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Abstract—In this application-oriented paper, we develop a 
methodology and a system for horizon scanning of scientific 
literature to discover scientific trends. Literature within a broadly 
defined field is automatically clustered and ranked based on topic 
and scientific impact, respectively. A method for determining the 
optimal number of clusters for the established Gibbs sampling 
Dirichlet multinomial mixture model (GSDMM) algorithm is 
proposed along with a method for deriving descriptive and 
distinctive words for the discovered clusters. Furthermore, we 
propose a ranking methodology based on citation statistics to 
identify significant contributions within the discovered subject 
areas. 

Keywords-horizon scanning; scientometrics; Gibbs sampling; 
Dirichlet multinomial mixture model; entropy; clustering; HSTOOL 

I. INTRODUCTION 
Horizon scanning methods aim to discover changes, 

disruptions, and trends with the potential to influence the 
development of a particular area of interest significantly. For 
scientific literature, the goal of horizon scanning is to discover 
emerging or rapidly growing research areas. 

To scan broad scientific fields without making presumptions 
about specific topics worthy of further studies, large numbers of 
scientific articles must be included in the scanning process. This 
requirement motivates the need for a semiautomatic approach, 
where software tools provide some initial filtering and 
structuring of the data. 

In this paper, we propose a method for semiautomatic 
horizon scanning of scientific literature and present the horizon 
scanning system HSTOOL that supports the proposed method. 
The goal of the method is to identify rapidly developing fields 
and their most significant contributions by first scanning the 
scientific literature using relatively general search criteria and 
then structuring and filtering the discovered articles. HSTOOL 
accesses the Thomson Reuters Web of Science1 (WOS) Core 
Collection through a set of APIs that allow searches and retrieval 
of article data, as well as citation statistics. 

The key steps of the method are clustering of the discovered 
literature to identify topics and ranking of articles in the resulting 
clusters based on scientific citation statistics to find the most 
significant contributions within the respective topic. 

We use the Gibbs sampling Dirichlet multinomial mixture 
model (GSDMM) algorithm [1] for clustering and introduce a 
complementary method to determine the optimal number of 
clusters. We find the optimal clustering by evaluating the quality 
of placement of every article in each specific cluster using an 

                                                           
1 http://www.webofknowledge.com (March 2019). 

entropy measure [2, 3]. Furthermore, we develop a method for 
automatically presenting two sets of descriptive words for each 
cluster based on the cluster’s contents. The first set consists of 
the words that most often occur in the cluster, while the second 
set consists of the most distinctive words in the sense that their 
occurrence throughout the entire set of articles is concentrated 
in the current cluster. In combination, the sets provide a 
description of the articles that are part of the cluster and an 
account of what primarily distinguishes these articles from 
articles in other clusters. 

For scientific ranking, we propose a set of scientometric 
measures that identify articles that have made a significant 
impact in the respective fields. Influence is measured as either 
collecting many citations over a short period of time, or having 
a strong citation trend, or frequently being cited in prestigious 
journals. Finally, the measures are aggregated into a total 
ranking within each discovered cluster. The top-ranked articles 
can thus be selected for detailed study. 

The paper is organized as follows. In Section II, we describe 
a workflow model that contains all process steps of searching, 
organizing and analyzing scientific articles. In Section III, we 
develop methods for performing horizon scanning to discover 
and analyze trends in scientific literature. In Section IV, we 
develop processes for scientific trend discovery and describe a 
literature scanning system. We apply the system to a case study 
of literature on military applications of artificial intelligence 
(Section V). Finally, conclusions are provided in Section VI. 

II. WORKFLOW 
Fig. 1 shows the proposed workflow of horizon scanning of 

scientific literature in five steps. The process is intended to 
facilitate scanning of broad areas defined by a general topic 
search string (step 1). Once a search has been performed and 
records downloaded (step 2), topics are automatically 
discovered using a clustering algorithm that groups the scientific 
articles based upon textual contents (step 3). Clusters of articles 
can then be selected for further studies. To find the key 
contributions from a cluster of interest, a ranking method is 
proposed that uses a set of statistical citation measurements to 
capture various aspects of scientific impact (step 4). Once top-
rated contributions for a subject area have been identified, a 
manageable subset of articles can be selected for detailed studies 
(step 5). 
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Fig. 1. Proposed workflow for horizon scanning of scientific literature. 

III. METHODOLOGY 
In this section, we describe methods for searching scientific 

literature, clustering articles in groups that correspond to subject 
areas and evaluating the scientific impact of all articles with 
citation statistics. 

A. Searching Scientific Publications 
All searches are performed using search terms provided by 

subject matter experts. These search terms should be tested 
before use in HSTOOL to ensure that they yield results within the 
area of interest. 

We use HSTOOL to search for publications through an API 
that provides access to WOS. We limit the search to the Core 
Collection because that database has the citation statistics that 
we need for scientometric analysis and ranking of articles. 

B. Clustering of Articles 
Once a search result has been downloaded from WOS (Fig. 

1, steps 1–2) we want to group all articles that deal with the same 
subject area into a cluster to be treated as a separate subproblem 
(Fig. 1, step 3) and then use scientometric information to 
determine which articles within each cluster are most important 
to that area (Fig. 1, step 4). 

In the following two sections, we describe how to use a 
GSDMM algorithm to organize articles into clusters with 
common subject areas and how we determine the optimal 
number of clusters. It is important to point out that the search 
terms used in the previous step are not used in the clustering 
phase. 

1) Clustering with GSDMM: To group articles within the 
same subarea, we use the abovementioned GSDMM [1, 4]. 
Simply described, this method starts from a large number of 
clusters and a random distribution of articles among clusters. 
Then, the method examines each article to determine if it fits 
better in any other cluster than where it is currently placed. This 
procedure is repeated iteratively for all the articles until there 
are no more changes. 

The method proceeds by comparing for every article all 
words in the article’s title and abstract with the corresponding 
words in all other articles. If a word is missing or occurs a 
different number of times when comparing with another article, 
the probability that these articles belong together is assigned a 
lower value. These probabilities are combined for all articles 
within each cluster (and also for the cluster where the article is 
currently located). This results in an evaluation for all clusters 
of how well this article fits into all the different clusters. Then, 
the article is moved to a cluster where it fits well according to 
these probabilities. 

The procedure is applied to all articles and repeated 
iteratively until all articles are placed in their best clusters. 

During the process, the number of clusters will decrease 
dramatically, often by 80–85%. For example, if we start with 

500 clusters and thousands of articles, we can finish with 75–
100 clusters. 

The clustering process is performed by a sequence of Gibbs 
sampling iterations. During each iteration, we calculate the 
probability of each article belonging to each cluster k, resulting 
in the probability that the article should be moved to that cluster. 

We have [1] ݌ௗ௞௜(݇ௗ = ݇|ሬ݇⃗ ¬ௗ, ݀⃗) ∝
݉௞,¬ௗ + ܦߙ − 1 + ߙܭ × ∏ ∏ ൫݊௞,¬ௗ௪ + ߚ + ݆ − 1൯ே೏ೢ௝ୀଵ௪∈ௗ∏ ൫݊௞,¬ௗ + ߚܸ + ݅ − 1൯ே೏௜ୀଵ        (1)

where on the left-hand side, ݇ௗ is the cluster position of article 
d, k is the kth cluster, ሬ݇⃗ ¬ௗ is the set of cluster positions of all 
other articles excluding d, and ݀⃗ is the set of all articles. In the 
first term on the right-hand side, ݉௞,¬ௗ is the number of articles 
in cluster k not including d,  is a cluster parameter set to 0.1 in 
our test case, D is the total number of articles under 
consideration, and K is the initial number of clusters. In the 
second term on the right-hand side, w is the wth word of article 
d, ௗܰ௪ is the number of times word w appears in article d, ݊௞,¬ௗ௪  
is the number of times word w appears in cluster k when article 
d has been removed, β is a cluster parameter that will determine 
the number of final clusters, ௗܰ is the number of words in article 
d, ݊௞,¬ௗ is the number of words in cluster k when article d has 
been removed, and V is the number of words in the vocabulary. 

During the first iteration, a new cluster position is sampled 
for each article using (1). After each sampling, (1) is updated. 
When all articles in D have been reassigned to a new cluster 
position, the second iteration starts. The process continues for a 
fixed number of iterations. The final cluster positions of all 
articles at the last iteration is the result of the clustering process. 

2) Managing the number of clusters: To select the best 
number of clusters, we need to evaluate various options. To this 
end, we evaluate various numbers of clusters based on the 
quality of clustering. 

The GSDMM algorithm does not require a predetermined 
number of clusters to assign the articles of a given corpus. 
However, the number of clusters depends on parameter ߚ ∈  (0, 1) that appears in (1). A value of β near zero results in 
many clusters, while β near one produces fewer clusters. 

Several standard internal clustering performance metrics [5] 
utilize some definition of distance between data points. 
However, since the GSDMM algorithm does not utilize any 
distance measure between documents to define clusters, these 
metrics are inapplicable. 

Instead, we focus on the articles that have been clustered and 
study how well they fit in the clusters where they have been 
placed. 

Each article has a probability distribution across all clusters 
that indicates the probability that each cluster is the optimal 
location for that article (1). This distribution is calculated and 
used in the clustering process for GSDMM and is recalculated 
in each step of the clustering process for all articles. 

At the end of the clustering process, we use the final 
calculated probability distribution for each article. This is a 
distribution over all initial clusters, although most of the original 
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clusters are empty at the end of the clustering process and thus 
have a nearly zero probability. 

We consider {݌ௗ௞௜}, where ݌ௗ௞௜ is the probability that article 
d belongs to cluster k at iteration i (1), with 

෍ ௗ௞௜௄݌
௞ୀଵ = 1                                       (2)

for any constant d and i, and where K is the initial number of 
clusters. 

If the placement of a particular article is almost certain, that 
article will have a probability near one for the respective cluster. 
Sometimes, an article may have more than one probability that 
is not near zero because the placement is uncertain. A clustering 
can be considered to be of high quality if as many articles as 
possible have as certain a placement as possible. Consequently, 
the entropy of the probability distribution is a good measure of 
the quality of placement of a particular article [2]. To study the 
convergence of the GSDMM algorithm, we calculate at each 
Gibbs sampling iteration i the entropy for each article d as 

ௗ௜ݐ݊ܧ = − ෍ ௗ௞௜(݇ௗ݌ = ݇|ሬ݇⃗ ¬ௗ, ݀⃗)logൣ݌ௗ௞௜൫݇ௗ = ݇หሬ݇⃗ ¬ௗ, ݀⃗൯൧௄
௞ୀଵ .

To determine the quality of a specific clustering (i.e., the 
clustering at a specific iteration i for a specific value of β), we 
calculate its entropy as 

௜ݐ݊ܧ = ෍ ௗ௜஽ݐ݊ܧ
ௗୀଵ .                                 (4)

Fig. 2 shows the convergence of ݐ݊ܧ௜  for i  [0, 14], 
averaging over 100 runs for a test case. The clustering quality is 
not significantly improved after 10 iterations. However, entropy 
convergence can vary between runs, which would motivate a 
dynamic choice of iterations, whereby the entropy reduction rate 
determines when the algorithm is complete. This would be an 
interesting future direction to investigate. 

 
Fig. 2. Entropy convergence (4) over 15 Gibbs sampling iterations for all 
articles in a test case, averaging over 100 runs. 

From the above, it follows that a good measure of quality of 
the entire partition of all articles for a particular clustering 
process is the sum of entropy over all articles after the final 
iteration, where ݐ݊ܧଵସ  is the sought-after entropy to be 
minimized. 

In Fig. 3, the average number of discovered clusters is shown 
for a test case for various values of parameter β. If β is small, we 
obtain a large number of remaining clusters at the end of the 
process. The number of clusters drops rapidly if β is increased. 
For values of β above 0.2, the decrease in the number of final 
clusters is more gradual. It is clear that choosing the right value 
of β is key to obtaining an appropriate number of clusters for the 
contents of the corpus. 

 
Fig. 3. Average number of clusters discovered by GSDMM as a function of β, 
averaged over 100 runs for each value of β for a test case. 

To find the best number of final clusters, we study the 
entropy at the end of each clustering process for values of β 
between zero and one. The results are shown in Fig. 4. As β 
increases, there is a decline in the final entropy for each 
clustering process. Note that most of the decline in entropy 
occurs when β is increased to 0.1. However, the number of 
clusters keeps decreasing as β approaches 1, as shown in Fig. 3, 
without any improvement in entropy (Fig. 4), which ultimately 
results in a few large clusters, each containing multiple topics. 
Ideally, we want to find a partition that has well-defined clusters 
that correspond to subject areas yet has the lowest possible 
entropy. 

 
Fig. 4. Final entropy ݐ݊ܧଵସ (4) for a test case summed over all articles as a 
function of β, averaged over 100 runs. 
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To estimate the correct number of clusters, the final entropy 
derived from clusterings with various values of β is calculated. 
It is evident that there is a change of behavior of the entropy at 
a point that we consider to yield the best number of clusters; that 
point is determined as follows [3]. The concave lower envelope 
of entropy is determined by a convex hull algorithm. At any 
abscissa, the envelope function is bisected into left and right 
parts. The acute angle between the left and right line segments 
is minimized across all bisection values of abscissa, and the 
minimizing abscissa is selected as the best value of β. 

C. Describing the Contents of Clusters 
In this section, we outline a method for describing the 

contents of a cluster. A high-level description is given by the 
most representative and the most distinctive words. 

The most representative words are those that most often 
occur in the cluster. For cluster k, we have ܨ௞௪ = ݊௞௪, where ݊௞௪ 
is the number of times word w occurs in cluster k. We rank all 
words in cluster k according to ܨ௞௪  and present the highest-
ranked words with the maximum ܨ௞௪  as representatives of 
cluster k. 

Words that distinguish a cluster from other clusters are 
determined by calculating the entropy of each word in the corpus 
as 

௪ܧ = − ෍ ݊௞௪∑ ௝݊௪௄௝ୀଵ
௄

௞ୀଵ log ቆ ݊௞௪∑ ௝݊௪௄௝ୀଵ ቇ              (5)
where ܧ௪  is the entropy of word w, and ܭ  is the number of 
clusters. For each cluster k, the words in this cluster with the 
lowest entropy (i.e., the words that occur in the least number of 
clusters) are listed as distinctive words. We have ܧ௞௪ = ௪|݊௞௪ܧ > 0                                   (6) 

where ܧ௞௪  is the entropy of word w in cluster k. We rank all 
words in cluster k according to ܧ௞௪  and present the highest-
ranked words with the minimum ܧ௞௪  as the most distinctive 
words. 

Together, ܨ௞௪  and ܧ௞௪  identify the most representative and 
distinctive words for each cluster, describing the contents of that 
cluster. 

D. Ranking of Articles within Clusters 
 The ranking of articles is done using citation statistics 

in several different ways [6]. We use the statistics provided by 
Thomson Reuters’ WOS. With these statistics, we can rank all 
articles based on the interest that other scientists have expressed 
according to their citations. 

Our focus is on finding the most important articles within the 
clusters. This is done independently for each cluster by ranking 
all its articles. The ranking results from several independent 
methods with measures that perform alternative assessments. 

We start by calculating the number of citations for an article 
during each of the preceding six years. We then define four 
different impact measures based on citation impact and citation 
trends for all articles. Using the four measures, the articles 

                                                           
2 http://www.webofknowledge.com/JCR (March 2019). 

within each cluster are assigned four alternative impact rankings 
that are then aggregated into a total ranking. The aggregation of 
the four rankings is designed to maximize robustness such that 
no single method dominates the final ranking. The process is 
repeated independently for each cluster. 

1) Impact measures: The first measure is called Impact1. 
With this measure, we can rank all articles within a cluster 
according to the number of times they have been cited in the 
WOS database over the past year (i.e., the preceding 365 days). 
This can be done by the operator citingArticles in the WOS API. 
We denote by ݏଵ௝௞  the number of citations of ܣ௝  (i.e., the 
numerical value of the impact measure Impact1), where ܣ௝ is 
the jth article in the search, and k is the cluster position of ܣ௝. 
The highest-ranked article ܣ௝ is that with the maximum value 
of ݏଵ௝௞  for all {ܣ௟}. 

The second impact measure is called Impact5. This measure 
is similar to Impact1, except that it includes all citations over the 
past five years. We denote by ݏହ௝௞  the number of citations of ܣ௝ 
over the past five years. With Impact5, we rank all articles in the 
second ranking independently from the ranking made with 
Impact1. 

The third impact measure is called ImpactAIS. Similarly, to 
Impact5, this measure uses citation statistics from the past five 
years. It is extended by weighting the source according to the 
source’s importance with the Article Influence Score (AIS). 

AIS is a measure developed to quantify the importance of a 
journal. Formally, it measures the average influence of a 
journal’s articles during the first five years after publication. AIS 
is calculated for all publications covered by the Journal Citation 
Reports2 (JCR). 

For our purpose, Thomson Reuters provides AIS for all JCR 
journals. We have 

୅୍ୗ௝௞ݏ = ෍ ஺೗∈௒ೕ(7)                                   (௟ܣ)ܵܫܣ
where ݏ୅୍ୗ௝௞  is the number of citations in the preceding five 
years of ܣ௝, where each citation is weighted by AIS of the citing 
source, and Yj is the set of citing articles in the past five years. 

The fourth impact measure is called ImpactReg. This method 
performs a least-squares fit of a line to data on five-year citations 
changes (based on six years of data) for each article. The method 
ranks all articles according to the average change in citations 
during these five years, as defined by the slope of the regression 
line. 

The purpose of this method is to capture new articles with a 
strong trend that have not yet received enough citation coverage 
to receive high rankings by Impact1, Impact5, and ImpactAIS. 
We denote by ୣୖݏ୥௝௞  the slope of the regression line of six data 
points. We use ୣୖݏ୥௝௞  in cluster k as our fourth independent 
ranking of all articles ܣ௝ in the cluster. 

2) Combining all impact measures for aggregated ranking: 
The measures derived in the previous section capture different 
aspects of scientific impact. The aggregated ranking should be 
able to reflect all these different aspects. A fairly good ranking 
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by all four measures should result in a fairly good aggregated 
ranking. Furthermore, to receive an acceptable aggregated 
ranking index, it should be sufficient for an article to have an 
excellent ranking by one measure, even if the rankings by the 
other measures are mediocre. Finally, to ensure robust 
sampling, we want to eliminate any skewness in the distribution 
for a particular measure. In what follows, we derive a method 
for aggregating the four impact measures into an overall 
ranking that meets these criteria. 

When selecting r articles for further study from m articles 
(r ≤ m =ห൛ܣ௝ൟห) contained in cluster k, we use the four impact 
measures calculated for the articles in that cluster. For each 
impact measure, Impact1, Impact5, ImpactAIS, and ImpactReg, 
we sort all articles ൛ܣ௝ൟ in cluster k in the decreasing order of 
impact according to ൛ݏ௜௝௞ ൟ௝ and renumber all articles within this 
cluster in the same decreasing order. Thus, the first article (ܣଵ) 
has the highest impact according to ݏ௜ଵ௞  within the current cluster 
k. 

We assign a ranking score to r selected articles ൛ܣ௝ൟ௝ୀଵ௥
. For 

article ܣ௝  in cluster k that received the jth highest ൛ݏ௜௝௞ ൟ௝ , we 
calculate a ranking score with label ௜ܲ௝௞  determined according to 

௜ܲ௝௞ = ݎ − ݆ + 1∑ ݈௥௟ୀଵ = ݎ − ݆ + 112 ݎ)ݎ + 1)                       (8)
where ݅ = {1,5, ,ܵܫܣ ܴ݁݃}, and j is the index of article ܣ௝  in 
position j in the ranking of all articles. If ݎ < ݆ ≤ ݉ , then ௜ܲ௝௞  = 0 applies by definition. 

Since 

෍ ௜ܲ௝௞௥
௝ୀଵ = 1                                         (9)

we can consider ቄ݆ܲ݅݇ቅ݆ as a probability distribution where ௜ܲ௝௞  is 
the probability that ܣ௝ is the most preferred article according to 
impact measure i. This approach turns out to be immediately 
useful: for rankings that take into account more than one 
measure, we will use the calculated ቄ݆ܲ݅݇ቅ݆  instead of ൛ݏ௜௝௞ ൟ௝  
because the former is more robust, as some bias in the 
distribution of ൛ݏ௜௝௞ ൟ௝  is eliminated, since ቄ݆ܲ݅݇ቅ݆  decreases 

linearly for all ൛ݏ௜௝௞ ൟ௝. 

Consequently, we substitute in place of scores ൛ݏ௜௝௞ ൟ௝  for 

each measure the corresponding ranking scores ቄ݆ܲ݅݇ቅ݆  and 

calculate the probabilistic sum of all ranking scores ቄ݆ܲ݅݇ቅ݅  for 
each article ܣ௝. This will be the total measure we use for the final 
ranking of articles in each cluster. 

Within each cluster, we have so far had four different 
numberings with an individual numbering for each impact 
measure, since we have sorted all articles separately according 

                                                           
3 https://www.scala-lang.org (March 2019). 

to ൛ݏ௜௝௞ ൟ௝. We now number all articles within each cluster such 

that j always refers to the same article ܣ௝ for ቄ݆ܲ݅݇ቅ݆ and ൛ݏ௜௝௞ ൟ௝ . 

Finally, we calculate the total ranking score ቄ݆݈ܲ݇ܶܽݐ݋ቅ݆  for 
each article ܣ௝. We obtain 

௞ܲ௝்௢௧௔௟ = 1 − ෑ (1 − ௜ܲ௝௞௜∈{ଵ,ହ,஺ூௌ,ோ௘௚} )                  (10)
for each article ܣ௝ and cluster k, where ௜ܲ௝௞  is the ranking score 
of article ܣ௝ according to measure ݅ ∈ {1, 5, ,ܵܫܣ ܴ݁݃}. This is 
the probabilistic sum of all ቄ݆ܲ݅݇ቅ݅ [7]. 

This is our final ranking of articles in cluster k. We can now 
select the highest-ranked articles within each cluster for further 
study, as shown in Fig. 1. 

IV. SYSTEM DESCRIPTION 
In this section, we provide an overview of the horizon 

scanning software HSTOOL. HSTOOL is a web application built 
mainly in Scala3. The functionalities of the software correspond 
to the proposed workflow and include 

1. Topic search in WOS, 
2. Downloading of article records to a local database, 
3. Clustering of articles according to topics, 
4. Ranking of articles within each cluster based on 

scientometric impact, and 
5. Outputting the resulting ranked clusters for further 

study. 
The user interface of HSTOOL is shown in Fig. 5. In the 

following sections, the functionality listed above is described in 
further detail. 

 
Fig. 5. HSTOOL user interface. Various functionalities are highlighted in red. 

A. Searching and Downloading 
Topic searches with HSTOOL are performed by combining 

search terms with logical operators. When a topic search is 
performed, the number of articles found is displayed in the 
HSTOOL user interface along with the search string used. A 
button is available for downloading the search result to a local 
Postgres database. Records of each article in the search result are 
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saved, including keywords, abstract, and scientific field data that 
will later be used for clustering. 

B. Clustering 
Pressing the button “Discover clusters” initiates the article 

clustering algorithm. For each article in the downloaded corpus, 
a representative text is constructed by combining title, abstract, 
keywords, subjects, headings, and subheadings provided in the 
records from WOS. These are the texts that are fed to the 
GSDMM algorithm. 

Once the clustering has been completed, a list of the 
discovered clusters is displayed on a separate web page, 
represented by representative and distinctive words for the 
cluster and a list of the included articles. The discovered clusters 
are also displayed in a scrollable list in the HSTOOL main view, 
from which clusters can be selected for ranking. 

C. Ranking 
To rank articles within a cluster, it is necessary to select the 

cluster from the scrollable list and click “Compute ranking.” 
Once the ranking has been completed, a ranked list of articles, 
including the calculated ranking index of each article, is 
displayed in the HSTOOL main view. 

D. Output 
Once the ranking of a cluster has been completed, the results 

can be exported by clicking the button “Export results.” This 
action produces a CSV file, including the WOS ID, article title, 
abstract, keywords, subjects, headings, journal title, ISSN, AIS 
factor, the estimated impact factors, and the resulting ranking 
index. 

V. CASE STUDY OF ARTIFICIAL INTELLIGENCE IN 
MILITARY APPLICATIONS 

In this section, we report findings and results of a case study 
carried out to validate the proposed methodology and software 
tool. The topic of the case study was chosen within the authors’ 
field of expertise to facilitate the evaluation of the results of the 
horizon scanning process. 

A. Topic Search 
A search was performed using a combination of rather broad 

concepts, aiming to capture articles related to artificial 
intelligence in the context of defense applications. We compiled 
a topic search string of the form 

[AI terms] AND [defense terms].4 

The search resulted in 1358 hits in the WOS Core Collection, 
with publication years ranging from 1991 to 2019. Fig. 6 shows 
the number of articles per year for the search result. We will refer 
to the set of discovered articles as the AI corpus. 

                                                           
4 (“artificial intelligence” OR “machine learning” OR “deep learning” OR 
“neural network$”) AND (military OR defense OR defence OR (command 

 
Fig. 6. Number of articles per year in the AI corpus. 

B. Clustering Search Results 
Clustering of the search results encompasses two steps: first, 

determining the optimal value of parameter β  (0, 1) (which in 
turn yields the optimal number of clusters), and, second, 
performing the actual clustering with the optimal settings. The 
GSDMM algorithm clusters articles in the course of a set of 
Gibbs sampling iterations, during which the articles converge to 
a subset of the initial clusters. The size of this subset is 
determined by parameter settings. To understand how the 
algorithm works, we will first study the Gibbs sampling 
iterations for a fixed value of β, after which we will determine 
the value of β that yields the best clustering of the AI corpus. 

1) Gibbs sampling iterations and convergence of entropy: 
At each Gibbs sampling iteration, the conditional probability ݌ௗ௞௜  given by (1) is calculated for each article d and cluster k, 
yielding the probability that d is generated by k. Fig. 7 shows 
how ݌ௗ௞௜ varies over 15 Gibbs sampling iterations for a sample 
article. At first, the probability density function has spikes at a 
few different clusters, but for most articles, it converges quickly 
to a Dirac pulse at a certain cluster. 

 
Fig. 7. Probability density function for an article in the AI corpus, as it varies 
over the 15 Gibbs sampling iterations. 

NEAR\1 control)) – the operator NEAR\n signifies that the words on either 
side of it must be at most n words apart, and $ denotes the option of a plural s. 
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To determine the quality of a specific clustering (i.e., the 
clustering at a specific iteration i for some specified value of β), 
we calculate its entropy using (4) and the entire set of articles. 
Fig. 2 shows how the entropy for the entire AI corpus converges 
for a fixed value of β. 

2) Determining the optimal number of clusters: Following 
the approach outlined in Section III.B.2, the final entropy of the 
entire AI corpus for values of β  (0, 1) is calculated, and the 
value of β that minimizes the angle of the lower envelope curve 
is determined to be β = 0.101, yielding an average of 84 clusters 
over 100 runs, as shown in Fig. 3. 

C. Analysis of Clusters 
We perform an individual clustering of the AI corpus using 

the optimal β = 0.101, this time yielding 90 clusters. The number 
of articles in the discovered clusters varies from 1 to 224. 
To select clusters for further study, we use three criteria: 

1. The cluster should be of sufficient size to represent a 
significant topic for the corpus. 

2. The cluster should be well defined, i.e., have as low an 
entropy as possible. 

3. The topic of the cluster should be relevant with respect 
to the original intention of the search query. Once a 
subset of clusters has been selected according to steps 1 
and 2, clusters with irrelevant topics are removed from 
this subset. 

Fig. 8 shows the number of articles in each of 90 discovered 
clusters. We will select clusters of size 15 or larger for further 
study. Fig. 9 shows the mean entropies for all such clusters. 
Among these, we examine the nine clusters with the lowest 
entropy in detail. 

 
Fig. 8. Number of articles in each of 90 discovered clusters. 

 
Fig. 9. Entropies for all clusters of size 15 or larger. 

The search queries used for topic search in WOS aimed to 
find articles on AI applications in the military domain. Among 
the selected clusters, three clusters with irrelevant topics are 
detected and removed. The descriptive and distinctive words of 
the six remaining clusters are shown in TABLE I. 

TABLE I.  DISCOVERED TOPIC WORDS IN THE CLUSTERS CHOSEN FOR 
FURTHER STUDY 

Id Common words Distinguishing words Size 

164 image, target, network, 
recognition, neural 

correlator, mstar, 
foreground, dividing, eo 190 

219 classification, signal, 
network, neural, feature 

amc, instantaneous, 
cepstral, mel, warped 49 

233 attack, system, network, 
detection, computer 

multicore, bodyguard, 
port, nash, protocol 224 

235 system, computer, agent, 
intelligence, decision 

illustration, bdi, nec, ner, 
automates, succession 117 

308 game, player, computer,  
artificial, defense 

offense, beginner, dda, 
neuroevolution, warcraft 17 

393 network, sensor, system, 
application, neural 

fence, transceivers, 
steganography 34 

Fig. 10 and Fig. 11 show, respectively, the number of articles 
in each of the studied clusters, and the number of citations of 
articles in each cluster over time. It can be noted that even 
though cluster 233 (attack, system, network) has the most 
articles and the strongest publications trend, the most cited 
cluster is cluster 164 (image, target, network), a trend that has 
been strong over the past 15 years and is still holding. It should 
be noted that the number of citing articles is based on all citing 
articles, whether part of the search result or not. A conclusion 
that can be drawn from Fig. 10 and Fig. 11 is that computer 
vision applications (cluster 164) remain a dominating topic 
within the “AI for the military” field, while defense against 
adversarial attacks for neural networks (cluster 233) has gained 
interest over the past few years. We will therefore choose the 
computer vision cluster 164 as an example for further study. 
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Fig. 10. Number of articles per year in the clusters of interest. 

 
Fig. 11. Number of citations per year generated by the clusters of interest. 

All articles in the computer vision cluster are ranked 
according to the four impact measures. The top results are shown 
in TABLE II. In the overall ranking, a set of representation 
learning and object recognition articles receives the highest 
scores. This is a reasonable result, given the impressive progress 
made recently with regard to these topics. As discussed, the 
different impact measures aim to capture different impact 
aspects. Examining the ranking results for the computer vision 
cluster, we note that ImpactAIS – that takes into account the AIS 
score of the journal an article is cited in – is the measure most in 
disagreement with the total ranking. As ImpactAIS does not in 
general reward recent articles, this would be an expected result, 
given the rapid development in the field of AI for computer 
vision (Fig. 10 and Fig. 11). 

The case study indicates that the proposed horizon scanning 
methodology and tool are useful for finding trending and 
significant topics in the scientific literature. The top-ranked 

articles within the studied cluster cover topics that have received 
significant attention in recent years, which validates the 
soundness of the impact measures and the aggregation method. 

VI. CONCLUSIONS 
We have developed new methods for horizon scanning, 

integrated them with an existing clustering method, and 
implemented all methods in a system for horizon scanning of 
scientific literature to discover scientific trends. In particular, we 
have developed methods for finding an optimal number of 
clusters by developing an entropy-based method that focuses on 
the clustered articles rather than on the clusters themselves. We 
conclude and show in a case study that with these methods, we 
can identify distinct clusters. These clusters can be categorized 
by automatically producing the most descriptive and distinctive 
words. Furthermore, we develop methods for a robust ranking 
of articles based on citation statistics and demonstrate in the case 
study how to produce an overall ranking of all articles in each 
category. Overall, these methods automatically discover 
previously unknown categories, describe such categories with 
their most important words, rank all articles within each 
category by importance and deliver categories of ranked articles 
as the system output. 
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TABLE II.  TOP 5 RANKED ARTICLES IN THE COMPUTER VISION CLUSTER, CONSIDERING ALL IMPACT MEASURES 

Ranking Title Year Impact 
1 

Impact 
5 

Impact 
AIS 

Impact 
Reg 

1 Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition 2015 2 2 3 1 
2 Remote Sensing Scene Classification by Unsupervised Representation Learning 2017 3 3 4 2 
3 Learning Race from Face: A Survey 2014 4 4 7 3 
4 Neural networks for automatic target recognition 1995 7 7 6 8 

5 Adaptive fusion method of visible light and infrared images based on non-subsampled 
shearlet transform and fast non-negative matrix factorization 2014 8 6 13 4 
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