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Abstract—In this paper we explore some of the potential 

applications of robustness criteria for machine learning (ML) 

systems by way of tangible “demonstrator” scenarios. In each 

demonstrator, ML robustness metrics are applied to real-world 

scenarios with military relevance, indicating how they might be 

used to help detect and handle possible adversarial attacks on 

ML systems. We conclude by sketching promising future 

avenues of research in order to: (1) help establish useful 

verification methodologies to facilitate ML robustness 

compliance assessment; (2) support development of ML 

accountability mechanisms; and (3) reliably detect, repel, and 

mitigate adversarial attack. 

Keywords—ML robustness metrics, neural networks 

I. INTRODUCTION

The STO IST-169 RTG is tasked with exploring 
robustness and accountability in machine learning systems. 
Our starting point was to “Determine the state-of-the-art in 
robustness and accountability for machine learning (ML) 
systems. Especially deep learning systems with complex and 
large models which are virtually impossible to manage by 
humans.” 

The military relevance of that is evident within the context 
of automated data fusion and decision support systems: 

“In order to achieve trust in military systems using 
complex machine learning models and algorithms, the 
military needs to be able to prove both robustness and 
accountability. Robustness is important for the availability 
and integrity of any military system, with or without both 
sensors and effectors. Accountability is likely a future 
requirement for such systems, and the more complex a system 
becomes, the documentation of accountability will grow 
towards “non-human” complexity.” 

The IST-169 views ML robustness as a fundamental 
cornerstone enabling the availability, integrity, and ultimately 
accountability of AI-assisted military defense support 
systems. In 2021, RTG members compiled a literature survey 
of relevant ML robustness metrics and techniques, resulting in 
the conclusion that “the ongoing question is how to determine 
and find the right kinds of metrics for the specific models to 
obtain the required level of confidence in hybrid warfare 
systems. IST-169 intends to progress this initial survey to do 
just that. We believe that developing a pictorial representation 
of the various types of robustness, with their applicable phases 
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to the different types of AI, would benefit a holistic 
understanding of the AI robustness landscape. This would 
enhance the move toward a more rigorous approach to the 
development and use of AI applications.” [1] 

That previous survey highlighted various metrics affecting 
ML robustness “in the face of” several different kinds of 
widely recognized threats [2]. We revisit some of those threats 
in this paper, and explore the application of metrics that can 
help deal with some inherent vulnerabilities of ML-based 
decision support systems. We also include examples on 
uncertainty and implausibility to illustrate that the topic of ML 
robustness is actually far broader than robustness to 
adversarial action alone. 

In sections II & III we present a selection of robustness 
challenges identified in our abovementioned initial survey. 
Then we explore some of the potential applications using 
concrete examples from RTG members’ own cutting-edge 
research in the field, in the form of several “demonstrators”. 
These help paint a picture of the landscape of ML robustness 
metrics as they are applied to real-world scenarios with 
military relevance, and how they can be used to help handle 
possible adversarial attacks on ML in operational context, as 
detailed in sections IV, V, and VI. 

We conclude by sketching promising future avenues of 
research that further build upon these “demonstrators”, in 
order to: (1) propose useful verification methodologies to 
facilitate ML robustness compliance assessment; (2) support 
the development of ML accountability mechanisms; and 
(3) reliably detect, repel, and mitigate adversarial attack.

II. ROBUSTNESS IN THE FACE OF UNCERTAINTY

The capability of dealing with uncertainty in training and 
operational data is one of the main requirements for robust 
machine learning systems, in particular for critical application 
scenarios like those in the military domain [1]. Model 
uncertainty can result from measurement errors, for example 
due to hardware limitations of a sensor, or due to different 
types of channel distortions between a source/object and the 
sensor. Typically we want to distinguish between admissible 
physical changes (such as noise, cropping, etc.) and 
semantical changes (usually introduced by humans) that can 
be made to an object without changing its class label. An ML 
system should be robust to both types of changes mentioned, 
and able to distinguish them from each other in order to 
introduce appropriate mechanisms for handling them. 

A more precise term for “model uncertainty” could be 
"uncertainty in the model's predictions", which is mainly 
caused by two sources [3]: 

- For classification problems, the probability distributions
of different classes may overlap in some regions of the feature 
(input) space, which makes the class label inherently uncertain 
(different instances may have similar or even identical 
features, but different class labels), and so too the classifier 
output for the corresponding inputs. This is called "aleatoric" 
uncertainty. There is a similar mechanism for regression 
problems. 

- When training data are limited, it is difficult to find the
"correct" model, and its optimal parameter values. This leads 
to what is called "epistemic" uncertainty. In particular, this 
kind of uncertainty is higher in regions of the feature space 
where few or no training samples are available (that is, 

uncertainty on classifier predictions is higher on inputs from 
these regions). 

In summary, two kinds of uncertainty are identified by 
recent machine learning literature: aleatoric uncertainty 
(related to intrinsic randomness in the considered task) and 
epistemic uncertainty, that accounts for both model 
uncertainty (on the correctness of the model and of the 
hypothesis) and approximation uncertainty (on the optimal 
model parameters) [4]. The latter can in principle be reduced 
by the availability of additional, suitable training data. 

A. Dropout injection

Dropout injection focuses on epistemic uncertainty. One
way to represent and evaluate it in deep neural networks 
(DNNs) is through Bayesian extensions [5] using, for 
instance, Monte Carlo dropout [6], which was originally 
devised as a stochastic regularization technique [7]. In 
particular, whereas Monte Carlo dropout is usually applied 
during training, and then dropout layers are kept active in the 
testing phase for the sole purpose of uncertainty estimation, it 
can be also applied at test time only [8], which we call 
“injected dropout” [9]. This enables uncertainty estimation 
also for DNNs that had been already trained without dropout, 
avoiding an expensive re-training process. However, our 
ongoing work shows that, beside a proper setting of the 
dropout rate (e.g., using a validation set), the effectiveness of 
injected dropout strongly relies on a proper rescaling of the 
corresponding uncertainty measure [9]. 

B. Application to crowd counting

Here we show an example of a practical application of
injected Monte Carlo dropout for the purpose of quantifying 
epistemic uncertainty in a challenging computer vision task, 
i.e., crowd counting and density estimation from images or
videos [10]. This task consists of estimating, possibly in real-
time, the number of people and the corresponding density map
from an input image or frame. State-of-the-art crowd counting
methods are based on ad hoc DNN architectures that are
trained to estimate the density map of the input image, from
which the people count is easily derived by summing up the
density value of each pixel. Fig. 1 (on the next page) shows an
example of our injected dropout method for post hoc
uncertainty estimation on a crowd counting and density
estimation task. On the left, a video frame from the benchmark
PETS data set [11] with the ground truth count is shown (top
left), together with the estimated density map (lighter colors
correspond to higher values) produced by the MCNN crowd
counting model [12] with the corresponding estimated count
(bottom left).

Such methods can be extended to similar counting tasks, 
i.e. counting different kinds of objects, not just people. This
kind of functionality can be very useful to support human
operators in monitoring activities in security scenarios (e.g.
monitoring a mass gathering or a sensitive area through a
video surveillance system).

We implemented injected dropout on a previously trained, 
state-of-the-art DNN architecture for crowd counting, the 
Multi-Column Neural Network (MCNN) [10] [12]. Dropout 
injection enables MCNNs to provide a post hoc, frame-by-
frame estimate of the pixel-level uncertainty of the density 
map (i.e. the variance of the estimated density), and a 
confidence interval (e.g. a 90% interval) on the corresponding 
people count, which is defined as the pixel-wise sum of the 
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FIGURE 1: Detection of false positive localizations by combining density and uncertainty maps. 

FIGURE 2: Detection of false positive localizations by combining density and uncertainty maps. 
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uncertainty values with respect to the bare point estimates. 
Fig. 1 (top right) represents the uncertainty map computed by 
injected dropout, Fig. 1 (bottom left) shows the same density 
map, and Fig. 1 (bottom right) with the corresponding 90% 
confidence interval on the estimated people count. 

For end users, the main benefit of uncertainty estimation 
in this kind of task is that it can make them aware of the 
reliability of DNN predictions, allowing them to take more 
informed decisions, as well as increasing their trust in this kind 
of machine learning system. 

C. Way forward

In our ongoing work [9] we observe that uncertainty
evaluation could allow automatic detection and correction of 
inaccuracies in the estimated density map and in the derived 
count that result from “false positive” people localizations, 
thus improving system robustness. An example is shown in 
Fig. 2, where some false positive localizations related to the 
same video frame of Fig. 1 are highlighted in red: these are 
image regions with non-zero predicted density values (Fig. 2, 
bottom) although no people appear in them (see the video 
frame on the top left of Fig. 1). Such regions turn out to be 
characterized by relatively low density values with respect to 
correct localizations (they have been rescaled in the zoomed-
in views of Fig. 2 to make them visible), and by a high 
uncertainty (Fig. 2, top). This pattern of low density and high 
uncertainty may be exploited to automatically detect and filter 
out false positive localizations, e.g. by setting to zero the 
corresponding density as well as uncertainty values. This 
would improve the accuracy of the density map and of the 
corresponding people count, as well as of the uncertainty 
estimate, by reducing the width of the confidence interval, 
thus improving robustness. 

From a military perspective, enhancing this kind of 
computer vision technique with a post hoc uncertainty 
estimation functionality and the corresponding robustness 
improvement capability could be very useful, e.g. for the 
analysis of aerial imagery for intelligence gathering. 

III. ROBUSTNESS IN THE FACE OF IMPLAUSIBILITY

A. Suppression of data extraction from language models

In recent years, language models (LM) have led to a
paradigm shift in natural language processing. LM are deep 
learning models, usually transformer-based [13], trained on 
very large text corpora (typically several billions of words). 
An LM represents the probability distributions over the word 
sequences of its training language – a rudimentary 
“understanding” of language. This allows an LM to predict the 
next words for a given input sequence, a functionality that can 
be utilized in many ways. For instance, since 2018, the GPT-
series language models [14] have received significant media 
attention for their ability to generate long and plausible texts 
in different styles, and Google BERT [15] has set new state-
of-the-art results in numerous natural language processing 
tasks. LM could be used in defense contexts, e.g. for text 
summarization, or to help with querying information systems. 
However, training an LM from scratch can take months 
depending on the hardware used. A common workaround is 
therefore to take a public LM and to fine-tune it with 
additional training texts from a specific domain, thereby 
adapting the model with its large general language knowledge 
to the task of interest using a domain-specific language. 

While an LM is not intended to explicitly store the texts it 
has been trained on, it may nevertheless effectively do so. 
This can potentially be exploited by an adversary: With 
suitable prompts an LM may recreate such memorized 
training texts and thus reveal information not intended for the 
public. 

To demonstrate this we followed the general approach of 
[16], but applied to a modern LM. First we fine-tuned the 
language model GPT-2 [17] on the CC-News [18] collection 
of news articles. We then attempted to recreate original texts 
by letting the model generate texts based on the first two 
words of articles. This succeeded in 21% of the cases (on a 
model fine-tuned over 40,000 training steps), representing a 
worst-case susceptibility of the model. 

B. The perplexity metric

Generated texts are generally coherent and seemingly
plausible, but not necessarily factual. An attacker may face a 
challenge when deciding whether an output text actually 
corresponds to original training data. An indication is the 
perplexity metric [19] that LMs usually provide, a measure 
based on the likelihood function 𝑝𝜃  of the LM on a given
sequence of tokens 𝑥1, … 𝑥𝑛:

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥1, … , 𝑥𝑛) =

exp(−
1

𝑛
∑ log10 𝑝𝜃(𝑥𝑖|𝑥1, 𝑥2, … , 𝑥𝑖−1)
𝑛
𝑖=1 ) (1) 

Effectively, this score represents how unexpected a given 
text is to an LM. Feeding back a generated text into the LM 
will produce a lower perplexity score the closer the text is to 
original training data. Furthermore, when the military LM is a 
fine-tuned version of a public model, the adversary can feed 
the generated text back into both models to compare their 
resulting perplexity scores. Fig. 3 illustrates how the vast 
majority of sample texts generated by the fine-tuned LM 
results in significantly higher perplexity on the original LM. 
This means that recreated original texts overwhelmingly stay 
below a clear perplexity threshold: In our experiment, 99.4% 
of such texts had a perplexity of no more than 2.5. Hence a 
hypothetical adversary could use such a threshold as an aid to 
determine which of the generated texts correspond to original 
training data, and thus constitute successful extractions. 

This type of extraction attack is related to membership 
inference attacks [20], where the attacker aims to find out 
whether some given information was used for training. 
Similarly to defense against inference attacks, differential 
privacy [21] may provide countermeasures to such extraction. 

IV. ROBUSTNESS IN THE FACE OF ADVERSARIAL ATTACK

A. Distinguishability criteria

The aim of adversarial attacks is to modify the model input
to result in incorrect model output such that it cannot be 
distinguished by the human observer. Distinguishability 
criteria bear some limitations on the perturbation that can be 
applied to inputs, which are referred to as the 𝐿𝑝  norm in

literature, i.e. 

‖𝐶 − 𝐴‖𝑝 ≤∈ (2) 

where 𝐶 and 𝐴  represent the input sample and adversarial 
example, respectively, and ∈  is the maximum allowable 
perturbation. The most commonly used norms are 𝐿2 and 𝐿∞.
In this context, it is assumed that there are two different 
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decision makers, the first one a human being capable of 
deciding correctly, and the second one an artificial neural 
network. To define the network as robust, it is required that 
the network can discriminate the modified input from the true 
input as effectively as a human being. Therefore, the most 
commonly used metric for robustness measurement is the 
“robustness accuracy”, defined as the model accuracy for the 
inputs perturbed by the adversarial perturbations [22]. Since 
the input perturbation highly depends on the applied 
adversarial attack, it is hard to quantify the actual adversarial 
robustness of the model.  In [23] it has been shown that deep 
neural networks can achieve human-level performance only 
when the applied manipulations are known in the training 
phase. For unknown manipulations, the performance of the 
deep neural networks decreases dramatically. Therefore, to 
achieve reliable results, the adversarial robustness should be 
reported as the model accuracy on worst-case inputs taken 
from perturbed sets, which requires applying multiple 
different types of attacks on the trained model. The works in 
[24] and [25] aim to benchmark several models’ performance
in an adversarial setting and compare their robustness levels
under various adversarial attacks.

In some cases, the attacker can access the model training 
phase and poisoning type attacks [26] [27] [28] can be used 
for fooling the systems. There are two types of poisoning 
attacks, i.e. data poisoning and model poisoning. In data 
poisoning attacks, attackers influence the training data to 
manipulate the results of a predictive model. In model 
poisoning attacks, the adversarial objective is to cause the 
model to mis-classify a set of chosen inputs with high 
confidence without accessing the training data as in Federated 
Learning [29].  

B. Adversarial training

The main motivation of adversarial training is to cast both
attacks and defenses into a common theoretical framework, 
naturally encapsulating most prior work on adversarial 
examples [30]. In this method, instead of feeding samples 
from the original dataset directly into training, the adversarial 
attack is allowed to perturb the input first, and subsequently 
the perturbed examples are fed into the training set. In this 
context, adversarial training aims to increase the richness of 
the training dataset by exploring vulnerable examples and 
letting the model learn to correctly classify those examples. 
The more exploratory the vulnerable examples, the more 
robust the model. 

The effect of such data generation methods for improving 
adversarial robustness is handled in [31] and it is shown that 
the methods that generate images closer to the test set improve 
robustness. Adversarial training can be augmented in various 
ways, such as changing the attack procedure, loss function or 
model architecture [32] [33]. The effects of adversarial 
training on robustness is analyzed in [34], concluding that 
during the clean training process using (stochastic) gradient 
descent, neural networks will accumulate, across all features, 
some “dense mixture directions” that have low correlations 
with any natural input, but are extremely vulnerable to (dense) 
adversarial perturbations. During adversarial training, such 
dense mixtures are “purified” to make the model more robust. 

Some of the other mitigation methods for generating 
robust models are making it difficult to find the adversarial 
examples, i.e., gradient hiding or masking [35], feature 
squeezing or discretization [36],  using auxiliary models in 
addition to the target model such as defensive distillation [37] 

and defensive GAN[38], and detecting and rejecting 
adversarial examples such as blocking the transferability [39] 
and calculation of the Lipschitz constant [40]. 

C. Way forward

Current training methods use limited datasets, however the
model being trained must attempt to classify all the possible 
inputs (infinitely many) including those containing noise 
and/or which lie outside the distribution of the training dataset. 
Training methods should therefore be refined in order to make 
the model aware of the input characteristics. The model should 
be able to decide whether the given input is correlated with the 
task that the model is trained for. The model then becomes 
responsible only for the related input, thereby making the 
model more robust to adversarial input perturbations. 

V. ROBUSTNESS USING PBNS AND DETECTION OF 

ADVERSARIAL ATTACKS 

A. PBN and the robustness of neural networks

In [1] generative modelling was used to introduce
robustness with respect to semantical variations of the input 
data. Generative models can be used to visualize how a 
particular classifier makes a certain class decision based on a 
given data sample. We now discuss Projected Belief Networks 
(PBNs) based on image and audio classification as examples. 

FIGURE 3: Perplexity comparison of fine-tuned and original LM with 
generated samples (top: samples verified to match training data; 

bottom: non-verified samples). 
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B. Robustness of discriminative and generative networks

Most neural networks fall into one of two categories:
(a) discriminative networks, a type of feed-forward networks
in which the information flows in the forward direction,
starting from high-dimensional input data (images or sounds
to be classified), and ending in a low-dimensional network
output, usually the class identification; and (b) generative
networks, which start with a random input, then proceed in the
backward direction, usually with increasing dimension,
ending with a synthetic data sample, of the same size and
format as the input data. Generative networks can be used to
create synthetic data, but more importantly, they are trained to
approximate a data generation process for the training data.
Having a mathematical model for the data generation process
also provides a mathematical tool, the likelihood function
(LF), that allows testing samples to be graded according to
how “likely” it is that they are members of a given data class.

On the question of robustness, discriminative and 
generative networks are widely opposed. Discriminative 
networks can be easily fooled into making false decisions, 
through the process of adversarial attacks (AA), in which an 
almost imperceptible change is made to an input sample, 
causing the network to make false classification decisions. 
This is possible because the network is only trained to classify 
between the data classes in the provided training data. As soon 
as something new is presented to the network (novelty), it is 
unable to reach a reasoned conclusion. Generative networks 
on the other hand, contain a model of the training data classes, 
so are able to reject AA samples which are unlike the training 
data that was provided. Unfortunately, generative networks 
make poor classifiers because they are highly sensitive to 
model mismatch, and modeling high-dimensional data is an 
extremely difficult task. 

C. PBN: Balanced discriminative-generative robustness

The projected belief network (PBN) is a new type of
network that is simultaneously a discriminative feed-forward 
network and a generative network with inherent model of the 
data [41] [42]. It accomplishes the generative task using the 
concept of back-projection (not to be confused with back-
propagation), in which information conceptually flows 
backwards through the feed-forward network. Thus, the same 
network can be used in either direction, and can be trained to 
accomplish both tasks at the same time. An unavoidable result 
of this dual role is that the network output must extract 
information from the data that not only discriminates between 
the data classes, but also describes the data sample in detail. 
In fact, it has been shown that the PBN leads to information 
maximization [43], and results in generative classifiers that 
can compete with state-of-the-art discriminative classifiers 
[44] [45].The PBN also provides a likelihood function (LF) so
that AA samples can be accurately rejected [46].

D. PBN: Mathematical basics

A PBN is based on the principle of probability density
function (PDF) projection [47]. Let z=T(x) be an arbitrary 
dimension-reducing feature transformation taking high-
dimensional input data x, and producing a low-dimensional 
feature z, with estimated or assumed feature distribution g(z). 
In PDF projection, the feature distribution g(z) is “projected” 
back to the input data, resulting in a unique input data 
distribution given by equation (3): 

G(x) = [p0(x)/p0(z)] g(z) (3) 

where p0(x) is a maximum entropy (MaxEnt) [48] prior 
distribution of x, and p0(x) is the mapping of p0(x) to the 
output of the transformation T(x). When transformation T(x) 
is implemented by a neural network layer, then the result is 
one layer of a PBN. Multi-layer PBNs are created by 
cascading transformations, and applying equation (3) 
recursively. Consider a 2-layer PBN created by cascading the 
layers y =T1(x), z =T2(y). The resulting input data distribution 
is then given by equation (4): 

G(x) = [p0x(x)/p0x(y)] [p0y(y)/p0y(z)] g(z) (4) 

where p0x(x) and p0y(y) are the MaxEnt priors for x and y, 
respectively. This idea can be extended to any number of 
layers. Equation (4) can be trained for maximum likelihood 
by maximizing the mean value of log(G(x)) over the training 
data set. At the same time, we can train the network as a 
classifier. Because G(x) in Equation (4) is a probability 
distribution, we can draw samples of x using the concept of 
back-projection. In the 2-layer PBN represented by 
distribution Equation (4), back-projection proceeds as 
follows: (a) We first draw a feature z randomly from 
distribution g(z). Next, we find a sample y randomly from the 
set {y: T2(y)= z}, assuming the prior distribution p0y(y) over 
this set, then (b) draw a sample x randomly from the set {x: 
T1(x)= y}, assuming the prior distribution p0x(x).  We can also 
sample non-randomly [42] – instead of drawing randomly 
from the sets {y: T2(y)=z} and {x: T1(x)=y}, we can select the 
conditional mean (the centroid of the set). 

E. Illustrative experiments

To demonstrate the different behavior of discriminative
and generative networks under adversarial attack, we trained 
a standard network to classify between the handwritten 
characters “3”, “8”, and “9”. Using non-random back-
projection, we reconstructed the input samples from the output 
of the second layer. In Fig. 4, the re-constructed samples look 
like noise. It is indeed  disturbing to see that both rows in the 
figure produce the same network output, indicating how easy 
it is to “fool” the maximum likelihood algorithm with fake 
data. Next, we continued training the same network as a PBN. 
It is seen in Fig. 5 that the reconstruction quality is improved 
dramatically. 

FIGURE 4: Top row: original samples of handwritten characters. 

Bottom row: reconstructed using non-random back-projection from 

second layer (64-dimensional feature). 

FIGURE 5: Reconstruction results from the same network in Fig. 4, 

when trained as a PBN in increments of 20 epochs. 
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The above principles can be put to practical use to detect 
AA samples. In Fig. 6, we illustrate this for an audio 
classification example. The top row shows spectrograms of 10 
utterances of the keywords "three" and "tree" (taken from 
Google voice commands). All of those are correctly classified 
by the network. The bottom row shows how nearly 
imperceptible AA leads to 10 false classifier decisions. 
In Fig. 7, however, we see that the histogram of the PBN log-
likelihood values for AA and normal samples from the same 
network show almost total separation, allowing the AA 
samples to be reliably rejected. 

F. Way forward

In future work, the capabilities of PBNs for robust
classification will be investigated more rigorously. For this 
PBNs will have to be evaluated in realistic application 
scenarios. Depending on those scenarios, suitability of PBNs 
with respect to specific robustness requirements beyond the 
detection of AAs might need to be addressed.  

VI. DEFENSE AGAINST ADVERSARIAL ATTACK

A. Lipschitz sensitivity analysis

Image-based malware detection is important for the
military because it can help reduce the large number of 
malware and exploits targeted towards military networked 
computing. Our main contribution to this research is the study 

of robustness metrics to increase the resilience of military 
networks to cyberattack and minimize the undermining of the 
security and integrity of military networks. Malware image 
classification identifies and categorizes malicious software by 
analyzing their visual patterns, typically in the form of a 
binary file. This technique can be used to detect and defend 
against various types of malware, such as viruses, trojans, and 
worms. One method to defend against adversarial attacks is by 
computation and evaluation of the Lipschitz constant. 

The Lipschitz constant is a measure of how much the 
output of a function changes when the input is perturbed by a 
small amount (a kind of sensitivity analysis). In the context of 
malware image classification, a large Lipschitz constant 
implicates that small changes to a binary file could lead to a 
significant change in the classification result. This can be used 
to detect and defend against adversarial attacks, where an 
attacker may attempt to alter a binary file such that it confuses 
the classification algorithm. By enforcing a small bound on 
the Lipschitz constant, a classification algorithm can be made 
more robust to such attacks. Regarding neural networks, a 
Lipschitz constant is a measure of how much the output of the 
network may change in response to a small input perturbation. 
A Lipschitz continuous function is limited in how much it can 
change and is bounded by a real number called the Lipschitz 
constant. We use the Lipschitz constant to analyze the 
sensitivity, stability, and robustness of neural networks [40]. 

FIGURE 6: Top row: original spectrograms from Google keyword voice commands “three” vs. “tree”, showing correct classification decision in all 
cases. Bottom row, with AA, showing false decisions in all cases. 

FIGURE 7: Histograms of log-likelihood values for AA samples (red) and normal samples (blue). 
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B. Local and global Lipschitz constants

There are two types of Lipschitz constants for neural 
networks: the local and the global Lipschitz constant [49]. The 
local constant is a measure of how much the output may 
change locally around a specific point, whereas the global 
constant is a measure of how much the output of a function 
may vary over the entire function domain. In other words, it's 
a measure of how much the output may vary globally across 
all input points. Ascertaining the Lipschitz constant can be 
valuable because it provides a way to measure the robustness 
of a neural network to adversarial attack. It can also be used 
to train a robust neural network to be less susceptible to 
adversarial attack. Calculating the exact Lipschitz constant is 
often computationally hard, hence upper bounds are typically 
used as an alternative. 

C. Generation of adversarial samples

Adversarial attacks in machine learning require small,
intentionally introduced perturbations to input data in order to 
deceive a model's prediction. These attacks can be used to 
evaluate the robustness of a model and exploit vulnerabilities 
in real-world applications [50]. 

The Fast Gradient Sign Method (FGSM) is a method used 
for generating adversarial examples. It is a one-step method, 
in that it only requires one iteration of gradient descent [51] to 
generate an adversarial example. The basic idea behind FGSM 
is to take the sign of the gradient of the loss function with 
respect to the input data and use that to perturb the input in the 
direction that will most likely cause the model to misclassify. 
FGSM is a simple but effective method to generate adversarial 
examples, and has been successfully applied within numerous 
domains including image classification, natural language 
processing, and speech recognition. 

D. Experiments

As an introduction into the topic of robustness metrics, we
hypothesize that a Lipschitz constant can be used to create 
more robust networks against adversarial attacks using the 

FGSM method. To test this hypothesis, we implemented a 
deep learning network to classify malware image samples. 
The malware dataset we used is the Malimg dataset [52], 
consisting of thousands of malware binary files in image 
format. An example is depicted in Fig. 8, containing 25 classes 
of malware types, such as Allaple.L, Fakerean and Yuner.A. 

As our base malware classifier we build a convolutional 
neural network (CNN) in Keras. We calculated the global 
Lipschitz upper bound of the model by transforming the Keras 
network into PyTorch format and computing the  bound of the 
network using the implementation described in [53]. 

In addition, we implemented the same model as a DEEL-
LIP network. DEEL-LIP is a library built on top of 
TensorFlow  using standard elements of Keras to easily build 
a neural network that has a Lipschitz constant of 1, a so-called 
1-Lipschitz network. We used this network as an example of
a globally robust network to compare the Lipschitz constants
and robustness against adversarial attacks with respect to the
base malware classifier.

After preprocessing the data in test and training sets we 
trained the two networks for 10 epochs on the same data, e.g. 
going through the entire data set 10 times over. The global 
Lipschitz constant of the base model was found to be 1.46 and 
the Lipschitz constant of the DEEL-LIP model is 1, by design. 
The accuracy of the base malware classifier was trained to 
96% and the accuracy of the DEEL-LIP model was trained to 
93%. Both models were trained using the same number of data 
batches. 

Finally, we randomly selected 27 malware samples and 
generated adversarial attack samples using the FGSM method. 
Fig. 9 (left) shows the adversarial attack image generated 
from the Yuner.A malware image. We presented the 
adversarial attack images to the base CNN model and the 1-
lipschitz DEEL-LIP model and compared the predictions of 
the classifiers. Fig. 9 (center) depicts the results of the 
predictions. The difference is virtually imperceptible to the 
naked eye, and therefore highlighted in Fig. 9 (right).  

FIGURE 9: Yuner.A original (left) and the generated adversarial attack image (center) – virtually indistinguishable; 

and the difference between the two highlighted (right). 

FIGURE 8: Various malware class byte code instances depicted as 2D images. 
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E. Results and conclusions

The results of our experiments are summarized in Table 1.
The base malware classifier classified only one instance 
correctly, whereas the 1-Lipschitz network classified 23 
instances correctly from the 27 randomly selected malware 
samples. Some malware classes were selected multiple times, 
but it is interesting to see that the predictions of the base model 
varies, even if the same class of malware is presented. The 
DEEL-LIP model only misclassifies four (4) samples. The 
predictions of the DEEL-LIP model are consistent. The results 
show that the predictions of the 1-Lipschitz model are more 
accurate and stable compared to the base CNN model when 
presented with perturbed images, using the FGSM method. 
Although the accuracy of the DEEL-LIP model was initially 
less than the accuracy of the base model, it was found to be 
more robust against an FGSM adversarial attack. 

F. Way forward

We investigated a method to increase the resilience of a
malware classifier against an adversarial attack, by utilizing 
the Lipschitz constant as a metric. The metric provides a way 
to measure the robustness of a neural network to adversarial 
examples and it can also be used to train a robust neural 
network, which is less susceptible to adversarial attacks. We 
applied the metric in the context of malware image 
classification and showed that a significant result can be 
achieved to withstand an adversarial attack with the FGSM 
method. 

 Future work will investigate whether the presented 
method is as successful against other adversarial attacks, such 
as black box attacks. Furthermore, we intend to study whether 
application of the Lipschitz constraint to a network 
appreciably degrades its overall classification accuracy. 

VII. ONGOING AND FURTHER RESEARCH

There is an increased research focus at the systems 
engineering and software engineering level on innovative 
processes, tools and techniques to assure systems that 
comprise Artificial Intelligence components, such as Artificial 
Neural Networks (ANNs), i.e. Deep Neural Networks 
(DNNs).  In particular the robustness and resilience of such 
systems deemed critical (e.g. safety, security) to an application 
such as in aerospace, automotive and defense sectors (e.g. 
“uncrewed” systems for safe operations on land, sea, or air 
autonomous and lethal systems).  Military defense presents 
specific challenges regarding systems and components 
sourced from different suppliers as well as combining and 
integrating them to protect against new types of adversaries. 

An innovative development in software engineering and 
testing is termed Concolic [54].  A portmanteau, Concolic 
combines traditional concrete software program execution 
testing [55], random testing, with symbolic analysis to provide 
better execution path coverage to uncover abnormalities (e.g. 
adversarial attacks). The rationale behind this is that stronger 
verification through better structured testing at execution 
levels is needed for many critical applications where 
conformity between high level code and executable code 
cannot be ensured (e.g. due to no access to source code, 
compiler bugs and artefacts, etc.). Either concrete testing or 
symbolic analysis on their own are impractical for DNNs, 
requiring a large number of input variables for the former and 
too many DNN neuron activation paths for the latter. 
Concolic testing can mitigate the complexity by directing the 

symbolic analysis to particular execution paths, through 
concretely evaluating given properties of the DNN. 

An example process, given in [54] [56] [57], is to cover 
broad test requirements using Quantified Linear Arithmetic 
over Rationals (QLAR – essentially a first-order logic with 
quantifiers formal method)  to express them. For a given set R 

of test requirements, gradually generate test cases to improve 
coverage by alternating between concrete execution and 
symbolic analysis. Given an unsatisfied test requirement r 
transform it to µ(r) by means of a heuristic function µ.  Then, 
for the current set T of test cases, find pair (t, µ(r)) close to 

satisfying r according to an evaluation based on concrete 
execution.  Then use symbolic analysis on this pair to obtain a 
new concrete test case t', and add to existing test suite to form 

T '.  Repeat the process until a satisfactory level of coverage 

is achieved.  The generated test suite can then be used for 
analysis (robustness oracle) to detect whether T includes 

adversarial examples (e.g. using a distant metric).    

Complexity, coverage criteria to direct the production of 
test cases, constraint solvers, and heuristics present 
difficulties.  Much of Concolic and related research [56] [57] 
[58] [59] [60] is improving these through mathematical
techniques and ensuring that the DNNs are amenable to the
processing.  For example, as mentioned in earlier sections, one
such requirement is for Lipschitz continuity which is expected
to hold for a large class of DNNs.  The properties must be

TABLE 1: Adversarial attack predictions. Base CNN versus 1-Lipschitz 

DEEL-LIP network 
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semantic, with specific relation to DNNs, and to robustness of 
DNNs and related Generative Adversarial Networks (GANs). 
A small value for the associated Lipschitz constant, for the 
whole input space, or found sub-space, significantly improves 
the performance, which is otherwise difficult or intractable. 
New test criteria for neuron coverage paths include boundary 
cover for activation values exceeding pre-set bounds, such as 
test cases used in Modified Condition/Decision Cover 
(MC/DC) methods for software testing. 

A DNN testing and debugging tool called DeepConcolic 
has been developed [57], and is openly available for, and in 
use by. the research community [61].  Its architecture is shown 
in Fig. 10 and has produced encouraging results using datasets 
with adversarial examples.  Examples of performance versus 
random testing (traditional approach) is shown in Fig. 11.  
DeepConcolic covers a large range of Lipschitz constants and 
thus produces a good robustness indicator for images (e.g. 
against perturbations) that random testing coverage would 
have missed. 

VIII. CONCLUSIONS

By comparing our findings for robustness methods across 
a broad range of neural network applications we show how 
ML robustness metrics play an important role in critical 
applications relevant to military operational contexts. 

In spite of very positive findings, more work is required to 
further improve using additional experimental analyses, 
various datasets, and adversarial samples. This includes 
combining with other approaches outlined in this paper to 
offer hybrid system solutions able to balance performance, 
risk, and impact. Recommended future avenues of research 
include identifying baseline robustness tests that can be 
applied to ML deployed in military settings, and developing 
ways to detect, repel, and mitigate adversarial attacks on ML. 
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FIGURE 10: DeepConcolic tool architecture [57] 

FIGURE 11: Experimental results comparing Lipschitz Constant Coverage 
(LCC) between Concolic testing and random testing using MNIST, CIFAR 

Image Data and DNNs. 1M random test pairs for MNIST Image-1 (top); 

50 input images from MNIST (center); 50 input images from CIFAR-10 

(bottom). [54] 
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