validation dataset,
K ← Acquisition size for AL sampling,
δ ← Threshold for pseudosamples,
N ← Maximum number of epochs.
Output: A trained model M.

1: for epoch = 0, 1, . . . , N do
2: if epoch ̸= 0 then
3: Put back pseudosamples from L to U .
4: end if
5: Train model M with L.
6: Move K samples from U into L based on query

strategies.
7: Move H high-confidence pseudosamples from U into

L.
8: Evaluate on V and log the results.
9: Update δ.

10: end for

The CEAL approach required optimal values for the thresh-
old δ and the decay rate dr to be set in order to be imple-
mented. The value δ set the limit for the number of samples
that could be transferred to the labeled training dataset, and dr
determined the rate of decay according to Equation 1. The de-
cay rate was chosen to be 0.0033, as stated as the most optimal
value according to the literature [17]. An initial threshold of
0.35 was established through experimentation. The threshold
allowed for the addition of pseudolabeled samples, that is, data
points with entropy lower than the threshold are included in
the training dataset.

K-means clustering was used in an attempt to sample
diverse data points, deviating from uncertainty sampling where
entropy was based on probabilities of the different classes. K-
means was performed on the [CLS] token, which is a special
classification token, which corresponds to the last hidden state
in the model. K data points were then chosen to be sent to
an oracle for labeling, based on the smallest distance to each
centroid.

The amount of initially labeled data and the acquisition
size were varied to determine their impact on the model’s
performance. The amount of initially labeled data refers to the
data used to train the model at the start of the experiment and
the acquisition size to the number of data points added each
epoch. For the amount of initially labeled data, experiments
were conducted with 0.05%, 0.1%, 0.5%, and 1% of the
whole dataset, corresponding to 9, 19, 96, and 192 data points,
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Fig. 3. Average F-score of AL approaches and query strategies with different amounts of initially labeled data and acquisition size 10, averaged across ten
seeds and shown with 95% confidence intervals.

respectively. The acquisition sizes tested in the experiments
were 10, 25, and 50 data points. The validation set was set
to be 4% of the whole dataset. To prevent misleading results
due to lack of data in the validation set, a consistent amount
of data was allocated for validation, regardless of the size of
the training set. The conducted experiments were executed on
a high-performance NVIDIA DGX A100 computing cluster
consisting of eight NVIDIA A100 40 GB Tensor Core GPUs.

V. RESULTS

The presented results referred to as CEAL-entropy are
solely based on AL-entropy+CEAL-entropy. All combinations,
that is, AL-entropy+CEAL-entropy, AL-random+CEAL-
entropy, and AL-kmeans+CEAL-entropy, were tested, but
due to their similar performance and space constraints, not
all combinations are shown. As stated, the incorporation of
pseudolabeled samples depended on the model’s classification
confidence to identify data points suitable for inclusion in the
training dataset. Consequently, the results for CEAL-entropy
are presented only for experiments in which the model
displayed sufficient confidence in classifying data points.

In the graphs presented in Fig. 3 and 4, the x-axis denotes
the number of labeled data points by the oracle, not the
pseudolabeled samples.

In Fig. 3, four graphs are presented displaying the F-score of
four scenarios with acquisition size 10 and different quantities
of labeled data that the model had at its disposal for training.
The experimental setup involved conducting experiments with
an acquisition size of 10 over a span of 20 epochs, with varying
amount of initially labeled data. The total number of labeled
data points was determined by adding the initially labeled data
to the 200 data points (10 × 20) acquired from the pool of
unlabeled data. This was the procedure for all query strategies,
except when employing CEAL.

In Fig. 4, the F-scores for four separate scenarios with
acquisition size 50 are displayed, characterized by the varying
quantities of labeled data available to the model during the
training process. As in the previous sections, the experiments
were carried out over 20 epochs, with different amounts of
initially labeled data. The total number of labeled data points
was calculated by adding the initially labeled data to the 1000
data points (50×20) acquired from the pool of unlabeled data,
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Fig. 4. Average F-score of AL approaches and query strategies with different amounts of initially labeled data and acquisition size 50, averaged across ten
seeds and shown with 95% confidence intervals.

to provide a comprehensive understanding of the performance
trends under this experimental condition.

Table II presents a comparison between acquisition sizes
10 and 50, using 0.5% of the initially labeled data (96 data
points). It presents the effects of acquisition sizes on perfor-
mance, with the F-score for each of the tested query strategies
given for a specific number of data points, thus resulting in
different numbers of epochs. To compare how the F-score
is affected by the same number of data points with varying
acquisition sizes, the rows should be analyzed in pairs.

VI. DISCUSSION

As can be seen in Fig. 3 and 4, each of the tested query
strategies yielded impressive results. For acquisition size 10,
Fig. 3(a) and 3(b) show that the AL-kmeans strategy outper-
formed both the AL-entropy and AL-random strategies until
approximately 100 data points were labeled. After that point,
all query strategies performed more or less equivalent to each
other.

For acquisition size 50, the AL-kmeans strategy shows
a performance slightly more advantageous than other query

TABLE II
F-SCORE FOR ACQUISITION SIZES 10 AND 50, WHEN TRAINED ON THE

SAME NUMBER OF DATA POINTS.

Data Acq. Epochs AL- AL- AL- CEAL-
points size entropy random kmeans entropy

196 10 6 0.76 0.75 0.76 0.76
50 2 0.39 0.39 0.39 0.39

246 10 11 0.86 0.82 0.83 0.85
50 3 0.61 0.54 0.62 0.61

296 10 16 0.89 0.86 0.86 0.88
50 4 0.76 0.78 0.80 0.76

strategies up to 250 data points. However, as shown in
Fig. 4(a) and 4(b) the difference is subtle. Independent of the
initial training data quantity, the AL-random and AL-kmeans
strategies tend to converge towards each other, resulting in
equivalent F-scores. Notably, similar to acquisition size 10,
the AL-entropy strategy demonstrates a slightly higher F-score
upon the model’s training completion for all levels of initially
labeled data.
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This might suggest that employing a diversity-based method
is most effective when only a limited amount of labeled
data is available. Presumably, this approach succeeded in
selecting data points that more accurately embodied the dataset
compared to the uncertainty-based method. As the amount of
training data increased, the importance of selecting diverse
data points seemed to diminish. As a result, AL-random and
AL-kmeans displayed similar behavior, whereas AL-entropy
achieved a marginally higher F-score. Nonetheless, the differ-
ence can be considered minimal, and the similar results are
likely influenced by the inherent simplicity of the problem, as
all query strategies exhibit high performance.

Contrary to the initial assumption that CEAL would effec-
tively increase the amount of training data and subsequently
enhance the model’s performance, this does not appear to be
the case. In instances where 0.5% of all data were labeled
before training, Fig. 3(c) and 4(c) display that the inclusion
of pseudolabeled data points only had a marginal effect on
the model’s performance and achieved an F-score comparable
to AL-entropy alone. This can be attributed to the fact that
only a few pseudolabeled samples exhibited entropy below
the threshold and were subsequently added to the training set.
This is not surprising since the presented results for the CEAL
approach combine AL-entropy+CEAL-entropy. Instead, when
the model is provided with more initially labeled data, as can
be seen in Fig. 3(d) and 4(d), it exhibits increased confidence
in its predictions, leading to a greater number of data points
falling below the threshold and being incorporated into the
training set. This results in inferior performance compared to
other strategies, as the model is not sufficiently confident in
its predictions, causing data points to be assigned incorrect
labels. In light of these findings, the optimality of setting an
initial threshold and subsequently reducing it by a factor over
the number of epochs, can be questioned. However, the poor
results from the CEAL approach might also be because of
the small amount of data used for training. If there was more
training data, the estimations might be better and more certain,
resulting in a better output from CEAL. That is, CEAL might
be a good choice if data is less scarce, but in this work the
focus is on a scenario where data annotation can be expensive,
and it is therefore of interest to limit the annotation cost. Based
on the results, the threshold-setting method appears to be more
sensitive than has been proposed in previous studies [17]. An
alternative approach, in which the threshold is more flexible
and adapted to the model’s confidence, might have yielded
a different outcome. Another possible way could involve
training the model over a greater number of epochs, thereby
increasing the likelihood of accurate label classification, while
simultaneously allowing the threshold to be set at a lower
value.

Upon examining Table II to analyze the impact of acquisi-
tion sizes, it becomes apparent that the choice of acquisition
size can influence the performance of different query strate-
gies. Uncertainty-based query strategies, such as AL-entropy
and CEAL-entropy, achieved a higher F-score from a smaller
acquisition size over a greater number of epochs. For example,

after 296 labeled data points, AL-entropy achieved an F-score
of 0.89 with an acquisition size of 10, and 0.76 with an acquisi-
tion size of 50. The smaller acquisition size also enhanced the
performance of both AL-random and AL-kmeans strategies up
to 246 labeled data points. When further increasing the amount
of labeled data, the difference can be seen as negligible. Upon
the model reaching meaningful performance level, the impact
of acquisition sizes on the convergence rate dropped to a barely
noticeable level. However, uncertainty-based query strategies,
such as AL-entropy and CEAL-entropy, seem to benefit from
a smaller acquisition size over an extended number of epochs.

To address the research question, a trade-off between time
and F-score must be made. AL-kmeans utilized the [CLS]
token, which had a size equal to the number of data points
× the number of hidden states, to select data points for
labeling by the oracle. Consequently, AL-kmeans might not be
an appropriate strategy when working with high-dimensional
data, if time consumption is a performance requirement. In
contrast, AL-entropy and AL-random selected their data points
based on probabilities for each label and, therefore, did not
necessitate selection of data points from this high-dimensional
space.

A. Limitations

It can be argued that labeling data needs to include a non-
biased oracle. In this study, this concern has been mitigated,
as the oracle is a computer software that simulates a human
in providing correct labels. However, a broader perspective
and a possible future scenario includes a human annotator
as the oracle. In such scenarios, a malicious oracle may
introduce bias, for example, by consistently mislabeling tweets
referencing a particular threat as negative.

The overall performance of the various AL approaches
and query strategies was notably high, with several strate-
gies achieving an F-score exceeding 0.90. This raises the
question of whether the classification task itself is relatively
straightforward for a complex transformer such as DistilBERT.
Moreover, this level of performance is expected, given the
binary nature of the classification problem, compared to a
multi-class problem. Another consideration is that the model
potentially learned the precise names of the 70 distinct APTs,
which might have limited its ability to generalize and maintain
comparable performance if new data containing different APTs
are introduced.

Furthermore, the experiments were simulated, that is, hu-
man subjects were not used in the annotation process. With
humans, the task becomes more complex, possibly introducing
a varying labeling cost, noise or disagreement to the labels,
etc. While simulations have the advantage of providing more
control over the experiments, they also risk oversimplifying
the real-world scenario that is intended to be replicated.

VII. CONCLUSIONS

This work investigated the potential of AL and its effec-
tiveness for continuous improvement of classification of APTs
in tweets. The transformer model DistilBERT was employed
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to classify the tweets, and AL approaches were utilized to
iteratively add new labeled data points to the training dataset.
Different AL approaches, including uncertainty-based and
diversity-based query strategies, were examined, with several
strategies achieving high performance. The diversity-based
query strategy K-means excelled in the early training stages
with limited pre-labeled data. However, as the volume of
training data increased, the performance advantage diminished.
Additionally, as the number of training epochs increased,
the uncertainty-based strategy showed a marginally improved
performance relative to the other strategies. Interestingly, the
CEAL approach did not enhance the model’s performance.
The incorporation of data points with predicted labels often
resulted in incorrect labels, thereby undermining the perfor-
mance.

For future work, it would be interesting to explore the
impact of combining the K-means strategy, which in this
project demonstrated effectiveness when a minimal amount
of labeled data was available, with uncertainty-based methods,
such as entropy. This could be done by employing K-means to
select K clusters and calculating entropy within each cluster,
rather than on all data points in the unlabeled pool, which
could potentially offer a more effective strategy for diverse
sampling, while focusing on data points with higher model
uncertainty. Additionally, assessing the generalizability of
these findings across various datasets and distributions would
be valuable; especially, experiments with human subjects in
the annotation process would be of interest. This project
focused on the performance of query strategies in a binary
classification context, so extending the investigation to multi-
class problems would be beneficial. Lastly, further examination
of the potential of the CEAL approach is warranted, given its
promising results in prior studies [17]. Exploring alternative
methods for establishing the initial thresholds, as well as
reducing the thresholds, could prove beneficial.
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