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Abstract

This paper presents a method for detection of humans in
video sequences. The intended application of the method is
outdoor surveillance. In such an uncontrolled environment,
the appearance of humans varies hugely due to clothing,
identity, weather and amount and direction of light. The
idea is therefore to detect patterns of human motion, which
to a large extent is independent of the differences in appear-
ance. To this end, a Support Vector Machine is trained with
dense optical flow patterns originating from humans. The
subjects are moving in different angles to the camera plane,
on different image scales. This trained SVM is the core of
a human detection algorithm which searches optical flow
images for human-like motion patterns.

1. Introduction
Detection of humans in image sequences is an active re-
search area within computer vision. In many applications,
such as human-computer interaction, the detection is a ba-
sis for tracking. In other, such as surveillance systems or
safety systems in cars, the detection in itself is used to trig-
ger some type of alarm. The intended application of the
method presented in this paper is outdoor surveillance.

Most human detection systems (e.g. [4, 6, 8, 9, 10, 12,
13]) detect humans or faces in a single image. These ap-
proaches are based on the assumption that humans can be
localized in each individual frame, based on a model of
human appearance (shape, contrast, color). However, in
an uncontrolled outdoor environment such as the one con-
sidered in our application, human appearance varies due
to environmental factors such as light conditions, clothing,
contrast, and identity. The image sequences could even be
taken during the night with a light enhancing camera. Fur-
thermore, the subjects can be camouflaged or masked. All
these factors cause large variation in the appearance of both
the human and the scene, thereby obscuring the interesting
features for human/non-human classification.

The approach in this paper is to detect human motion,
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Figure 1: Motion is characteristical for humans. (a) From left to
right: two different video frames with humans in the same pos-
ture, and an video frame with a tree. The intra-human differences
are large. At the same time, the tree might be mistaken for a per-
son (upright rod-like structure) when viewed at a low resolution.
(b) Detected horizontal flow (scaled plot: white - largest flow in
right direction, black - largest flow in left direction) in the same
frames. The flow depends on the movement itself and is largely
uncorrelated to differences in appearance.

which is a more discriminative cue for our problem than ap-
pearance (Figure 1). Even though the visual motion of a
human varies with orientation towards the camera and limb
configuration, it is much less dependent of the environmen-
tal factors described above [2, 7]. Furthermore, camouflage
strives to alter the appearance of the subject, while it is
much more difficult for a human to camouflage motion pat-
terns. Thus, a detection approach which relies on models of
human appearance is less efficient in our application.

The motion cue used as input to the detection is robustly
estimated dense optical flow [1] u = [u, v], where u is the
horizontal flow and v the vertical flow between a pair of
consecutive images in a sequence. A set of examples of
human and non-human flow patterns is collected manually
to serve as input to the training (Section 3).

The human flow pattern examples lie on a non-linearly
shaped manifold in the high-dimensional space of flow pat-
terns. Due to the high dimensionality of the state-space and
the relatively low number of training samples, we use a Sup-
port Vector Machine (SVM) [3, 5] to learn the human/non-
human classification from the examples (Section 3).

New flow patterns can now be compared to the trained
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SVM and classified as human or non-human. A complete
detection process involves a linear search over position and
scale in each flow image. This is discussed in Section 4.

Preliminary experiments on video sequences of city
scenes (Section 5) shows that the method is able to detect
humans of different orientation and scale, and discriminate
well between human and non-human motion.

2. Related Work
Most methods for human detection aim at detecting human
appearance. Cues used are edges [8, 10], wavelet responses
[12], color distributions [4], background subtraction [9] or
a combination of multiple cues such as depth information,
color and neural-net models of face patterns [6]. The de-
tection is often used as an initialization step to tracking
[4, 6, 9]. As stated in the introduction, the appearance cue
is sometimes very weak in our application, leading us to
instead use the image motion cue.

An approach based on motion is presented by Song et
al. [14]. Here, feature points from two consecutive images
in a sequence are compared to the corresponding points on
a 2D kinematic model of a human. This approach does not
entirely rely on motion information since there is an under-
lying assumption that one can find features corresponding
to specific positions on the body. Viola et al. [15] use in-
stead a filter-based approach to motion pattern recogntion.
Using five filters for motion in different directions they are
able to detect walking humans in low image resolution with
a very low error rate. Optical flow is another representa-
tion of image motion. The model-based method of Fablet
and Black [7] compares dense flow patterns with a genera-
tive model of human flow appearance. The method recovers
both pose, orientation and position in the image but is com-
putationally heavier than our pattern recognition approach.

Support Vector Machines (SVM) [3, 5] have previously
proved efficient for face detection [13] and gender classi-
fication [11]. Pedestrian detection using SVM from ap-
pearance cues such as edge segments in the image [10] or
wavelet responses [12] has also been reported. Our ap-
proach extends this work in that it detects human-like mo-
tion patterns instead of appearance patterns, making the de-
tection more robust to difference in appearance due to envi-
ronment, clothing and identity.

3. Training the SVM
The problem of learning a binary classifier can be expressed
as that of learning the function f : <n → ±1 that maps
patterns x onto their correct classification y as y = f(x).
In the case of an SVM, the function f takes the form [3, 5]

f(x) =

N∑

i=1

yiαik(x,xi) + b , (1)

(a) Human motion patterns

(b) Non-human motion patterns

Figure 2: Examples from the training data, horizontal flow shown
(scaled plot, see Figure 1). (a) Human motion patterns, different
orientations from the camera. (b) Non-human motion patterns,
mainly from foliage and cars.

where N is the number of training patterns, (xi, yi) is train-
ing pattern i with its classification, αi and b are learned
weights, and k(., .) is a kernel function. Here, we use a ra-
dial basis function k(x,xi) = e−‖x−xi‖/2σ2

. The patterns
for which αi > 0 are denoted support vectors.

The surface f(x) = 0 defines a hyperplane through the
feature space as defined by the kernel k(., .). The weights
αi and b are selected so that the number of incorrect classifi-
cations in the training set is minimized, while the distances
from this hyperplane to the support vectors are maximized.
This is achieved by solving the optimization problem [3, 5]

Maximize :

LD ≡

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

yiyjαiαjk(xi,xj) (2)

subject to :

0 ≤ αi ≤ C ,

N∑

i=1

yiαi = 0 . (3)

The constant C affects the tolerance to incorrect classifica-
tions. Using the optimal parameters αi, Eq (1) with any
support vector (xi, yi) as indata can be used to find b. For a
thorough description of the training process, see [3, 5].

Patterns. The training set consists of 443 human flow pat-
terns and 11688 non-human flow patterns (Figure 2). A flow
pattern is here defined as a vector x = [u1,u2, . . . ,umn]
where uk = [uk, vk] is the flow in the k:th pixel in the rect-
angular pattern of size m × n. Here, m = 16 and n = 8,
which means that dim(x) = 256. The human flow patterns
used for training are collected manually from dense flow
images. These are computed [1] from pairs of consecutive
images in video sequences with a large number of individ-
uals in different types of environment. Non-human patterns
are collected automatically from similar sequences without
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(a) All detections (b) Multiple candidates removed

Figure 3: Removing multiple detections of the same subject. (a)
Original set of detections. (b) Set of detections after removal of
multiple candidates (see text).

humans. Each example pattern xi is resampled to a size of
16 × 8 pixels and assigned a label yi = 1 if the pattern is
human, otherwise yi = −1.

Iterative training. The learning procedure has a compu-
tational complexity of O(N 2) where N is the number of
training patterns, which means that the computations be-
come infeasible for our large number of patterns. To enable
efficient learning, the iterative strategy of Osuna et al. [13]
is therefore employed.

After training, 247 human patterns and 499 non-human
patterns were used as support vectors.1

4. Detection of Humans

A new pattern x can now be classified as human or non-
human using the learned function y = f(x) (Eq (1)).

The input to the detection is a flow image, obtained using
the same robust flow algorithm [1] as for the training im-
ages. A linear search over positions and pattern heights is
performed.2 For each position and height, the correspond-
ing image window is extracted and normalized to a size of
16×8 pixels. The resulting pattern x is then classified using
the SVM. Positive answers are returned as detections.

Removing multiple detections. Figure 3(a) shows the re-
sult of a detection. Typically, several human pattern candi-
dates corresponding to the same individual are found. To
give a more accurate estimate of the number of people in
the scene, hits overlapping more than 50% will be replaced
by a single window whose position and height is the spa-
tial weighted mean of the positions and heights of the over-
lapping windows. Figure 3(b) shows the result of such a
pruning procedure.

1The high proportion, 56%, of human patterns used as support vectors
indicates that more human examples would be beneficial to the perfor-
mance of the SVM. This is further discussed in Conclusions.

2The computational efficiency of the detection can easily be enhanced
by introducing a threshold on the absolute amount of flow in the candidate
pattern before the classification step begins.

5. Experimental Results
The detection algorithm was tested on images from a city
scene with cars and people of different scales, moving in
different directions. Images in the sequence were 360×288
pixels large and were captured in 25 Hz.

Figure 4 shows three frames from the same sequence.
Three of the four persons moving in the scene is detected ac-
curately, while the fourth (a person in black) is ignored. The
reason for this could be that the flow response on that per-
son is weak due to foreground-background similarity (Fig-
ure 4(b,d,f)). The vulnerability to flow estimation errors is
a weakness of the method.

Figure 5 shows another sequence in which a car is
present. Even though there are some human-like motion
patterns in the car flow (Figure 5(b)), the method distin-
guishes correctly between human and non-human patterns.
In both frame 0 and 10 (Figure 5(a,e)), humans are partly
occluded by the car. Since the method can not presently
detect partly occluded motion patterns, the detector ignores
the occluded humans. This is also an important issue.

6. Conclusions
An SVM-based detector of human-like optical flow patterns
was presented. To detect humans in a scene, dense opti-
cal flow was first computed from a pair of consecutive im-
ages in a video shot of the scene. Windows of different size
and position in the image was then tested against an SVM
which was previously trained with a large number of exam-
ples of human and non-human flow patterns. The method
was tested on a number of images from a city scene.

Future work. The human training set is quite small, due
to the manual pattern acquisition. To obtain a larger training
set, more examples of human motion patterns could be col-
lected by reinforcement learning, i.e. iterative user guided
incorporation of detection results in the training set [12].

Furthermore, the robustness of the method to flaws in the
computed optical flow should be investigated.

Another future direction of research is detection of par-
tially occluded patterns. One option is to detect the motion
of human body parts separately. Knowledge about spatial
relations between the detected body parts are then used to
reinforce or suppress the detections.
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(a) Frame 0, image (b) Frame 0, horizontal flow

(c) Frame 10, image (d) Frame 10, horizontal flow

(e) Frame 20, image (f) Frame 20, horizontal flow
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