
IST-RSY-200

INTERNATIONAL CONFERENCE ON MILITARY COMMUNICATION AND INFORMATION SYSTEMS (ICMCIS)

Skopje, North Macedonia 16-17 May 2023

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 1

Evaluation of Robustness Metrics for

Defense of Machine Learning Systems*
*This paper was originally presented in Skopje, North Macedonia, 16-17 May 2023

J. DeMarchi, R. Rijken

Royal Netherlands Aerospace Centre NLR

Collaborative Engineering Systems &

Aerospace Systems Information Supremacy

Amsterdam – NLD

julian.demarchi@nlr.nl

roel.rijken@nlr.nl

J. Melrose, B. Madahar

Defence Science and Technology Laboratory

Cyber & Information Systems Division

Portondown – GBR

jmelrose@dstl.gov.uk

bkmadahar@dstl.gov.uk

G. Fumera

University of Cagliari Department of

Electrical and Electronic Engineering

Cagliari – ITA

fumera@unica.it

F. Roli

University of Genoa Department of

Informatics, Bioengineering, Robotics and

Systems Engineering

Genoa – ITA

fabio.roli@unige.it

E. Ledda

Sapienza University of Rome Department of

Computer, Control and Management

Engineering

Rome – ITA

emanuele.ledda@uniroma1.it

M. Aktaş

ASELSAN

Defence Systems Technologies Division

Ankara – TUR

maktas@aselsan.com.tr

F. Kurth, P. Baggenstoss

Fraunhofer Institute for Communication,

Information Processing and Ergonomics

Bonn – DEU

frank.kurth@fkie.fraunhofer.de

paul.baggenstoss@fkie.fraunhofer.de

B. Pelzer, L. Kanestad

Swedish Defence Research Agency Cyber

Defence and C2 Technology Division

Stockholm – SWE

bjorn.pelzer@foi.se

linus.kanestad@foi.se

Abstract—In this paper we explore some of the potential

applications of robustness criteria for machine learning (ML)

systems by way of tangible “demonstrator” scenarios. In each

demonstrator, ML robustness metrics are applied to real-world

scenarios with military relevance, indicating how they might be

used to help detect and handle possible adversarial attacks on

ML systems. We conclude by sketching promising future

avenues of research in order to: (1) help establish useful

verification methodologies to facilitate ML robustness

compliance assessment; (2) support development of ML

accountability mechanisms; and (3) reliably detect, repel, and

mitigate adversarial attack.

Keywords—ML robustness metrics, neural networks

I. INTRODUCTION

The STO IST-169 RTG is tasked with exploring
robustness and accountability in machine learning systems.
Our starting point was to “Determine the state-of-the-art in
robustness and accountability for machine learning (ML)
systems. Especially deep learning systems with complex and
large models which are virtually impossible to manage by
humans.”

The military relevance of that is evident within the context
of automated data fusion and decision support systems:

“In order to achieve trust in military systems using
complex machine learning models and algorithms, the
military needs to be able to prove both robustness and
accountability. Robustness is important for the availability
and integrity of any military system, with or without both
sensors and effectors. Accountability is likely a future
requirement for such systems, and the more complex a system
becomes, the documentation of accountability will grow
towards “non-human” complexity.”

The IST-169 views ML robustness as a fundamental
cornerstone enabling the availability, integrity, and ultimately
accountability of AI-assisted military defense support
systems. In 2021, RTG members compiled a literature survey
of relevant ML robustness metrics and techniques, resulting in
the conclusion that “the ongoing question is how to determine
and find the right kinds of metrics for the specific models to
obtain the required level of confidence in hybrid warfare
systems. IST-169 intends to progress this initial survey to do
just that. We believe that developing a pictorial representation
of the various types of robustness, with their applicable phases

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ili
ta

ry
 C

om
m

un
ic

at
io

ns
 a

nd
 In

fo
rm

at
io

n
Sy

st
em

s (
IC

M
CI

S)
 |

 9
79

-8
-3

50
3-

43
85

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

M
CI

S5
99

22
.2

02
3.

10
25

35
93

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 2

to the different types of AI, would benefit a holistic
understanding of the AI robustness landscape. This would
enhance the move toward a more rigorous approach to the
development and use of AI applications.” [1]

That previous survey highlighted various metrics affecting
ML robustness “in the face of” several different kinds of
widely recognized threats [2]. We revisit some of those threats
in this paper, and explore the application of metrics that can
help deal with some inherent vulnerabilities of ML-based
decision support systems. We also include examples on
uncertainty and implausibility to illustrate that the topic of ML
robustness is actually far broader than robustness to
adversarial action alone.

In sections II & III we present a selection of robustness
challenges identified in our abovementioned initial survey.
Then we explore some of the potential applications using
concrete examples from RTG members’ own cutting-edge
research in the field, in the form of several “demonstrators”.
These help paint a picture of the landscape of ML robustness
metrics as they are applied to real-world scenarios with
military relevance, and how they can be used to help handle
possible adversarial attacks on ML in operational context, as
detailed in sections IV, V, and VI.

We conclude by sketching promising future avenues of
research that further build upon these “demonstrators”, in
order to: (1) propose useful verification methodologies to
facilitate ML robustness compliance assessment; (2) support
the development of ML accountability mechanisms; and
(3) reliably detect, repel, and mitigate adversarial attack.

II. ROBUSTNESS IN THE FACE OF UNCERTAINTY

The capability of dealing with uncertainty in training and
operational data is one of the main requirements for robust
machine learning systems, in particular for critical application
scenarios like those in the military domain [1]. Model
uncertainty can result from measurement errors, for example
due to hardware limitations of a sensor, or due to different
types of channel distortions between a source/object and the
sensor. Typically we want to distinguish between admissible
physical changes (such as noise, cropping, etc.) and
semantical changes (usually introduced by humans) that can
be made to an object without changing its class label. An ML
system should be robust to both types of changes mentioned,
and able to distinguish them from each other in order to
introduce appropriate mechanisms for handling them.

A more precise term for “model uncertainty” could be
"uncertainty in the model's predictions", which is mainly
caused by two sources [3]:

- For classification problems, the probability distributions
of different classes may overlap in some regions of the feature
(input) space, which makes the class label inherently uncertain
(different instances may have similar or even identical
features, but different class labels), and so too the classifier
output for the corresponding inputs. This is called "aleatoric"
uncertainty. There is a similar mechanism for regression
problems.

- When training data are limited, it is difficult to find the
"correct" model, and its optimal parameter values. This leads
to what is called "epistemic" uncertainty. In particular, this
kind of uncertainty is higher in regions of the feature space
where few or no training samples are available (that is,

uncertainty on classifier predictions is higher on inputs from
these regions).

In summary, two kinds of uncertainty are identified by
recent machine learning literature: aleatoric uncertainty
(related to intrinsic randomness in the considered task) and
epistemic uncertainty, that accounts for both model
uncertainty (on the correctness of the model and of the
hypothesis) and approximation uncertainty (on the optimal
model parameters) [4]. The latter can in principle be reduced
by the availability of additional, suitable training data.

A. Dropout injection

Dropout injection focuses on epistemic uncertainty. One
way to represent and evaluate it in deep neural networks
(DNNs) is through Bayesian extensions [5] using, for
instance, Monte Carlo dropout [6], which was originally
devised as a stochastic regularization technique [7]. In
particular, whereas Monte Carlo dropout is usually applied
during training, and then dropout layers are kept active in the
testing phase for the sole purpose of uncertainty estimation, it
can be also applied at test time only [8], which we call
“injected dropout” [9]. This enables uncertainty estimation
also for DNNs that had been already trained without dropout,
avoiding an expensive re-training process. However, our
ongoing work shows that, beside a proper setting of the
dropout rate (e.g., using a validation set), the effectiveness of
injected dropout strongly relies on a proper rescaling of the
corresponding uncertainty measure [9].

B. Application to crowd counting

Here we show an example of a practical application of
injected Monte Carlo dropout for the purpose of quantifying
epistemic uncertainty in a challenging computer vision task,
i.e., crowd counting and density estimation from images or
videos [10]. This task consists of estimating, possibly in real-
time, the number of people and the corresponding density map
from an input image or frame. State-of-the-art crowd counting
methods are based on ad hoc DNN architectures that are
trained to estimate the density map of the input image, from
which the people count is easily derived by summing up the
density value of each pixel. Fig. 1 (on the next page) shows an
example of our injected dropout method for post hoc
uncertainty estimation on a crowd counting and density
estimation task. On the left, a video frame from the benchmark
PETS data set [11] with the ground truth count is shown (top
left), together with the estimated density map (lighter colors
correspond to higher values) produced by the MCNN crowd
counting model [12] with the corresponding estimated count
(bottom left).

Such methods can be extended to similar counting tasks,
i.e. counting different kinds of objects, not just people. This
kind of functionality can be very useful to support human
operators in monitoring activities in security scenarios (e.g.
monitoring a mass gathering or a sensitive area through a
video surveillance system).

We implemented injected dropout on a previously trained,
state-of-the-art DNN architecture for crowd counting, the
Multi-Column Neural Network (MCNN) [10] [12]. Dropout
injection enables MCNNs to provide a post hoc, frame-by-
frame estimate of the pixel-level uncertainty of the density
map (i.e. the variance of the estimated density), and a
confidence interval (e.g. a 90% interval) on the corresponding
people count, which is defined as the pixel-wise sum of the

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 3

FIGURE 1: Detection of false positive localizations by combining density and uncertainty maps.

FIGURE 2: Detection of false positive localizations by combining density and uncertainty maps.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 4

uncertainty values with respect to the bare point estimates.
Fig. 1 (top right) represents the uncertainty map computed by
injected dropout, Fig. 1 (bottom left) shows the same density
map, and Fig. 1 (bottom right) with the corresponding 90%
confidence interval on the estimated people count.

For end users, the main benefit of uncertainty estimation
in this kind of task is that it can make them aware of the
reliability of DNN predictions, allowing them to take more
informed decisions, as well as increasing their trust in this kind
of machine learning system.

C. Way forward

In our ongoing work [9] we observe that uncertainty
evaluation could allow automatic detection and correction of
inaccuracies in the estimated density map and in the derived
count that result from “false positive” people localizations,
thus improving system robustness. An example is shown in
Fig. 2, where some false positive localizations related to the
same video frame of Fig. 1 are highlighted in red: these are
image regions with non-zero predicted density values (Fig. 2,
bottom) although no people appear in them (see the video
frame on the top left of Fig. 1). Such regions turn out to be
characterized by relatively low density values with respect to
correct localizations (they have been rescaled in the zoomed-
in views of Fig. 2 to make them visible), and by a high
uncertainty (Fig. 2, top). This pattern of low density and high
uncertainty may be exploited to automatically detect and filter
out false positive localizations, e.g. by setting to zero the
corresponding density as well as uncertainty values. This
would improve the accuracy of the density map and of the
corresponding people count, as well as of the uncertainty
estimate, by reducing the width of the confidence interval,
thus improving robustness.

From a military perspective, enhancing this kind of
computer vision technique with a post hoc uncertainty
estimation functionality and the corresponding robustness
improvement capability could be very useful, e.g. for the
analysis of aerial imagery for intelligence gathering.

III. ROBUSTNESS IN THE FACE OF IMPLAUSIBILITY

A. Suppression of data extraction from language models

In recent years, language models (LM) have led to a
paradigm shift in natural language processing. LM are deep
learning models, usually transformer-based [13], trained on
very large text corpora (typically several billions of words).
An LM represents the probability distributions over the word
sequences of its training language – a rudimentary
“understanding” of language. This allows an LM to predict the
next words for a given input sequence, a functionality that can
be utilized in many ways. For instance, since 2018, the GPT-
series language models [14] have received significant media
attention for their ability to generate long and plausible texts
in different styles, and Google BERT [15] has set new state-
of-the-art results in numerous natural language processing
tasks. LM could be used in defense contexts, e.g. for text
summarization, or to help with querying information systems.
However, training an LM from scratch can take months
depending on the hardware used. A common workaround is
therefore to take a public LM and to fine-tune it with
additional training texts from a specific domain, thereby
adapting the model with its large general language knowledge
to the task of interest using a domain-specific language.

While an LM is not intended to explicitly store the texts it
has been trained on, it may nevertheless effectively do so.
This can potentially be exploited by an adversary: With
suitable prompts an LM may recreate such memorized
training texts and thus reveal information not intended for the
public.

To demonstrate this we followed the general approach of
[16], but applied to a modern LM. First we fine-tuned the
language model GPT-2 [17] on the CC-News [18] collection
of news articles. We then attempted to recreate original texts
by letting the model generate texts based on the first two
words of articles. This succeeded in 21% of the cases (on a
model fine-tuned over 40,000 training steps), representing a
worst-case susceptibility of the model.

B. The perplexity metric

Generated texts are generally coherent and seemingly
plausible, but not necessarily factual. An attacker may face a
challenge when deciding whether an output text actually
corresponds to original training data. An indication is the
perplexity metric [19] that LMs usually provide, a measure
based on the likelihood function 𝑝𝜃 of the LM on a given
sequence of tokens 𝑥1, … 𝑥𝑛:

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑥1, … , 𝑥𝑛) =

exp⁡(−
1

𝑛
∑ log10 𝑝𝜃(𝑥𝑖|𝑥1, 𝑥2, … , 𝑥𝑖−1)
𝑛
𝑖=1) (1)

Effectively, this score represents how unexpected a given
text is to an LM. Feeding back a generated text into the LM
will produce a lower perplexity score the closer the text is to
original training data. Furthermore, when the military LM is a
fine-tuned version of a public model, the adversary can feed
the generated text back into both models to compare their
resulting perplexity scores. Fig. 3 illustrates how the vast
majority of sample texts generated by the fine-tuned LM
results in significantly higher perplexity on the original LM.
This means that recreated original texts overwhelmingly stay
below a clear perplexity threshold: In our experiment, 99.4%
of such texts had a perplexity of no more than 2.5. Hence a
hypothetical adversary could use such a threshold as an aid to
determine which of the generated texts correspond to original
training data, and thus constitute successful extractions.

This type of extraction attack is related to membership
inference attacks [20], where the attacker aims to find out
whether some given information was used for training.
Similarly to defense against inference attacks, differential
privacy [21] may provide countermeasures to such extraction.

IV. ROBUSTNESS IN THE FACE OF ADVERSARIAL ATTACK

A. Distinguishability criteria

The aim of adversarial attacks is to modify the model input
to result in incorrect model output such that it cannot be
distinguished by the human observer. Distinguishability
criteria bear some limitations on the perturbation that can be
applied to inputs, which are referred to as the 𝐿𝑝 norm in

literature, i.e.

‖𝐶 − 𝐴‖𝑝 ≤∈ (2)

where 𝐶 and 𝐴 represent the input sample and adversarial
example, respectively, and ∈ is the maximum allowable
perturbation. The most commonly used norms are 𝐿2 and 𝐿∞.
In this context, it is assumed that there are two different

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 5

decision makers, the first one a human being capable of
deciding correctly, and the second one an artificial neural
network. To define the network as robust, it is required that
the network can discriminate the modified input from the true
input as effectively as a human being. Therefore, the most
commonly used metric for robustness measurement is the
“robustness accuracy”, defined as the model accuracy for the
inputs perturbed by the adversarial perturbations [22]. Since
the input perturbation highly depends on the applied
adversarial attack, it is hard to quantify the actual adversarial
robustness of the model. In [23] it has been shown that deep
neural networks can achieve human-level performance only
when the applied manipulations are known in the training
phase. For unknown manipulations, the performance of the
deep neural networks decreases dramatically. Therefore, to
achieve reliable results, the adversarial robustness should be
reported as the model accuracy on worst-case inputs taken
from perturbed sets, which requires applying multiple
different types of attacks on the trained model. The works in
[24] and [25] aim to benchmark several models’ performance
in an adversarial setting and compare their robustness levels
under various adversarial attacks.

In some cases, the attacker can access the model training
phase and poisoning type attacks [26] [27] [28] can be used
for fooling the systems. There are two types of poisoning
attacks, i.e. data poisoning and model poisoning. In data
poisoning attacks, attackers influence the training data to
manipulate the results of a predictive model. In model
poisoning attacks, the adversarial objective is to cause the
model to mis-classify a set of chosen inputs with high
confidence without accessing the training data as in Federated
Learning [29].

B. Adversarial training

The main motivation of adversarial training is to cast both
attacks and defenses into a common theoretical framework,
naturally encapsulating most prior work on adversarial
examples [30]. In this method, instead of feeding samples
from the original dataset directly into training, the adversarial
attack is allowed to perturb the input first, and subsequently
the perturbed examples are fed into the training set. In this
context, adversarial training aims to increase the richness of
the training dataset by exploring vulnerable examples and
letting the model learn to correctly classify those examples.
The more exploratory the vulnerable examples, the more
robust the model.

The effect of such data generation methods for improving
adversarial robustness is handled in [31] and it is shown that
the methods that generate images closer to the test set improve
robustness. Adversarial training can be augmented in various
ways, such as changing the attack procedure, loss function or
model architecture [32] [33]. The effects of adversarial
training on robustness is analyzed in [34], concluding that
during the clean training process using (stochastic) gradient
descent, neural networks will accumulate, across all features,
some “dense mixture directions” that have low correlations
with any natural input, but are extremely vulnerable to (dense)
adversarial perturbations. During adversarial training, such
dense mixtures are “purified” to make the model more robust.

Some of the other mitigation methods for generating
robust models are making it difficult to find the adversarial
examples, i.e., gradient hiding or masking [35], feature
squeezing or discretization [36], using auxiliary models in
addition to the target model such as defensive distillation [37]

and defensive GAN[38], and detecting and rejecting
adversarial examples such as blocking the transferability [39]
and calculation of the Lipschitz constant [40].

C. Way forward

Current training methods use limited datasets, however the
model being trained must attempt to classify all the possible
inputs (infinitely many) including those containing noise
and/or which lie outside the distribution of the training dataset.
Training methods should therefore be refined in order to make
the model aware of the input characteristics. The model should
be able to decide whether the given input is correlated with the
task that the model is trained for. The model then becomes
responsible only for the related input, thereby making the
model more robust to adversarial input perturbations.

V. ROBUSTNESS USING PBNS AND DETECTION OF

ADVERSARIAL ATTACKS

A. PBN and the robustness of neural networks

In [1] generative modelling was used to introduce
robustness with respect to semantical variations of the input
data. Generative models can be used to visualize how a
particular classifier makes a certain class decision based on a
given data sample. We now discuss Projected Belief Networks
(PBNs) based on image and audio classification as examples.

FIGURE 3: Perplexity comparison of fine-tuned and original LM with
generated samples (top: samples verified to match training data;

bottom: non-verified samples).

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 6

B. Robustness of discriminative and generative networks

Most neural networks fall into one of two categories:
(a) discriminative networks, a type of feed-forward networks
in which the information flows in the forward direction,
starting from high-dimensional input data (images or sounds
to be classified), and ending in a low-dimensional network
output, usually the class identification; and (b) generative
networks, which start with a random input, then proceed in the
backward direction, usually with increasing dimension,
ending with a synthetic data sample, of the same size and
format as the input data. Generative networks can be used to
create synthetic data, but more importantly, they are trained to
approximate a data generation process for the training data.
Having a mathematical model for the data generation process
also provides a mathematical tool, the likelihood function
(LF), that allows testing samples to be graded according to
how “likely” it is that they are members of a given data class.

On the question of robustness, discriminative and
generative networks are widely opposed. Discriminative
networks can be easily fooled into making false decisions,
through the process of adversarial attacks (AA), in which an
almost imperceptible change is made to an input sample,
causing the network to make false classification decisions.
This is possible because the network is only trained to classify
between the data classes in the provided training data. As soon
as something new is presented to the network (novelty), it is
unable to reach a reasoned conclusion. Generative networks
on the other hand, contain a model of the training data classes,
so are able to reject AA samples which are unlike the training
data that was provided. Unfortunately, generative networks
make poor classifiers because they are highly sensitive to
model mismatch, and modeling high-dimensional data is an
extremely difficult task.

C. PBN: Balanced discriminative-generative robustness

The projected belief network (PBN) is a new type of
network that is simultaneously a discriminative feed-forward
network and a generative network with inherent model of the
data [41] [42]. It accomplishes the generative task using the
concept of back-projection (not to be confused with back-
propagation), in which information conceptually flows
backwards through the feed-forward network. Thus, the same
network can be used in either direction, and can be trained to
accomplish both tasks at the same time. An unavoidable result
of this dual role is that the network output must extract
information from the data that not only discriminates between
the data classes, but also describes the data sample in detail.
In fact, it has been shown that the PBN leads to information
maximization [43], and results in generative classifiers that
can compete with state-of-the-art discriminative classifiers
[44] [45].The PBN also provides a likelihood function (LF) so
that AA samples can be accurately rejected [46].

D. PBN: Mathematical basics

A PBN is based on the principle of probability density
function (PDF) projection [47]. Let z=T(x) be an arbitrary
dimension-reducing feature transformation taking high-
dimensional input data x, and producing a low-dimensional
feature z, with estimated or assumed feature distribution g(z).
In PDF projection, the feature distribution g(z) is “projected”
back to the input data, resulting in a unique input data
distribution given by equation (3):

G(x) = [p0(x)/p0(z)] g(z) (3)

where p0(x) is a maximum entropy (MaxEnt) [48] prior
distribution of x, and p0(x) is the mapping of p0(x) to the
output of the transformation T(x). When transformation T(x)
is implemented by a neural network layer, then the result is
one layer of a PBN. Multi-layer PBNs are created by
cascading transformations, and applying equation (3)
recursively. Consider a 2-layer PBN created by cascading the
layers y =T1(x), z =T2(y). The resulting input data distribution
is then given by equation (4):

G(x) = [p0x(x)/p0x(y)] [p0y(y)/p0y(z)] g(z) (4)

where p0x(x) and p0y(y) are the MaxEnt priors for x and y,
respectively. This idea can be extended to any number of
layers. Equation (4) can be trained for maximum likelihood
by maximizing the mean value of log(G(x)) over the training
data set. At the same time, we can train the network as a
classifier. Because G(x) in Equation (4) is a probability
distribution, we can draw samples of x using the concept of
back-projection. In the 2-layer PBN represented by
distribution Equation (4), back-projection proceeds as
follows: (a) We first draw a feature z randomly from
distribution g(z). Next, we find a sample y randomly from the
set {y: T2(y)= z}, assuming the prior distribution p0y(y) over
this set, then (b) draw a sample x randomly from the set {x:
T1(x)= y}, assuming the prior distribution p0x(x). We can also
sample non-randomly [42] – instead of drawing randomly
from the sets {y: T2(y)=z} and {x: T1(x)=y}, we can select the
conditional mean (the centroid of the set).

E. Illustrative experiments

To demonstrate the different behavior of discriminative
and generative networks under adversarial attack, we trained
a standard network to classify between the handwritten
characters “3”, “8”, and “9”. Using non-random back-
projection, we reconstructed the input samples from the output
of the second layer. In Fig. 4, the re-constructed samples look
like noise. It is indeed disturbing to see that both rows in the
figure produce the same network output, indicating how easy
it is to “fool” the maximum likelihood algorithm with fake
data. Next, we continued training the same network as a PBN.
It is seen in Fig. 5 that the reconstruction quality is improved
dramatically.

FIGURE 4: Top row: original samples of handwritten characters.

Bottom row: reconstructed using non-random back-projection from

second layer (64-dimensional feature).

FIGURE 5: Reconstruction results from the same network in Fig. 4,

when trained as a PBN in increments of 20 epochs.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 7

The above principles can be put to practical use to detect
AA samples. In Fig. 6, we illustrate this for an audio
classification example. The top row shows spectrograms of 10
utterances of the keywords "three" and "tree" (taken from
Google voice commands). All of those are correctly classified
by the network. The bottom row shows how nearly
imperceptible AA leads to 10 false classifier decisions.
In Fig. 7, however, we see that the histogram of the PBN log-
likelihood values for AA and normal samples from the same
network show almost total separation, allowing the AA
samples to be reliably rejected.

F. Way forward

In future work, the capabilities of PBNs for robust
classification will be investigated more rigorously. For this
PBNs will have to be evaluated in realistic application
scenarios. Depending on those scenarios, suitability of PBNs
with respect to specific robustness requirements beyond the
detection of AAs might need to be addressed.

VI. DEFENSE AGAINST ADVERSARIAL ATTACK

A. Lipschitz sensitivity analysis

Image-based malware detection is important for the
military because it can help reduce the large number of
malware and exploits targeted towards military networked
computing. Our main contribution to this research is the study

of robustness metrics to increase the resilience of military
networks to cyberattack and minimize the undermining of the
security and integrity of military networks. Malware image
classification identifies and categorizes malicious software by
analyzing their visual patterns, typically in the form of a
binary file. This technique can be used to detect and defend
against various types of malware, such as viruses, trojans, and
worms. One method to defend against adversarial attacks is by
computation and evaluation of the Lipschitz constant.

The Lipschitz constant is a measure of how much the
output of a function changes when the input is perturbed by a
small amount (a kind of sensitivity analysis). In the context of
malware image classification, a large Lipschitz constant
implicates that small changes to a binary file could lead to a
significant change in the classification result. This can be used
to detect and defend against adversarial attacks, where an
attacker may attempt to alter a binary file such that it confuses
the classification algorithm. By enforcing a small bound on
the Lipschitz constant, a classification algorithm can be made
more robust to such attacks. Regarding neural networks, a
Lipschitz constant is a measure of how much the output of the
network may change in response to a small input perturbation.
A Lipschitz continuous function is limited in how much it can
change and is bounded by a real number called the Lipschitz
constant. We use the Lipschitz constant to analyze the
sensitivity, stability, and robustness of neural networks [40].

FIGURE 6: Top row: original spectrograms from Google keyword voice commands “three” vs. “tree”, showing correct classification decision in all
cases. Bottom row, with AA, showing false decisions in all cases.

FIGURE 7: Histograms of log-likelihood values for AA samples (red) and normal samples (blue).

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 8

B. Local and global Lipschitz constants

There are two types of Lipschitz constants for neural
networks: the local and the global Lipschitz constant [49]. The
local constant is a measure of how much the output may
change locally around a specific point, whereas the global
constant is a measure of how much the output of a function
may vary over the entire function domain. In other words, it's
a measure of how much the output may vary globally across
all input points. Ascertaining the Lipschitz constant can be
valuable because it provides a way to measure the robustness
of a neural network to adversarial attack. It can also be used
to train a robust neural network to be less susceptible to
adversarial attack. Calculating the exact Lipschitz constant is
often computationally hard, hence upper bounds are typically
used as an alternative.

C. Generation of adversarial samples

Adversarial attacks in machine learning require small,
intentionally introduced perturbations to input data in order to
deceive a model's prediction. These attacks can be used to
evaluate the robustness of a model and exploit vulnerabilities
in real-world applications [50].

The Fast Gradient Sign Method (FGSM) is a method used
for generating adversarial examples. It is a one-step method,
in that it only requires one iteration of gradient descent [51] to
generate an adversarial example. The basic idea behind FGSM
is to take the sign of the gradient of the loss function with
respect to the input data and use that to perturb the input in the
direction that will most likely cause the model to misclassify.
FGSM is a simple but effective method to generate adversarial
examples, and has been successfully applied within numerous
domains including image classification, natural language
processing, and speech recognition.

D. Experiments

As an introduction into the topic of robustness metrics, we
hypothesize that a Lipschitz constant can be used to create
more robust networks against adversarial attacks using the

FGSM method. To test this hypothesis, we implemented a
deep learning network to classify malware image samples.
The malware dataset we used is the Malimg dataset [52],
consisting of thousands of malware binary files in image
format. An example is depicted in Fig. 8, containing 25 classes
of malware types, such as Allaple.L, Fakerean and Yuner.A.

As our base malware classifier we build a convolutional
neural network (CNN) in Keras. We calculated the global
Lipschitz upper bound of the model by transforming the Keras
network into PyTorch format and computing the bound of the
network using the implementation described in [53].

In addition, we implemented the same model as a DEEL-
LIP network. DEEL-LIP is a library built on top of
TensorFlow using standard elements of Keras to easily build
a neural network that has a Lipschitz constant of 1, a so-called
1-Lipschitz network. We used this network as an example of
a globally robust network to compare the Lipschitz constants
and robustness against adversarial attacks with respect to the
base malware classifier.

After preprocessing the data in test and training sets we
trained the two networks for 10 epochs on the same data, e.g.
going through the entire data set 10 times over. The global
Lipschitz constant of the base model was found to be 1.46 and
the Lipschitz constant of the DEEL-LIP model is 1, by design.
The accuracy of the base malware classifier was trained to
96% and the accuracy of the DEEL-LIP model was trained to
93%. Both models were trained using the same number of data
batches.

Finally, we randomly selected 27 malware samples and
generated adversarial attack samples using the FGSM method.
Fig. 9 (left) shows the adversarial attack image generated
from the Yuner.A malware image. We presented the
adversarial attack images to the base CNN model and the 1-
lipschitz DEEL-LIP model and compared the predictions of
the classifiers. Fig. 9 (center) depicts the results of the
predictions. The difference is virtually imperceptible to the
naked eye, and therefore highlighted in Fig. 9 (right).

FIGURE 9: Yuner.A original (left) and the generated adversarial attack image (center) – virtually indistinguishable;

and the difference between the two highlighted (right).

FIGURE 8: Various malware class byte code instances depicted as 2D images.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 9

E. Results and conclusions

The results of our experiments are summarized in Table 1.
The base malware classifier classified only one instance
correctly, whereas the 1-Lipschitz network classified 23
instances correctly from the 27 randomly selected malware
samples. Some malware classes were selected multiple times,
but it is interesting to see that the predictions of the base model
varies, even if the same class of malware is presented. The
DEEL-LIP model only misclassifies four (4) samples. The
predictions of the DEEL-LIP model are consistent. The results
show that the predictions of the 1-Lipschitz model are more
accurate and stable compared to the base CNN model when
presented with perturbed images, using the FGSM method.
Although the accuracy of the DEEL-LIP model was initially
less than the accuracy of the base model, it was found to be
more robust against an FGSM adversarial attack.

F. Way forward

We investigated a method to increase the resilience of a
malware classifier against an adversarial attack, by utilizing
the Lipschitz constant as a metric. The metric provides a way
to measure the robustness of a neural network to adversarial
examples and it can also be used to train a robust neural
network, which is less susceptible to adversarial attacks. We
applied the metric in the context of malware image
classification and showed that a significant result can be
achieved to withstand an adversarial attack with the FGSM
method.

 Future work will investigate whether the presented
method is as successful against other adversarial attacks, such
as black box attacks. Furthermore, we intend to study whether
application of the Lipschitz constraint to a network
appreciably degrades its overall classification accuracy.

VII. ONGOING AND FURTHER RESEARCH

There is an increased research focus at the systems
engineering and software engineering level on innovative
processes, tools and techniques to assure systems that
comprise Artificial Intelligence components, such as Artificial
Neural Networks (ANNs), i.e. Deep Neural Networks
(DNNs). In particular the robustness and resilience of such
systems deemed critical (e.g. safety, security) to an application
such as in aerospace, automotive and defense sectors (e.g.
“uncrewed” systems for safe operations on land, sea, or air
autonomous and lethal systems). Military defense presents
specific challenges regarding systems and components
sourced from different suppliers as well as combining and
integrating them to protect against new types of adversaries.

An innovative development in software engineering and
testing is termed Concolic [54]. A portmanteau, Concolic
combines traditional concrete software program execution
testing [55], random testing, with symbolic analysis to provide
better execution path coverage to uncover abnormalities (e.g.
adversarial attacks). The rationale behind this is that stronger
verification through better structured testing at execution
levels is needed for many critical applications where
conformity between high level code and executable code
cannot be ensured (e.g. due to no access to source code,
compiler bugs and artefacts, etc.). Either concrete testing or
symbolic analysis on their own are impractical for DNNs,
requiring a large number of input variables for the former and
too many DNN neuron activation paths for the latter.
Concolic testing can mitigate the complexity by directing the

symbolic analysis to particular execution paths, through
concretely evaluating given properties of the DNN.

An example process, given in [54] [56] [57], is to cover
broad test requirements using Quantified Linear Arithmetic
over Rationals (QLAR – essentially a first-order logic with
quantifiers formal method) to express them. For a given set R

of test requirements, gradually generate test cases to improve
coverage by alternating between concrete execution and
symbolic analysis. Given an unsatisfied test requirement r
transform it to µ(r) by means of a heuristic function µ. Then,
for the current set T of test cases, find pair (t, µ(r)) close to

satisfying r according to an evaluation based on concrete
execution. Then use symbolic analysis on this pair to obtain a
new concrete test case t', and add to existing test suite to form

T '. Repeat the process until a satisfactory level of coverage

is achieved. The generated test suite can then be used for
analysis (robustness oracle) to detect whether T includes

adversarial examples (e.g. using a distant metric).

Complexity, coverage criteria to direct the production of
test cases, constraint solvers, and heuristics present
difficulties. Much of Concolic and related research [56] [57]
[58] [59] [60] is improving these through mathematical
techniques and ensuring that the DNNs are amenable to the
processing. For example, as mentioned in earlier sections, one
such requirement is for Lipschitz continuity which is expected
to hold for a large class of DNNs. The properties must be

TABLE 1: Adversarial attack predictions. Base CNN versus 1-Lipschitz

DEEL-LIP network

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 10

semantic, with specific relation to DNNs, and to robustness of
DNNs and related Generative Adversarial Networks (GANs).
A small value for the associated Lipschitz constant, for the
whole input space, or found sub-space, significantly improves
the performance, which is otherwise difficult or intractable.
New test criteria for neuron coverage paths include boundary
cover for activation values exceeding pre-set bounds, such as
test cases used in Modified Condition/Decision Cover
(MC/DC) methods for software testing.

A DNN testing and debugging tool called DeepConcolic
has been developed [57], and is openly available for, and in
use by. the research community [61]. Its architecture is shown
in Fig. 10 and has produced encouraging results using datasets
with adversarial examples. Examples of performance versus
random testing (traditional approach) is shown in Fig. 11.
DeepConcolic covers a large range of Lipschitz constants and
thus produces a good robustness indicator for images (e.g.
against perturbations) that random testing coverage would
have missed.

VIII. CONCLUSIONS

By comparing our findings for robustness methods across
a broad range of neural network applications we show how
ML robustness metrics play an important role in critical
applications relevant to military operational contexts.

In spite of very positive findings, more work is required to
further improve using additional experimental analyses,
various datasets, and adversarial samples. This includes
combining with other approaches outlined in this paper to
offer hybrid system solutions able to balance performance,
risk, and impact. Recommended future avenues of research
include identifying baseline robustness tests that can be
applied to ML deployed in military settings, and developing
ways to detect, repel, and mitigate adversarial attacks on ML.

IX. ACKNOWLEDGMENTS

The work in Section II was partially supported by project
SERICS (PE00000014) under the NRRP MUR program
funded by the EU - NGEU.

DSTL authors acknowledge the support of the UK
MOD/DSTL Autonomy Programme, Autonomy Validation
and Verification Project to their research contributions. Their
content includes material subject to Crown copyright (2023),
DSTL. This material is licensed under the terms of the Open
Government Licence [62] except where otherwise stated.

FIGURE 10: DeepConcolic tool architecture [57]

FIGURE 11: Experimental results comparing Lipschitz Constant Coverage
(LCC) between Concolic testing and random testing using MNIST, CIFAR

Image Data and DNNs. 1M random test pairs for MNIST Image-1 (top);

50 input images from MNIST (center); 50 input images from CIFAR-10

(bottom). [54]

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 11

REFERENCES

[1] J. Sharp, J. Melrose, B. Madahar, M. Aktas, N.

Martinel, J. DeMarchi, E. Solberg, D. S. Lange, G. O.

Tanik, F. Kurth and L. Luotsinen, "Robustness of

artificial intelligence for hybrid warfare", in STO

RTG-190 Research Symposium (RSY) on AI, ML and

BD for Hybrid Military Operations (AI4HMO), 2021.

[2] AIVD: Netherlands General Intelligence and Security

Service, "AI systems: Develop them securely", 2023.

https://english.aivd.nl/publications/publications/2023/

02/15/ai-systems-develop-them-securely.

[3] E. Hüllermeier and W. Wägeman, "Aleatoric and

epistemic uncertainty in machine learning: An

introduction to concepts and methods", Machine

Learning, vol. 110, pp. 457-506, 2021.

[4] A. Kendall and Y. Gal, "What uncertainties do we

need in Bayesian deep learning for computer vision?",

Advances in Neural Information Processing Systems,

vol. 30, pp. 5574-5584, 2017.

[5] D. J. C. MacKay, "A practical Bayesian framework

for backpropagation networks", Neural Computation,

vol. 4, no. 3, pp. 448-472, 1992.

[6] Y. Gal and Z. Ghahramani, "Dropout as a Bayesian

approximation: Representing model uncertainty in

deep learning", in 33rd Int. Conf. on Machine

Learning, 2016.

[7] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever

and R. Salakhutdinov, "Dropout: A simple way to

prevent neural networks from overfitting", J. Machine

Learning Res., vol. 15, no. 56, pp. 1929-1958, 2014.

[8] A. Loquercio, M. Segu and D. Scaramuzza, "A

general framework for uncertainty estimation in deep

learning", IEEE Robotics and Automation Letters, vol.

5, pp. 3153-3160, 2020.

[9] E. Ledda, G. Fumera and F. Roli, "Dropout injection

at test time for post-hoc uncertainty quantification in

neural networks", Information Sciences, 2023.

[10] M. A. Khan, H. Menouar and R. Hamila, "Revisiting

crowd counting: State-of-the-art, trends, and future

perspectives", Image and Vision Computing, vol. 129,

no. 104597, 2023.

[11] J. Ferryman and A. Shahrokni, "PETS2009: Dataset

and challenge", in 12th IEEE Int. Workshop on

Performance Evaluation of Tracking and

Surveillance, 2009.

[12] Y. Zhang, D. Zhou, S. Chen, S. Gao and Y. Ma,

"Single-image crowd counting via multi-column

convolutional neural network", in IEEE Conf, on

Computer Vision and Pattern Recognition, 2016.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.

Jones, A. N. Gomez, L. Kaiser and I. Polosukhin,

"Attention is all you need", in Advances in Neural

Information Processing Systems, 2017.

[14] A. Radford, K. Narasimhan, T. Salimans and I.

Sutskever, "Improving language understanding by

generative pre-training", OpenAI, 2018.

[15] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova,

"BERT: Pre-training of deep bidirectional

transformers for language understanding", 2018.

arXiv:1810.04805.

[16] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos and D. Song,

"The secret sharer: Evaluating and testing unintended

memorization in neural networks", in 28th USENIX

Security Symposium, 2019.

[17] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and

I. Sutskever, "Language models are unsupervised

multitask learners", OpenAI, 2019.

[18] J. MacKenzie, R. Benham, M. Petri, J. R. Trippas, J.

S. Culpepper and A. Moffat, "CC-News-En: A large

English news corpus", in 29th ACM Int. Conf. on Inf.

& Knowledge Mgmt., New York, NY, 2020.

[19] F. Jelenik, R. L. Mercer, L. R. Bahl and J. K. Baker,

"Perplexity: A measure of the difficulty of speech

recognition tasks", J. Acoust. Soc. of America, 1977.

[20] S. Reza, M. Stronati, C. S. Song and V. Shmatikov,

"Membership inference attacks against machine

learning models", in IEEE Symposium on Security

and Privacy, 2017.

[21] C. Dwork, "Differential Privacy: A Survey of

Results", in Intl. Conf. on Theory and Applications of

Models of Computation, 2008.

[22] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J.

Rauber, D. Tsipras, I. Goodfellow, A. Madry and A.

Kurakin, "On evaluating adversarial robustness".

arXiv:1902.06705v2.

[23] R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt,

M. Bethge and F. A. Wichmann, "Generalisation in

humane and deep neural networks", in 32nd Conf. on

Neural Inf. Proc. Sys., Montréal, Canada, 2018.

[24] F. Croce, M. Andriushchenko, V. Sehwag, N.

Flammarion, M. Chaing, P. Mittal and M. Hein,

"RobustBench: A standardized adversarial robustness

benchmark". arXiv:2010.09670v3.

[25] N. Papernot, F. Faghti, N. Carlini, I. Goodfellow, R.

Feinman, A. Kurakin, C. Xie, Y. Sharma, T. Brown,

R. Aurko, A. Matyasko, V. Behzadan, K.

Hambardzumvan, Z. Zhang, Y.-L. Juang, Z. Li, R.

Sheatsley, A. Garg, J. Uesato, W. Gierke, Y. Dong, D.

Berthelot, P. Hendricks, J. Rauber, R. Long and P.

McDaniel, "Technical report on the CleverHans

v2.1.0 Adversarial Examples Library".

arXiv:1610.00768v6.

[26] M. Jagielski, A. Oprea, B. B, C. Liu, C. Nita-Rotaru

and B. Li, "Manipulating machine learning: Poisoning

attacks and countermeasures for regression learning",

IEEE Security and Privacy, 2018.

[27] X. Chen, C. Liu, B. Li, K. Lu and D. Song, "Targeted

backdoor attacks on deep learning systems using data

poisoning", 2017. arXiv: 1712.05526v1.

[28] A. N. Bhagoji, S. Chakraborty, P. Mittal and S. Calo,

"Analyzing federated learning through an adversarial

lens", 2019. arXiv:1811.12470v4.

[29] B. McMahan, E. Moore, D. Ramage, S. Hampson and

B. A. Arcas, "Communication-efficient learning of

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 12

deep networks from decentralized data", in 20th Int.

Conf. on Artificial Intelligence and Statistics, 2017.

[30] A. Madry, A. Makelov, L. Schmidt, D. Tsipras and A.

Vladu, "Towards deep learning models resistant to

adversarial attacks". arXiv:1706.06083v4.

[31] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg,

O. Wiles and T. Mann, "Fixing data augmentation to

improve adversarial robustness". arXiv:2103.01946.

[32] M. Guo, Y. Yang, R. Xu, Z. Liu and D. Lin, "When

NAS meets robustness: In search of robust

architectures against adversarial attacks".

arXiv:1911.10695v3.

[33] S. Gowal, C. Qin, J. Uesato, T. Mann and P. Kohli,

"Uncovering the limits of adversarial training against

norm-bounded adversarial examples".

arXiv:2010.03593v3.

[34] Z. Allen-Zhu and Y. Li, "Feature purification: How

adversarial training performs robust deep learning".

arXiv:2005.10190v2.

[35] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay

and D. Mukhopadhyay, "Adversarial attacks and

defences: A survey", 2018. arXiv:1810.00069v1.

[36] P. Panda, I. Chakraborty and K. Roy, "Discritization

based solutions for secure machine learning against

adversarial attacks", IEEE Access 7, 2019.

[37] N. Papernot, P. D. McDaniel, X. Wu, S. Jha and A.

Swami, "Distillation as a defense to adversarial

perturbations against deep neural networks", in IEEE

Symposium on Security and Privacy, 2016.

[38] M. Kabkab, P. Samangouei and R. Chellappa,

"Defensive-GAN: Protecting classifiers against

adversarial attacks using generative models", 2018.

arXiv:1805.06605.

[39] H. Hosseini, Y. Chen, S. Kannan, B. Zhang and R.

Poovendran, "Blocking transferrability of adversarial

examples in black-box learning systems", 2017.

arXiv:1703.04318.

[40] P. Pauli, A. Koch, J. Berberich, P. Kohler and F.

Allgower, "Training robust neural networks using

Lipschitz bounds", IEEE Control Systems Letters, vol.

6, pp. 121-126, 2022.

[41] P. M. Baggenstoss, "On the duality between belief

networks and feed-forward neural networks", IEEE

Trans. Neural Networks and Learning Systems, vol.

30, no. 1, pp. 190-200, 2019.

[42] P. M. Baggenstoss, "A neural network based on first

principles", Barcelona, Catalonia, Spain, 2020.

[43] P. M. Baggenstoss and S. Kay, "Nonlinear dimension

reduction by PDF estimation", IEEE Trans. Signal

Processing, vol. 70, pp. 1493-1505, 2022.

[44] P. M. Baggenstoss and F. Kurth, "Using the projected

belief network at high dimensions", Belgrade, 2022.

[45] P. M. Baggenstoss, "Discriminative alignment of

projected belief networks", IEEE Signal Processing

Letters, vol. 28, pp. 1963-1967, 2021.

[46] F. Govaers and P. Baggenstoss, "On a detection

method of adversarial samples for deep neural

networks", in 24th IEEE Int. Conf. on Information

Fusion, 2021.

[47] P. M. Baggenstoss, "The PDF projection theorem and

the class-specific method", IEEE Trans. Signal

Processing, vol. 51, no. 3, pp. 672-685, 2003.

[48] P. M. Baggenstoss, "Maximum entropy PDF design

using feature density constraints: Applications in

signal processing", IEEE Trans. Signal Processing,

vol. 63, no. 11, pp. 2815-2825, 2015.

[49] K. Leino, Z. Wang and M. Fredrikson, "Globally-

robust neural networks", 2021. arXiv.2102.08452.

[50] C. Pauling, M. Gimson, M. Qaid, A. Kida and B.

Halak, "A tutorial on adversarial learning attacks and

countermeasures", 2022. 10.48550/arXiv.2022.10377.

[51] L. Schwinn, R. Raab and B. Eskofier, "Towards rapid

and robust adversarial training with one-step attacks",

2020. 10.48550/arXiv.2002.10097.

[52] L. Nataraj, S. Karthikeyan, G. Jacob and B.

Manjunath, "Malware images: Visualization and

automatic classification", 2011.

https://www.dropbox.com/s/ep8qjakfwh1rzk4/malimg

_dataset.zip?dl=0. [Accessed 18 July 2021].

[53] T. Avant and K. A. Morgansen, "Analytical bounds

on the local Lipschitz constants of ReLU networks",

2021. arXiv:2014.14672v1.

[54] S. Youcheng, "Concolic testing for deep neural

networks", 2018. arXiv:1805.00089v1.

[55] C. Kaner, "Exploratory testing", in Annual Software

Testing Conf., 2006.

[56] S. Youcheng, "Structural test coverage criteria for

deep neural networks", ACM Trans. Embedded

Computing Sys., vol. 18, no. 5s, pp. 1-23, 2019.

[57] S. Youcheng, "DeepConcolic: Testing and debugging

deep neural networks", in 41st IEEEE/ACM Int. Conf.

on Software Eng. Companion Proc., 2019.

[58] S. Youcheng, "Testing deep neural networks", 2018.

arXiv:1803.04792.

[59] J. Wang, "RobOT: RObustness-oriented testing for

deep learning systems", in 43rd IEEE/ACM Int. Conf.

on Software Eng., 2021.

[60] W. Ruan, "Global robustness evaluation of deep

neural networks with provable guarantees for the

Hamming Distance", in Int. Joint Conf. on Artifical

Intelligence Organization, 2019.

[61] DSTL, "DeepConcolic", [Online].

https://github.com/TrustAI/DeepConcolic.

[62] psi@nationalarchives.gsi.gov.uk, The National

Archives, Kew, London TW9 4DU,

https://www.nationalarchives.gov.uk/doc/open-

government-licence/version/3.

