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Abstract—Denial-of-Service (DoS) attacks pose a threat to any
service provider on the internet. While traditional DoS flooding
attacks require the attacker to control at least as much resources
as the service provider in order to be effective, so-called low-
rate DoS attacks can exploit weaknesses in careless design to
effectively deny a service using minimal amounts of network
traffic.

This paper investigates one such weakness found within version
2.2 of the popular Apache HTTP Server software. The weakness
concerns how the server handles the persistent connection feature
in HTTP 1.1. An attack simulator exploiting this weakness has
been developed and shown to be effective. The attack was then
studied with spectral analysis for the purpose of examining how
well the attack could be detected.

Similar to other papers on spectral analysis of low-rate DoS
attacks, the results show that disproportionate amounts of energy
in the lower frequencies can be detected when the attack is
present. However, by randomizing the attack pattern, an attacker
can efficiently reduce this disproportion to a degree where it
might be impossible to correctly identify an attack in a real
world scenario.

Index Terms—Low-rate DoS attack; attack simulator; Apache
HTTP Server; attack detection; spectral analysis.

I. INTRODUCTION

In 2003 Kuzmanovic and Knightly [1] published an article
on a weakness found in the Transmission Control Protocol
(TCP) congestion control mechanism which opened up for
a different, more intelligent, type of DoS attack. TCP is
the transport protocol used by most internet traffic and the
weakness thus pose a serious threat to many online services.
By appropriately timing burst attacks (spikes) the attacker
can use much less traffic than a traditional brute force DoS
attack while still achieving considerable DoS. This type of
attack has also been called Reduction-of-Quality (RoQ) attack,
shrew attack, and pulsing attack. Because of the low amount
of traffic used compared to a traditional brute force attack,
the low-rate attack is supposedly harder to detect. In [1]
the authors argue that while the effects of the attack can
be mitigated by using for example randomization, the attack
cannot be completely defended against without significantly
sacrificing system performance in the event of legitimate
congestion. There are other attacks of this nature that exploit
timing mechanisms to achieve high amounts of damage with
relatively low amounts of traffic. An example given in [2] is
a video service where a video can be viewed by users. An
attacker could abuse this service by knowing the length of

the video and periodically performing requests at intervals of
the same length as the video. Another attack described in [2]
exploits the HTTP protocol and targets a feature in HTTP
1.1 called persistent connection or keep-alive. By abusing
the persistent connection feature the attack can considerably
degrade an HTTP server’s ability to serve legitimate clients
while using minimal amounts of traffic. The attack is called
LoRDAS in the article and is described as a general attack
where the HTTP persistent connection attack is an example of
this general attack.

A traditional DoS attack detection scheme might use volume
based detection where a disproportionate amount of traffic
would indicate a DoS flood attack. That type of detection is
not applicable to low-rate DoS attacks, however, since they use
minimal amounts of traffic. Another traditional approach is to
use signature based detection on incoming packets but that
approach will only work if there is something in the attack
packets that distinguish them from ordinary packets which
is not necessarily the case for DoS attacks. A slightly more
sophisticated approach is the one used in [3] where they gain
positive results by using maximum entropy estimation to detect
anomalies in network traffic. In [4], Barford et al. use wavelet
analysis, which is a type of spectral analysis, to effectively
detect anomalies in traffic data. Similarly, Chen et al. study the
low-rate DoS attack on TCP using spectral analysis in [5]. In
their research they found that network traffic data containing
the low-rate attack has more energy in the lower frequency
band as compared to legitimate traffic.

This paper aims to investigate how well the HTTP persistent
connection DoS attack can be detected using spectral anal-
ysis. Inspiration is taken from the work done by Chen and
Hwang [5], [6], [7], where they study the low-rate DoS attack
on TCP using spectral analysis. This paper, however, instead
aims to study the low-rate DoS attack on HTTP as described
in [2] in order to see how well that attack can be detected
using spectral analysis. As part of the project, a simulator for
the HTTP attack has been built and shown to be effective.
The simulator only aims to target the popular Apache HTTP
Server (referred to as simply Apache throughout the paper)
as to not overcomplicate the simulator. The Apache version
to be attacked is version 2.2. Apache’s access log data from
when under attack by the simulator is analyzed using spectral
analysis for the purpose of finding distinguishing features.
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II. BACKGROUND

Section II-A describes the HTTP persistent connection
feature whilst Section II-B explains how Apache handles con-
nections. Section II-C is dedicated to explaining the LoRDAS
attack, and Section II-D finally explains the basic concepts of
spectral analysis that are used in this paper.

A. HTTP Persistent Connection

When a web page is loaded in a web browser there are often
several images and other items embedded in the web page. If a
new TCP connection is opened for every item that is required
from the web server, overhead would be introduced because
of the communication required by TCP when establishing
and closing a connection. By instead reusing a single TCP
connection for several requests, resources can be saved: fewer
packets are sent thus reducing network congestion, latency
on subsequent requests is reduced since they do not require
handshaking, and by using a single connection, HTTP requests
and responses can be pipelined. Pipelining refers to sending
multiple requests without waiting for responses in-between [8].

Because of the performance benefits of reusing a TCP
connection, the persistent connection feature was introduced
in HTTP 1.1 as default behavior. The feature is sometimes
referred to as keep-alive. Persistent connection leaves a TCP
connection open for a certain amount of seconds after a request
to a HTTP server has been made to allow for further requests.
The specification does not define how long the connection
should be left open, and leaves it up to the client and server
to close the connection when they see fit.

In Apache the persistent connection feature is controlled
by the parameters KeepAliveTimeout and MaxKeepAlive-
Requests [9], [10]. The KeepAliveTimeout parameter controls
how many seconds a connection is kept open after a request.
In Apache 2.0 the default timeout was 15 seconds but in
version 2.2 and 2.4 it is as short as 5 seconds. It is not clear
from the Apache documentation whether the timeout is reset
upon subsequent requests, but it turns out that it is. That is,
if the KeepAliveTimeout is 5 seconds and a request is made
at 12:00:00 followed by a subsequent request using the same
connection at 12:00:02, the connection will be open for a total
of 7 seconds. The MaxKeepAliveRequests parameter controls
how many times a connection can be reused for sending new
requests before it is closed. This parameter defaults to 100.
If MaxKeepAliveRequests is set to 0, an infinite number of
requests can be made using the same connection.

B. Apache Connection Handling

The way Apache handles connections depends on the Multi-
Processing Module (MPM) used. In Apache 2.2 there are
7 MPMs available [11]. For the NetWare operating system
the mpm netware MPM is available, for the OS/2 operating
system the mpmt os2 MPM is available, for BeOS the beos
MPM is available and for the Windows operating system the
mpm winnt MPM is available. Having mentioned that, this
report will continue to only focus on the three MPMs available
for Unix-related operating systems which are prefork, worker

and event. The event MPM was considered to be experimental
in Apache 2.2 [12] and prefork was the default MPM. In
version 2.4, event is considered to be stable [13] and is the
default MPM used for any system that supports both threads
and thread-safe polling. In practice that means all modern
operating systems [14].

1) Prefork: The prefork MPM does not use threads and
instead uses a separate child process for every connection [15].
This MPM is useful when the system does not support threads,
or non-thread-safe libraries are being used. For prefork the
maximum number of child processes that will be launched is
regulated by the ServerLimit parameter whose default value is
256. The maximum number of connections that Apache can
service simultaneously is controlled by the MaxClients (called
MaxWorkerRequests in Apache 2.4 [16]) parameter which also
has the default value of 256. In practice ServerLimit becomes
the upper limit for MaxClients for prefork, since prefork only
uses processes to serve connections.

2) Worker: The worker MPM uses both processes and
threads to service connections [17]. The number of processes
is controlled by the ServerLimit parameter and its default
value is 16. Each process can have a number of threads that
serve connections and the maximum number of threads a
process can have is limited by the ThreadsPerChild parameter.
ThreadsPerChild has a default value of 25 which means
that the maximum number of the total number of threads
is 16 · 25 = 400 per default. As for the prefork MPM
the MaxClients parameter controls the maximum number of
simultaneous connections but is limited by the product of
ServerLimit and ThreadsPerChild instead of only ServerLimit.

3) Event: The event MPM is similar to the worker MPM
except that instead of keeping a separate thread for each
connection that is being kept open because of the persistent
connection feature, all connections that are in that keep-alive
state are handled by a thread dedicated to handling such
connections along with other idle connections. This frees
up threads that otherwise would be waiting for subsequent
requests that may or may not come. If a new connection
attempt is made and all workers are busy, the event MPM
will close connections in keep-alive state to free up a position
even if the timeout has not expired. This has dire consequences
for the feasibility of the LoRDAS attack.

4) When the Server is Full: When Apache cannot accept
more requests because there are no more processes or threads
available, requests will be queued. The amount of requests that
are queued are limited by the ListenBacklog directive [18]
which defaults to 511. However, this value is often limited
to a lower value by the operating system. The server that
has been used to run Apache in the study presented herein
was running a Linux 3 kernel which limited the number of
incomplete sockets in the queue to 256 and limited the number
of completed sockets to 128. More information about how
Linux handles the backlog is available in the man page for
the listen system call1.

1http://linux.die.net/man/2/listen
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C. LoRDAS

The so-called low-rate DoS attack against application
servers, LoRDAS, is described in [2]. The attack is described
as a general attack against any server using the following
model. A server can serve several requests simultaneously and
may be composed of a single machine or several machines
connected to a load balancer. Each machine can serve a limited
number of users simultaneously. In Apache 2.2, using the
prefork MPM, that limit would correspond to the MaxClients
directive. Each machine has its own service queue where
requests that cannot be handled immediately are queued, and
this queue has a limited length. In Apache this corresponds to
the ListenBackLog directive.

When the service queue is full in all machines, new connec-
tions cannot be handled and will be discarded. This results in
a Denial-of-Service which is the primary goal of the LoRDAS
attack. LoRDAS aims to fill the service queue with malicious
requests so that legitimate requests are discarded. To achieve
this, a regular DoS flood is sufficient. However, LoRDAS tries
to achieve the same result using as little network traffic as
possible. By predicting the points in time at which a position
in the service queue becomes available, LoRDAS can time
its attacks accordingly and thereby greatly reduce its overall
network traffic use.

To be able to predict these instants, LoRDAS needs to
exploit some vulnerability in the server. For the case of Apache
using the prefork or worker MPM, this vulnerability can be
the persistent connection feature. When employing the event
MPM there is no obvious way to predict when a position
becomes available in the service queue since a position will
be made available if there are idle connections in keep-alive
state connected to the server.

D. Spectral Analysis

Spectral analysis concerns the study of spectra of “the
distribution of power over frequency of a time series” [19].

1) Signals and Domains: Spectral analysis may be con-
sidered to be a subfield of signal processing, and shares its
terminology and concepts with this field. The most basic
concept is the idea of a signal. A signal is “a function
that conveys information about the behavior or attributes of
some phenomenon” [20] and includes examples such as sound
signals, electrical signals, optical signals, and electromagnetic
signals. Any measurable quantity such as one’s weight, the
temperature in the fridge, the number of birds on a windowsill
per day, etc., can be turned into a signal.

Two concepts important for understanding signal processing
and spectral analysis are the time domain and the frequency
domain. When performing a scientific experiment one might
measure the value of some sort of signal, for example the
temperature, at specific times and record the measured values
along with the time at which each measurement was made.
Doing this one obtains a set of data points where each data
point contains a temperature and a time. This set of data points
is said to be in the time domain since the value of our signal
is in relation to a specific time.

In the time domain one can easily see when a signal took
upon what values. In the frequency domain, on the other hand,
a signal is represented as a sum of many periodic functions. By
representing a function in this way, one can easily see periodic
behavior such as oscillations or fluctuations. If one for example
measures the temperature outside every 10 minutes one would
probably be able to see a daily fluctuation of the temperature
in the frequency domain. Now, one would be able to see that
daily fluctuation by simply graphing the values of the signal
in the time domain as well but it is not always that easy to see
the fluctuations. An example where it would be very hard to
see the fluctuations by graphing the signal in the time domain
would be the sound signal of an orchestra playing a symphony.
In this case the fluctuations are vibrations of air molecules
caused by many different instruments that form many different
sound frequencies which combined create musical chords. To
be able to answer questions such as “in which key is the song
being played?” or “is the orchestra playing in tune?,” one
would have to transform the sound signal to the frequency
domain first.

2) Transforms: To transform a signal from the time domain
to the frequency domain and back, one uses transforms.
Mathematically speaking, a transform is simply a function
but the word transform is used instead of the word function
for certain applications such as when rotating the points of a
triangle or, as in our case, when transforming a signal. Since
we will be working with a finite set of points describing a
signal in the time domain and we want to transform it to
the frequency domain, a transform we can use is the Discrete
Fourier Transform (DFT). Another transform we can use is
the Discrete Wavelet Transform (DWT). There is an important
difference between the two transforms. The DFT gives an
output that is totally independent of time, meaning that there is
no way to tell when certain frequencies occurred in the input.
One can only tell which frequencies occurred. If we need to
be able to tell when certain frequencies occurred we can either
divide the input into small (often overlapping) segments and
apply the DFT on each segment (the smaller segments the
better time precision but worse frequency precision), or use a
DWT. In this study we will only be interested in if frequencies
occur rather than when frequencies occur which is why we will
be using the DFT.

The DFT takes a sequence of complex numbers as input
and outputs a sequence of complex numbers. The length of the
output sequence is equal to the length of the input sequence.
The following equation gives the k:th number in the output
sequence of the DFT where N is the length of the input (and
output) sequence, x is the input sequence and X is the output
sequence:

X(k) =
N−1∑
n=0

x(n) · e−i(2πk n
N ). (1)

Computing the DFT using the above definition requires O(N2)
operations but there is an algorithm called the Fast Fourier
Transform (FFT) which computes the DFT using O(N logN)
operations.
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Conceptually speaking the DFT checks which frequencies
best match the input and gives a high value output for frequen-
cies that match well and a low value output for frequencies that
do not match well. Mathematically speaking the e−i(2πk

n
N )

part of the formula is simply a circle in the complex plane
with radius 1 and as n increases we rotate around this circle.
If x(n) does not match up well with the speed we are rotating
around this circle (controlled by the k parameter), then the
total sum will average up to around zero because the points
x(n) · e−i(2πk n

N ) in the complex plane become evenly spread
around the origin like in the right-hand side of Fig. 1.

-1

 1

-1  1

Re(z)

Im(z)

-1

 1

-1  1

Re(z)

Im(z)

-1

 1

-1  1

Re(z)

Im(z)

-1

 1

-1  1

Re(z)

Im(z)

Fig. 1. Here we use a series of 100 points, x(n) = sin(2πn/20) where n ∈
{0, 1, .., 99}, and plot the complex points x(n) · e−i(2πkn/100) for k = 5
to the left and for k = 6 to the right. Since 2πn/20 = 2πkn/100⇒ k = 5,
we have that choosing k = 5 will make the two periodic functions revolve
with the same speed and thus skewing the resulting complex points towards
one direction. Choosing k = 6 will instead cause the two periodic functions
to not match up at all, and the resulting complex points will be evenly spread
around the origin.

However, if x(n) fluctuates with a speed equal to the speed
we are rotating around the complex circle with, the points
x(n) · e−i(2πk n

N ) become skewed away from the origin like
in the left-hand side of Fig. 1. This is because all the high
points and low points of the fluctuation in x(n) will be
multiplied with the same angle during each rotation around the
complex circle. Instead of the points becoming evenly spread
around the origin, the rotation around the complex circle and
the fluctuation in x(n) adds up to move the center of the
points away from the origin. This gives us a total sum whose
magnitude (distance from the origin) is large.

3) Sample Rates, the Nyquist Frequency, and Aliasing:
There are some limitations and side effects that stem from the
fact that we represent our signals as sequences of data points,
often referred to as samples of a signal, instead of continuous
functions. This is not to say that we could actually measure
a continuous function representation of a real world signal.
Continuous functions are only relevant in theory; in the real
world we have to deal with finite sequences of measurements.
The most obvious limitation is that we cannot know what goes
on between samples. The sampling frequency is the amount
of samples we have per second and the sampling frequency
directly limits what frequencies we will be able to detect with
the DFT.

The Nyquist frequency, named after the Swedish engineer
Harry Nyquist (1889–1976), is defined to be half of the

sampling frequency. The reason it is important is that as long
as the input signal does not contain any frequencies above
the Nyquist frequency the original signal can be perfectly
reconstructed using the sampled signal. This fact is formulated
in the Nyquist-Shannon sampling theorem [21]. What this
means for us is that when transforming our signal with the
DFT we will not be able to detect frequencies higher than the
Nyquist frequency and if there are frequencies higher than the
Nyquist frequency in the input, they will be aliased by lower
frequencies.

Aliasing is when high frequencies (larger than the Nyquist
frequency) look like lower frequencies to us because our
sample rate is too low to capture those frequencies. This
phenomenon can be seen when filming some rotating object
(car wheels, helicopter rotor blades, etc.) and the rotation
appears to be rotating slower, be stationary, or even go in the
reverse direction to the actual rotation. This occurs because
the sample rate of the camera might be 24 FPS (frames per
second) or 24 Hz which gives a Nyquist frequency of 12 Hz
and a helicopter tail rotor might spin with a speed of 1500
RPM (Revolutions Per Minute) which gives a frequency of
25 Hz. 25 Hz is greater than 12 Hz so the 25 Hz frequency
will be aliased with another frequency. To be able to see what
frequency 25 Hz will be aliased with in this case, one can
imagine the frequency, f , as a clock hand revolving around a
clock face at the speed of f and the sample rate, s, is how often
one looks at the clock. If s and f are equal, then each time
one looks at the clock the clock hand will appear to not have
moved at all because it will have moved exactly one rotation.
In fact, as long as f is a multiple of s then the clock hand
will have moved a whole number of rotations and it will look
like the hand has not moved at all. When s is 24 and f is 25
as in our example then when one looks at the clock face the
clock hand will have rotated slightly more than one rotation
which ends up looking like the clock hand has only moved
slightly. To be precise, we are looking at the clock every 24th
of a second and f is rotating 25 rotations per second which
gives that when we look at the clock, the clock hand will
have moved 25

24 = 1+ 1
24 rotations which will end up looking

to us like it has moved only 1
24 rotations and this will be

indistinguishable from if f was 1 Hz.
To avoid aliasing one can remove frequencies higher than

the Nyquist frequency with a filter before sampling a signal.
This is referred to as bandlimiting.

III. METHODOLOGY

This section explains the setup used to test the attack in
Section III-A and continues to describe how the attack simu-
lator works in Section III-B. The section ends by describing
how the spectral analysis was performed in Section III-C.

A. Laboratory Setup

To perform a LoRDAS attack in practice one would have
to control a large botnet. It would not be possible to use IP
address spoofing to fool the target that an attack is coming
from multiple directions while it in fact is coming from only
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one attacker. This is not possible because a web server uses
HTTP which is built on top of TCP, and TCP uses a three-
way handshake to establish a connection. What that means is
that if a TCP packet with a faked source IP address is sent to
the target with the intention of opening a TCP connection, the
target will send a corresponding confirmation TCP packet with
the very important randomly chosen sequence number back to
the faked IP address and the attacker would never receive it.

To avoid setting up a large botnet in order to be able to
perform experiments, a special setup was used. The target
web server was configured to route all packets through the
attacker which means that the attacker receives everything the
target sends out. In this way the attacker can establish faked
TCP connections with only one computer using a multitude
of IP addresses. If one wanted to perform an attack in reality
then this setup is of course not possible since it requires
root access to the target, and if one has root access to the
target then performing a DoS attack would be an unnecessary
complication.

The Apache version used was a modified version 2.2.25
(details about the modification can be found in Section III-C).
All the default settings were used, which means that the
prefork MPM was used, MaxClients was set to 256, Server-
Limit was set to 256 and ListenBacklog was set to 511. The
document that was requested a countless number of times
was a standard HTML web page: <html><body><h1>It
works!</h1></body></html>.

The server was running Arch Linux with Linux kernel
version 3.11.4. The server was connected to a router with a
100 Mbit/s Ethernet connection. The attacker was connected
to the same router with a 100 Mbit/s Ethernet connection. The
attacker was running Ubuntu with Linux kernel version 3.8.0.
The Python version used to run the attack program was Python
3.3.1. The router used was a Linksys E900 running the 1.0.04
firmware.

B. LoRDAS Simulator

The simulator was implemented as a Python 3 program.
The program uses raw sockets to send IP packets without
automatically prepended IP headers so that a forged IP header
with a fake source IP address can be prepended by the
program.

There is one thread in the program that monitors all network
packets coming in and out of the computer (requires root
access) and filters out any packets that are not TCP packets
with a source address of our target. From the remaining
packets the program checks if there is a queue created by
a bot thread for the destination IP address found in the packet
and, if so, places the packet in that queue. The queues are
thread-safe objects which are part of the standard Python 3
library.

Apart from the packet listening thread there are the bot
threads. Each bot runs in a separate thread. The bot threads
are initialized with a specific source address and they then
create a queue for this source address so that packets targeted
at this source address are picked up by the packet listener and

placed in that queue. Using this queue the bot tries to establish
a TCP connection with the target using the TCP three-way
handshake. After the handshake has been completed a HTTP
GET request is sent to the target and if all goes well the bot
then sleeps for a certain amount of seconds. The amount of
time spent waiting is crucial for how much traffic will be used
and for the detectability of the attack. Whatever value is used,
it must be less than the KeepAliveTimeout of the target.

After the short sleep the bot performs another HTTP GET
request to refresh the KeepAliveTimeout timer on the server.
This behavior is repeated until MaxKeepAliveRequests is
reached and the bot then basically restarts itself trying to
open a new TCP connection. One might wonder how long
a bot waits before for example resending a SYN packet if no
SYN+ACK packet is received or if no response is received
to a HTTP GET request. A timeout of 5 seconds was used
for simplicity, but it should optimally be set to conform with
the behavior of major web browsers so that a bot’s behavior
cannot be distinguished from legitimate users in this sense.

C. Spectral Analysis of Access Logs

Apache logs all incoming requests in an access log. This
log contains a time stamp for each request but the time stamp
does not contain any higher precision than whole seconds by
default. If we were to use a time stamp with only second
precision then that would mean that our sample rate would be
1 Hz. A sample rate of 1 Hz would lead to a Nyquist frequency
of 0.5 Hz which would mean that we could not capture any
periodic behavior with intervals shorter than 2 seconds.

Apache 2.4 has the option to change the format of the time
stamp to include milliseconds and even microseconds since the
Epoch (often January 1, 1970) [22]. This option is not present
in Apache 2.2, however, which led to that the Apache 2.2
mod log config source code was patched so that tests could
be performed with Apache 2.2 as well. The change was made
in the mod log config.c source code file in Apache version
2.2.25.

To convert the access log to a signal that we can transform
to the frequency domain with the DFT, a simple script was
used. The script goes through every line of the access log,
extracts the time for each line and outputs a number for each
time unit corresponding to the number of requests received
during that time unit. When requests were coming extremely
fast, the requests in the access log were in disorder so the
requests had to be sorted before being converted to a signal.

To illustrate how a signal was created, the following log
(normal time stamps are used here because they are easier to
understand):

18:00:00
18:00:00
18:00:02
18:00:04
18:00:05

would be converted to the following signal with a time unit
of 1 second:
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2 0 1 0 1 1

Note that each number in the output of the conversion corre-
sponds to a time unit (in this example, a second).

The time unit chosen for the experiments performed was 1
ms, which was chosen without much thought. A time unit of
1 ms corresponds to a sample rate of 1000 Hz which leads
to a Nyquist frequency of 500 Hz. Decreasing the time unit
even more would help us capture periodic behavior on scales
larger than 500 times per second which are time scales that
seem irrelevant in network traffic. In [6] the authors similarly
used a sample rate of 1000 Hz.

After converting the access log to a digital signal, the
absolute value of the FFT of the signal was plotted against
a sequence of evenly spaced numbers from 0 to the sample
rate (1000 Hz) that had the same length as the input signal.
The absolute value of the FFT of the signal was placed on the
y-axis and the numbers between 0 and 1000 were placed on
the x-axis. Since we cannot detect any frequencies above the
Nyquist frequency (500 Hz), the plot was cut in half so that
the x-axis ran from 0 Hz to 500 Hz.

To measure the disparity between lower and higher frequen-
cies the following calculation was performed for d = 50, 25,
10 and 5:

q =

∑
0<x<d

f(x)∑
500−d<x
x<500

f(x)
, (2)

where f is the function that given a frequency outputs the
energy for that frequency. The equation serves to calculate the
ratio between the energy in a band of lower frequencies and
the energy in a band of higher frequencies. The lengths of
the bands are controlled by d. If there is no disparity between
the bands and the energy levels are equal, q becomes 1. If,
for example, there is twice as much energy in the lower band
compared to the higher band, q becomes 2.

IV. RESULTS

The purpose of this section is to determine whether our
methods are capable of distinguishing attacks from random
data using many different attack configurations. For each
attack we use the q-values that are calculated with Equation 2
to determine whether the attack is distinguishable from random
data. Since random data has q-values that are more or less
equal to 1, we are trying to find a certain attack configuration
that produces q-values close to 1. Such an attack would be
indistinguishable from random data and thus undetectable
using our methods.

The results are presented as graphs with frequency on the
x-axis and the slightly ambiguous unit “energy” on the y-
axis. Energy refers to the absolute value of the output of the
DFT which means that the more energy a frequency has, the
stronger that frequency is in the signal.

Along with every graph a moving average with a window of
100 samples is also plotted so that trends can more easily be
seen. The moving average is aligned so that the first value of

the moving average graph is the average of the first 100 points
and the moving average graph is 100 points shorter than the
main graph.

For each attack the q-values are also calculated according
to Equation 2 with d = 50, 25, 10 and 5. Each attack is
performed 10 times to provide an idea of the variation in the
results. The mean and standard deviation of the 10 tries are
presented in a table.

A. Fixed Wait Times
Using fixed wait times means that each bot waits for a fixed

period of time between each request it makes to the server. In
Fig. 2, using a fixed wait time of 4.5 s., we can see that the
energy levels in the lower frequencies are much higher than
in the higher frequencies. For this wait time, the q-values in
Table I show that the energy levels in the lower frequencies
are twice as high as in the higher frequencies. This means
that there is much frequency periodic behavior in the signal.
The low frequency periodic behavior we see is created by the
attack bots.

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

hertz

e
n
e
rg

y

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

hertz

e
n
e
rg

y

Fig. 2. The upper subplot shows the spectral content of an attack of length
60 s. using 400 bots where each bot had a wait time of 4.5 s. between requests.
The lower subplot shows the moving average using 100 samples of the upper
subplot.

As can also be seen in Table I, reducing the wait times
results in greater energy levels in the lower-most frequencies.
This does not mean that shorter wait times produce lower
frequencies, but simply that there are more data points, i.e., a
shorter wait time produces more data points per second.

B. Random Wait Times
In Fig. 3 we see the energy distribution over frequency for

a simulated attack using bots with random wait times evenly
distributed between 0 and 4.5 seconds. Compared to the fixed
time graphs we see much more noise in Fig. 3. There is still
more energy in the lower frequencies which can be confirmed
in Table I, but the difference is much smaller now when we
use random wait times as opposed to when we used fixed wait
times.
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TABLE I
THE TABLE SHOWS THE VALUE OF q ACCORDING TO EQUATION 2 FOR
DIFFERENT COMBINATIONS OF THE BANDWIDTH VARIABLE d AND THE

BOT WAIT TIMES. THE q-VALUE IS A MEASUREMENT OF THE AMOUNT OF
ENERGY IN THE LOWER FREQUENCIES AS COMPARED TO THE HIGHER

FREQUENCIES. EACH q-VALUE REPRESENTS TEN DIFFERENT ATTACKS,
WHICH IS PRESENTED USING MEAN VALUE AND STANDARD DEVIATION.

Wait time [s] d [Hz] q

4.5 50 2.0759± 0.1199
25 2.1722± 0.1632
10 2.1572± 0.1393
5 2.0512± 0.1210

2 50 1.8119± 0.0779
25 2.1658± 0.0742
10 2.8377± 0.1544
5 3.3872± 0.2704

0.5 50 1.4935± 0.0768
25 1.9300± 0.1088
10 2.8643± 0.1686
5 3.7461± 0.2324

U(0, 4.5) 50 1.3539± 0.0532
25 1.3694± 0.0492
10 1.3889± 0.0317
5 1.4199± 0.0567

U(0, 2) 50 1.2358± 0.0527
25 1.2731± 0.0503
10 1.3557± 0.0590
5 1.4742± 0.0707

U(2, 4.5) 50 1.4635± 0.0361
25 1.4760± 0.0470
10 1.4834± 0.0427
5 1.5023± 0.0673
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Fig. 3. The upper subplot shows the spectral content of an attack of length
60 s. using 400 bots where each bot had a random wait time between 0 and
4.5 s. between requests. The lower subplot shows the moving average using
100 samples of the upper subplot.

V. ATTACK PHASES AND ITS RELATION TO
DETECTABILITY

During the experiments it could be seen that increasing
the detection time length produced more stable results in

general, i.e., with less standard deviation when calculating q
using Equation 2. Since we restart the attack for each test
this might signify that the beginning of an attack is more
detectable than the continuation of it. Looking closer at a 300
s. attack whose q-values are 1.0571, 1.0565, 1.0668, 1.0856
we get the following q-values for the first circa 30 s.:
1.4701, 1.4755, 1.6132, 1.7972; the following q-values for the
last circa 30 s.: 0.9910, 0.9650, 0.9482, 0.8849; and the fol-
lowing q-values for circa 30 s. in the middle of the attack:
0.9968, 0.9930, 0.9745, 1.0306. This seems to confirm that the
beginning of the attack is more detectable than the ongoing
attack.

The beginning of the attack being more detectable is most
likely related to how the attack bots are started. One could
imagine that the bots somehow are not evenly spread out to
begin with and then after some time of using random wait
times the bots become evenly spread out and harder to detect.
Changing how the bots were started did not seem to have
any effect, though. The following startup techniques were
investigated: starting the bots as fast as possible, using a small
random wait time between the startup of each bot, and trying
to start the bots evenly spread out along a Poisson distribution.
None of these changes changed the fact that the first 10–15
seconds of the attack resulted in higher q-values than the rest
of the time. The explanation had to be that there is something
fundamental behind the startup of the attack that is more easily
detected.

When looking closer at what happens when the bots are
started, we can see that most of the bots never receive a
SYN+ACK packet for their first SYN packet to initiate a
TCP connection. This is understandable since the server cannot
handle 400 new TCP connections at once. What happens then
is that the bots who did not manage to open a TCP connection
will retry after 5 seconds (because that is how they were
programmed, see Section III-B). Even after the second round
there will be bots who still did not manage to open a TCP
connection, and they will wait for another 5 seconds. In this
way there will be spikes every 5th second during the startup of
the attack, and this is what lies behind the increased q-values
at the beginning of the attack. If we wanted to remove the
detectability of the initiation of the attack, the attack would
have to employ a slow-start as to not flood the server while
starting the bots.

It is important to point out that the above does not mean that
the attacks presented in the previous section are undetectable.
The attack startup is still present in all attacks, and the attacks
still show different detectability using different bot wait times.
This means that apart from the startup phase, the wait times
must also affect the detectability.

VI. CONCLUSIONS

While the attack described in this paper will be successful
against a default configured Apache 2.2 server, it has no effect
on a default configured Apache 2.4 server. This is due to the
prefork MPM being used by default in version 2.2 while the
event MPM is used by default in version 2.4. The event MPM
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keeps all connections that are being kept alive because of the
persistent connection feature in a separate thread dedicated
for such connections. When the server needs a slot for a new
connection and there are no more slots available it will close
one of the idle connections that are being kept alive. In this
way, even if the connection that was closed was a legitimate
connection, only a small overhead will be introduced the
next time a document is required from the server because
of the need to open a new connection. On the other hand,
the attack described herein is completely thwarted because a
bot cannot hold a connection for the purpose of blocking new
connections, since new connections are always prioritized over
idle connections.

At the time of writing (spring 2015), Apache 2.4 has been
available for more than three years and is considered stable by
the Apache HTTP Server Project. However, major GNU/Linux
distributions such as Ubuntu and Arch Linux do not provide
the 2.4 version by default and when Apache is installed they
provide the 2.2 version. Furthermore, many sites, such as the
web site of our own university, still use Apache 2.2.

When it comes to detection of the attack using spectral
analysis, this is possible as long as the attacker uses fixed
wait times or floods the server when initiating the attack.
If the attacker is clever, however, the attack can be made
undetectable for spectral analysis through using random wait
times and a sufficiently slow start phase. This does not
necessarily mean that a spectral analysis detection scheme
is useless, though. As shown [4], spectral analysis can be
used to detect anomalies in everyday traffic data. In [4], the
analysis is made on IP packets and SNMP data, but it might
suffice to perform spectral analysis on a higher abstraction
level similar to herein. As part of an anomaly detection system,
the methods developed in this paper, such as calculating q-
values using Equation 2, might prove useful to detect certain
types of anomalies.

To detect the attack presented in this paper, one could also
consider each connection by itself and try to evaluate if a
connection is a legitimate connection or an attacker bot. One
could, e.g., look at which documents are being requested and
at what times, and compare legitimate user behavior with bot
behavior. If a connection is suspected to be a bot connection,
that connection can be prohibited from keeping its connection
alive and forced to initiate a new connection. Another approach
could be to check the amount of idle connections versus
the amount of active connections and temporarily disable the
persistent connection feature if the ratio is too high.
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