
Neurocomputing 314 (2018) 409–428

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Efficient genetic algorithms for optimal assignment of tasks to teams

of agents

�

Irfan Younas a , ∗, Farzad Kamrani b , Maryam Bashir a , Johan Schubert b , c

a Department of Computer Science, National University of Computer and Emerging Sciences, Lahore Pakistan
b Swedish Defence Research Agency, Stockholm Sweden
c School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm Sweden

a r t i c l e i n f o

Article history:

Received 6 July 2016

Revised 25 May 2018

Accepted 3 July 2018

Available online 10 July 2018

Communicated by Prof. Huaguang Zhang

Keywords:

Genetic algorithms

Combinatorial optimization

Shuffled list crossover

Team-based crossover

Large scale optimization

Team assignment problem

a b s t r a c t

The problem of optimally assigning agents (resources) to a given set of tasks is known as the assignment

problem (AP). The classical AP and many of its variations have been extensively discussed in the litera-

ture. In this paper, we examine a specific class of the problem, in which each task is assigned to a group

of collaborating agents. APs in this class cannot be solved using the Hungarian or other known polyno-

mial time algorithms. We employ the genetic algorithm (GA) to solve the problem. However, we show

that if the size of the problem is large, then standard crossover operators cannot efficiently find near-

optimal solutions within a reasonable time. In general, the efficiency of the GA depends on the choice of

genetic operators (selection, crossover, and mutation) and the associated parameters.

In order to design an efficient GA for determining the near-optimal assignment of tasks to collabo-

rative agents, we focus on the construction of crossover operators. We analyze why a naive implemen-

tation with standard crossover operators is not capable of sufficiently solving the problem. Furthermore,

we suggest modifications to these operators by adding a shuffled list and introduce two new operators

(team-based and team-based shuffled list). We demonstrate that the modified and new operators with

shuffled lists perform significantly better than all operators without shuffled lists and solve the presented

AP more efficiently. The performance of the GA can be further enhanced by using chaotic sequences.

Moreover, the GA is also compared with the particle swarm optimization (PSO) and differential evolution

(DE) algorithms, demonstrating the superiority of the GA over these search algorithms.

© 2018 Elsevier B.V. All rights reserved.

1

i

t

(

a

a

r

p

t

T

S

k

(

f

c

fi

c

t

o

d

h

0

. Introduction

The problem of assigning tasks to agents where a cost (or gain)

s associated to each assignment represents a combinatorial op-

imization problem generally known as the assignment problem

AP). In the original AP, each task is assigned to a different agent,

nd each agent performs exactly one task, which implies that there

re an equal number of tasks and agents. However, one can readily

elax this constraint by adding “dummy” tasks (or agents) to the

roblem.

In a seminal paper, Kuhn [27] provided a method for finding

he optimal solution of the AP with polynomial time complexity.

he algorithm, also known as the Hungarian method , has had a
� Some parts of the first 5 sections of this paper were presented at the 2011 IEEE

ymposium on Computational Intelligence in Scheduling, see [44]
∗ Corresponding author.

E-mail addresses: irfan.younas@nu.edu.pk , irfany@kth.se (I. Younas),

amrani@kth.se (F. Kamrani), maryam.bashir@nu.edu.pk (M. Bashir), schubert@foi.se

J. Schubert).

h

t

t

p

ttps://doi.org/10.1016/j.neucom.2018.07.008

925-2312/© 2018 Elsevier B.V. All rights reserved.
undamental influence on combinatorial optimization, and has be-

ome the prototype of a considerable number of algorithms in the

eld [15] .

Pentico [37] presented a comprehensive survey on the most

ommon variations of the AP that have appeared in the litera-

ure over the past 50 years. In this survey, three main categories

f AP are recognized, and several variations in each category are

iscussed:

1. Models with at most one task per agent,

2. Models with multiple tasks per agent,

3. Multi-dimensional assignment problems, which study the

matching of members of three (or more) sets, e.g., the prob-

lem of matching jobs with workers and machines or assigning

students and teachers to classes and time slots.

Although minor modifications of the problem structure can be

andled within the standard solution, there are many variations of

he AP that demand completely different approaches. For instance,

he generalized assignment problem (GAP), in which agents may

erform multiple tasks but the sum of the costs of the tasks

https://doi.org/10.1016/j.neucom.2018.07.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.07.008&domain=pdf
mailto:irfan.younas@nu.edu.pk
mailto:irfany@kth.se
mailto:kamrani@kth.se
mailto:maryam.bashir@nu.edu.pk
mailto:schubert@foi.se
https://doi.org/10.1016/j.neucom.2018.07.008

410 I. Younas et al. / Neurocomputing 314 (2018) 409–428

q

i

m

S

y

p

i

c

s

s

s

a

a

s

a

c

2

s

s

p

c

p

s

w

s

p

e

s

T

p

t

m

e

p

a

a

f

p

s

b

a

t

c

p

(

l

e

p

c

p

s

p

r

c

a

e

s

t

z

assigned to each agent cannot exceed the agent’s budget con-

straint, is an NP-hard combinatorial optimization problem [14] .

Chu and Beasley [8] presented a genetic algorithm (GA)-based

heuristic for solving the GAP, where the objective is to assign n

jobs to m agents such that the cost is minimized and each job is

assigned to exactly one agent subject to the capacity of that agent.

The problem of assigning tasks to teams of agents with the ob-

jective of maximizing the total value added by agents to tasks is

distinguished from the APs discussed in the literature. Tasks may

have different sizes and require different numbers of agents, while

each agent is assigned to at most one task. Therefore, from the

classification viewpoint this problem belongs to the first category

described by Pentico [37] . Nevertheless, this problem is distinct

from other instances, because agents performing a task constitute

a team whose performance is a possibly non-linear function of the

performances of the members. This characteristic makes the prob-

lem intractable for all but small input Sizes, and one must rely on

heuristic methods to find near-optimal solutions.

GAs are heuristic search algorithms that have been successfully

applied to a variety of optimization problems, and are widely

adopted in practice. GAs can generally solve large-scale problems,

partly owing to the concurrent exploration of diverse parts of a

search space, provided that “sufficient” time is available. However,

in many problems, there may be constraints on the execution time,

and it is required that near-optimal solutions be found within a

relatively short timeframe. The efficiency of the GA depends to

a large extent on the choices of the genetic operators (such as

selection, crossover, and mutation) and the fine-tuning of the

control parameters (such as mutation rate). A careful selection of

the operators and parameters of the GA is necessary to maintain

an appropriate balance between the exploitation and exploration

properties of the search algorithm, without which it is difficult to

find near-optimal solutions within a reasonable time. Exploration

is concerned with investigating new and unknown areas in the

search space, while exploitation exploits knowledge acquired at

previously visited points to find better points.

The crossover operator employed for the baseline solution is a

one-point crossover operator. Although the baseline GA provides

near-optimal solutions for instances of a problem in which the

number of required agents is relatively small, for larger problem

sizes, the performance of the GA is degraded. The main contribu-

tion of this paper is to design different crossover operators that

solve APs in this specific class efficiently. We design some new

crossover operators, and demonstrate that they can solve large in-

stances of our AP efficiently and effectively.

In this paper, we focus on solving APs of a specific class, where

each task is assigned to a team of agents. Tasks require the collab-

oration of all team members, and cannot be performed by an indi-

vidual agent. Thus, collaboration, i.e., the interactions of the team

members and how they affect each other, is the main concern. The

outcome of a team is not simply the algebraic sum of the capabili-

ties of the members. Such an AP is substantially different from the

cases where each agent may perform a task independently. For in-

stance, the task of repairing faulty computers in a company could

be assigned to a group of technicians. However, in this case each

technician could perform the task independently, and no collabo-

ration between them is required. There is a substantial body of lit-

erature providing solutions to different APs, but to the best of our

knowledge, there are no solutions for our specific type of AP. We

provide a mathematical formulation of the AP for teams of agents

and discuss the implementation details and efficiency of the GA for

solving this problem.

Although the AP as formulated here is a far more complex and

constitutes a generalization of the original assignment problem, it

does not incorporate the notion of time and time constraints. As

a result, dynamic problems (e.g., where the number of agents re-
uired to accomplish one task changes over time) or problems that

mpose different time constraints on the completion of tasks re-

ain outside the scope of this work.

The outline of the remainder of this paper is as follows. In

ection 2 , related work on task assignment problems from recent

ears is presented. In Section 3 , a mathematical formulation of the

roblem is presented. In Sections 4 and 5 , the GA heuristic, its

mplementation details, and its computational complexity are dis-

ussed. Section 6 presents some experimental results, and demon-

trates that standard GA crossover operators are not capable of

olving the problem efficiently. In Section 7 , modifications to the

tandard crossover operators and some new crossover operators

re proposed, and in Section 8 the performances of these operators

re compared and analyzed. Section 9 compares GA with particle

warm optimization (PSO) [11,26] , differential evolution (DE) [38] ,

nd a proposed approximation algorithm. Finally, Section 10 con-

ludes the paper.

. Related work

A considerable body of literature has focused on the task as-

ignment problem and its applications in various domains. This

ection describes related work concerning the task assignment

roblem in the domains of software project scheduling (SPS) and

rowdsourcing, and the use of genetic algorithms for solving the

roblem.

The task assignment problem has previously been employed for

olving SPS problems. In SPS, each resource masters several skills

ith given levels, and each task in the project requires a certain

kill to be executed at a standard level. Alba and Chicano [2] em-

loyed the GA to solve an SPS problem, in which employees that

ach have a certain set of skills and salary are assigned to a given

et of tasks so as to reduce the cost and duration of the project.

hese employees have a maximum degree of dedication to the

roject. Each of the tasks requires certain skills, and is assigned

o at least one employee. In the SPS problem discussed in [2,7] ,

ore than one employee can be assigned to a single task, and the

mployees work independently. No collaboration between the em-

loyees is considered. Instead of aggregating the cost and time into

 single objective, Chicano et al. [7] considered the SPS problem

s a bi-objective model, and compared the performances of dif-

erent multi-objective evolutionary algorithms in solving the pro-

osed SPS model.

Al-Anzi et al. [1] modeled the SPS problem as a weighted-multi-

kill project scheduling problem (WMSPSP), where one staff mem-

er can perform multiple tasks with different proficiency levels

nd the resources are constrained. A lower bound was proposed

hat employs a linear programming scheme to solve a resource-

onstrained project scheduling problem. Wang and Zheng [40] ap-

lied a guided multi-objective fruit fly optimization algorithm

MOFOA) to solve a resource-constrained project scheduling prob-

em. Montoya et al. [33] presented an integrated column gen-

ration and Lagrangian relaxation approach for solving the SPS

roblem. A lower bound was obtained for minimizing the project

ompletion time. Myszkowski et al. [35] proposed a hybrid ap-

roach that combines classical heuristic priority rules for project

cheduling with ant colony optimization. Zheng et al. [45] em-

loyed a teaching-learning-based optimization algorithm for the

esource constrained SPS problem, which minimizes the project

ompletion time. Luna et al. [29] solved the SPS problem using

 multi-objective approach, and analyzed the scalability of eight

xisting multi-objective algorithms. Other applications of task as-

ignment can be found in social security organizations, consulta-

ive service companies, service centers, and research-based organi-

ations [24] .

I. Younas et al. / Neurocomputing 314 (2018) 409–428 411

a

u

M

q

t

t

b

l

e

t

w

V

s

i

i

d

t

b

t

p

b

s

p

e

d

e

n

t

a

o

p

d

p

f

f

i

t

c

i

o

c

c

e

T

o

3

a

{

n

q

f

d

S

S

o

a

t

t

b

a

O

d

t

u

W

m

w

S

u

d

a

o

a

u

w

∑

∑

∑

d

x

w

o

C

t

n

F

t

f

a

t

o

i

4

a

e

d

v
Another application of the task assignment problem is for

ssigning heterogeneous tasks to workers with different and

nknown skill sets in crowdsourcing markets, such as Amazon

echanical Turk. In the offline task assignment problem, a re-

uester has a fixed set of tasks and a budget, and the goal is

o allocate workers to tasks in a manner that maximizes the to-

al benefit. In an online setting, the task assignment problem can

e formulated in a similar manner to the online adwords prob-

em [13] . For these problems, approximation algorithms can be

mployed to achieve a competitive ratio of (1 − 1 /e) in a set-

ing with adversarial arrivals [4] or (1 − ε) for stochastic arrivals,

here e is very small when the total budget is large [10] . Ho, and

aughan [21] presented a two-phase exploration-exploitation as-

ignment algorithm for solving the online task assignment problem

n a crowdsource setting. Cheng et al. [6] modeled a crowdsourc-

ng task using a multi-skill spatial crowdsourcing approach, which

etermines an optimal worker-and-task assignment strategy such

hat the skills of workers and tasks match each other and workers’

enefits are maximized under the budget constraint. The authors

ackle this problem by proposing three effective approximation ap-

roaches, including greedy, g -divide-and-conquer, and cost-model-

ased adaptive algorithms.

Most of the above-mentioned related approaches to task as-

ignment assume a non-collaborative model of workers. Such ap-

roaches cannot be applied to our collaborative model. We have

mployed GA to solve our problem. However, the efficiency of GA

epends largely on the choices of the genetic operators. A consid-

rable body of literature on GAs addresses the selection of the ge-

etic operators and associated parameters, and how these affect

he efficiency of the algorithm [28,31] . There is no unique “best”

nswer to these questions, and the choice of operators depends

n the problem domain and the structure of the search space (the

roperties of the search space such as the search space size and

istribution of solutions within neighborhood). For instance, the

artially mapped crossover operator achieves a good performance

or the traveling salesman problem [18] . However, its performance

or solving the one-machine total weighted tardiness problem is

nferior to the order-based and position-based crossover opera-

ors [25] . The efficiencies of 11 genetic crossover operators are

ompared for the one-machine total weighted tardiness problem

n [25] . The discussed operators are the position-based crossover

perator, order-based crossover operator [39] , one-point crossover,

ycle crossover operator [36] , order crossover [9] , linear order

rossover, partially mapped crossover [19] , edge recombination op-

rator [41] , and three flavors of two-point crossover operators [34] .

hese operators have been widely employed to solve various types

f assignment and scheduling problems.

. Problem formulation

In this section, a mathematical formulation for the optimal

ssignment of tasks to teams of agents is introduced. Let A =
 a 1 , . . . , a m

} be the set of m agents and T = { t 1 , . . . , t n } the set of

 tasks, where in general m � = n . Assume that each task t j ∈ T re-

uires a fixed number d j of agents, while each agent a i ∈ A per-

orms at most one task, implying that
∑ n

j=1 d j ≤ m . The group of

 j agents performing a task t j is denoted by g S j
, where the index

 j is a set

 j ⊂ { 1 , 2 , . . . m } , |S j | = d j , a i ∈ g S j ⇔ i ∈ S j .

The goal is to optimally (defined later) assign all tasks to groups

f agents. That is, to determine subsets S j for all t j . Clearly, our

ssumption that each agent performs at most one task implies that

hese subsets are disjoint.

Moreover, we assume that agents in a group collaborate in a

eam Environment, and the value produced by a team is a possi-
ly non-linear real function of its members and the task. That is,

 team g S j
that performs the task t j produces the value f (g S j

, t j) .

ptimality is defined as maximizing the sum of the values pro-

uced by the teams of agents, i.e., maximizing the objective func-

ion

 (S 1 , . . . S n) =

n ∑

j=1

f (g S j , t j) . (1)

e adopt the assumption that the value produced by a team g S j
ay be expressed as the sum of the values produced by agents

hile they are influenced by the team

f (g S j , t j) =

∑

i ∈S j
v (a i , g S j , t j) . (2)

ubstituting Eqs. (2) into Eq. (1) , we obtain

 =

n ∑

j=1

∑

i ∈S j
v (a i , g S j , t j) . (3)

A convenient approach to expressing the problem is to intro-

uce the assignment matrix X = [x i j] m ×n , where x i j = 1 if task t j is

ssigned to agent a i and is 0 otherwise. Using this notation, the

bjective function expressed by Eq. (3) can be reformulated equiv-

lently as the following function:

 (X) =

n ∑

j=1

m ∑

i =1

v (a i , g S j , t j) x i j , (4)

hich should be maximized subject to the constraints

m

i =1

x i j = d j , ∀ t j ∈ T (5)

n

j=1

x i j = 1 , ∀ a i ∈ A (6)

n

j=1

d j ≤ m (7)

 j ≥ 1 , ∀ t j ∈ T (8)

 i j ∈ { 0 , 1 } , ∀ a i ∈ A , ∀ t j ∈ T , (9)

here S j = { i : i ∈ { 1 , . . . m } , x i j = 1 } .
Constraint (5) ensures that each task is performed by a group

f agents, where each group g S j
contains d j agents for the task t j .

onstraint (6) means that no agent is assigned to more than one

ask. Constraint (7) ensures that the number of agents making up

 teams should be less than or equal to the total number of agents.

inally, constraint (8) ensures that each group (team) should con-

ain one or more agents.

In this model, the performance of a team is a non-linear

unction of its members. Interactions (between individuals within

 team) introduce this non-linearity and make the problem in-

ractable. In Section 6 , we also consider a flavor of the model with-

ut interactions, and solve it in polynomial time using the Hungar-

an method .

. Genetic algorithms for the assignment of tasks to teams of

gents

GAs [17,32] , which are recognized metaheuristics based on the

volutionary ideas of natural selection and genetics, were intro-

uced by John Holland [22] in the 1960s. They simulate the “sur-

ival of the fittest” principle, which was laid down by Charles

412 I. Younas et al. / Neurocomputing 314 (2018) 409–428

Fig. 1. Chromosome representation for a candidate solution.

5

G

m

a

u

{

a

t

fi

d

(

m

b

m

a

t

c

l

6

p

c

i

I

c

d

t

w

f

p

w

v

H

p

t

f

s

l

t

fl

f

s

t

t

o
Darwin. GAs have frequently been employed to solve many opti-

mization problems [3,8,12,20] .

The first step in designing a GA for a particular problem is

to devise a suitable representation. Our algorithm adopts an ap-

propriate representation scheme in which an n -dimensional vector

of disjoint subsets represents a task set (called a chromosome in

the GA literature), as illustrated in Fig. 1 . Each task is performed

by a team of agents, and here an n -dimensional vector indicates

that n tasks are performed by teams of agents, where each team

j requires d j agents. Thus, the total number of agents required

to perform the tasks is
∑ n

j=1 d j . For instance, consider a case of

four tasks requiring 3, 2, 3, and 2 agents, respectively. Assume

that there are 10 agents available. This means that n = 4 , d 1 = 3 ,

d 2 = 2 , d 3 = 3 , d 4 = 2 , and m = 10 . Fig. 1 illustrates a possible as-

signment of agents to teams. The designed representation scheme

ensures that all the constraints in (5) –(8) are satisfied. A detailed

description of our GA is given in [44] . A summary of the steps,

which are similar to the GA steps provided by Chu and Beasley [8] ,

is given as follows:

1. Construct N candidate solutions to form an initial population.

2. Calculate the fitness value according to the given fitness func-

tion as given by Eq. (4) .

3. For reproduction, two parent solutions are selected using the

binary tournament selection scheme, which is also employed

in [8] . In binary tournament selection, two candidate solutions

are randomly picked from the population, and the one with the

higher fitness value is selected for reproduction.

4. A crossover operator is applied to the selected parents in or-

der to generate a child solution. The baseline crossover opera-

tor used in the GA is a one-point crossover operator in which a

point p is selected randomly from the set of integers such that

p ∈ { 1 , 2 , . . . , ∑ n
j=1 d j } . The generated child solution inherits p

genes from one parent and the remaining genes from the other

parent. However, this operation may render our candidate solu-

tion infeasible by violating constraint (6) , which states that no

agent can be assigned to more than one task. In order to make

the solution feasible, the duplicate assignments are replaced by

some other agent numbers, which are not part of the chromo-

some. This operation changes an invalid child chromosome into

a valid one. In Section 7 , we employ several other well-known

crossover operators, modify some of these operators to enhance

their performances, and introduce a number of new crossover

operators. The modified crossover operators use a shuffle list to

repair the infeasible solutions. A shuffle list is a list of all avail-

able agents. For instance, if the total number of available agents

is 10, then the shuffle list is a permutation of a list of size 10,

containing agent indexes from 1 to 10. Before repairing an in-

feasible solution, we randomly permute the shuffle list.

5. The crossover operator is followed by a mutation procedure

with a smaller probability value. In this study, a simple method

is employed in which two genes are randomly chosen and their

values are swapped.

6. Following crossover and mutation, a child solution needs to be

added to the population if it is not already part of the popula-

tion. First, the fitness value is calculated for the child, and then

the chromosome with the smallest fitness value in the popu-

lation is replaced by the child. This replacement scheme helps
to introduce new solutions into the population and eliminate

those solutions that are weaker (have lower fitness values).

7. The selection, crossover, mutation, and individual replacement

operations (points 3–6 above) are repeatedly performed until a

termination criterion is fulfilled. Examples of such criteria are

the number of generations created without improving the best

solution, or the number of fitness evaluations. Throughout this

study, we employ the latter criterion.

. Implementation overview and computational complexity of

A

This section presents the key design decisions for the imple-

entation of the GA, and estimates the asymptotic complexity of

 solution. In the following, the size of a chromosome and the pop-

lation are denoted by M and N , respectively.

Each chromosome is initialized randomly by shuffling a list of

 1 , . . . , m } agents. To avoid duplicate chromosomes, a naive O (MN

2)

lgorithm is employed, because it is only run during the initializa-

ion. Moreover, each chromosome stores a fitness value (that is, the

tness value is computed only once, for efficiency).

The parents for the crossover operation are selected by ran-

omly choosing two chromosomes and selecting the fitter one

taking O (1) time). The crossover and repair operations are imple-

ented as discussed in Section 4 , requiring O (M) time. Finally, the

est and worst chromosomes (with respect to the fitness) are each

aintained by a priority queue, where the chromosomes’ positions

re recorded in the priority queues.

Each iteration of the GA requires O (log N) time for maintaining

he best and worst chromosome in the population, and O (M) for

hecking that no duplicate chromosome is entered into the popu-

ation. Hence, the time spent for each iteration is O (log N + M) .

. Analysis of the genetic algorithm

In this section, various sets of experiments and their results are

resented. The first step in any experiment is to employ a model to

alculate the value produced by agents in a team when perform-

ng a task. We refine the collaborative model described in [23] .

n this model, each agent a i has a set of p real-valued attributes

 i = { c i 1 , c i 2 , . . . , c ip } , called capabilities , which affect the value pro-

uced by the agent. Each task t j has a set of p real-valued at-

ributes w j = { w 1 j , w 2 j , . . . , w pj } , henceforth referred to as weights ,

hich specify the importance of the capabilities of agents in per-

orming the task. If a task is performed by a single agent, then the

erformance, or the value produced by the agent, is defined by the

eighted sum of the agent’s capabilities:

 (a i , t j) =

p ∑

k =1

c ik w k j . (10)

owever, if a task is assigned to more than one agent, then the

roduced value is more than the sum of the values produced by

he individual agents.

Modeling the performance of collaborating agents in a team is

airly complex. Here, we introduce a model based on certain as-

umptions on how the interactions between agents with different

evels of capabilities might affect their performance. We note that

he presented model is not validated, and does not completely re-

ect the emerging interactions between agents. However, the main

ocus of this paper is not to provide such a model, and the model

imply serves as a means to test and analyze the GAs. Moreover,

he model can readily be replaced by any other, without affecting

he main discussions in this paper.

It is assumed that for each capability type, the capabilities

f agents are influenced by the maximum capability of that

I. Younas et al. / Neurocomputing 314 (2018) 409–428 413

Table 1

Specification of the assignment problems used in this study.

Prob # Total agents Required agents Number of tasks Teams (number of agents assigned to the tasks)

1 10 10 4 [2, 3, 2, 3]

2 20 20 4 [3, 4, 6, 7]

3 20 20 8 [3, 2, 4, 3, 2, 2, 2, 2]

4 30 30 8 [4, 5, 2, 3, 4, 6, 3, 3]

5 30 30 12 [2, 2, 3, 3, 1, 4, 5, 2, 3, 2, 2, 1]

6 60 60 12 [6, 4, 8, 2, 7, 3, 5, 5, 3, 7, 1, 9]

7 80 80 20 [5, 4, 8, 2, 3, 3, 4, 3, 4, 7, 1, 6, 3, 6, 2, 6, 3, 1, 5, 4]

8 96 96 30 [5, 4, 8, 2, 3, 2, 2, 3, 1, 4, 7, 1, 5, 3, 2, 6, 2, 6, 3, 1, 5, 4, 2, 2, 4, 2, 1, 2, 3, 1]

9 400 400 100 [4, 4, ..., 4]

10 800 400 100 [4, 4, ..., 4]

11 1600 400 100 [4, 4, ..., 4]

12 1600 1600 100 [16, 16, ..., 16]

13 400 400 200 [2, 2, ..., 2]

t

c

c

w

c

v

S

w

u

w

p

s

e

w

e

3

g

s

o

t

t

s

a

P

p

s

6

i

a

A

t

c

l

d

a

o

d

i

a

a

σ

i

s

b

c

o

f

s

m

c

r

p

o

o

a

m

r

f

t

e

h

t

a

w
ype (c max
k

) in the team (g S j
), and the new capabilities (c ′

ik
) are

alculated by

′
ik = c ik + c ik (c max

k − c ik) /c max
k , (11)

here c max
k

= max
i ∈S j

{ c ik } , ∀ k.

Eq. (11) implies the following:

1. In a team of agents, only those with a lower capability than the

maximum capability benefit from collaboration.

2. The capability of the agent with the maximum capability is not

affected by cooperation.

3. The capability of an agent equal to 0 is not affected by cooper-

ation.

4. Agents that have a capability equal to c max
k

/ 2 receive the high-

est benefit from cooperation.

From Eqs. (10) and (11) , the value produced by an agent while

ollaborating with others is obtained as

 (a i , g S j , t j) =

p ∑

k =1

(c ik + c ik (c max
k − c ik) /c max

k) w k j . (12)

ubstituting Eq. (12) into the objective function defined by Eq. (4) ,

e obtain

 (X) =

n ∑

j=1

m ∑

i =1

p ∑

k =1

(c ik + c ik (c max
k − c ik) /c max

k) w k j x i j , (13)

here c max
k

(X) = max
1 ≤i ≤m

{ c ik x i j } , subject to the constraints (5) –(9) .

To test the algorithm using the above model, a series of ex-

eriments with different problem sizes were conducted. In this

cenario, each agent a i has 10 capabilities { c i 1 , c i 2 , . . . , c i 10 } , and

ach task t j weights the capability c ik as w k j ∈ { w 1 j , w 2 j , . . . , w 10 j } ,
here c ik , w k j ∈ { 0 , 1 , . . . , 4 . 0 } . The input data is randomly gen-

rated, such that p(c ik = 0) = p(c ik = 4) = 0 . 1 , p(cik = 1) = p(c ik =
) = 0 . 15 , and p(c ik = 2) = 0 . 5 . The same distribution is applied to

enerate the weights (w kj).

For the experiments, various problem sizes are formulated as

hown in Table 1 . For instance, in problem #1 the total number

f agents is 10, and the objective is to assign all 10 agents to four

eams such that the gain is maximized. The number of agents in

he teams are two, three, two, and three, respectively. In problem

10, the total number of agents is 800, and the objective is to as-

ign 400 of the agents to 100 teams, each of which consists of four

gents.

The presented algorithm is implemented in Java, and run on a

C with an Intel Core i 5 − 2 . 60 GHz and 4 GB of RAM. For each

roblem size, 10 replications are executed. The initial population

ize is set to 50, and the mutation probability is 0.2.
.1. Accuracy

To verify the accuracy of the algorithm, we consider a scenario

n which agents work independently in teams and have no inter-

ctions. The problem is thus reduced to a variant of the standard

P, for which the well-known Hungarian method efficiently finds

he optimal solution although the search space is equally large. We

onsider the relative deviation of a solution x i from the optimal so-

ution x ∗ expressed as a percentage,

e v i =

100(x ∗ − x i)

x ∗
, (14)

s a measure of the quality of a solution. Furthermore, for a set

f n replications of the GA, we use the average and the standard

eviation of dev i as overall measures of the quality of the GA. That

s,

 v gDe v =

1

n

n ∑

i =1

de v i , (15)

nd

=

√

1

n

n ∑

i =1

(de v i − a v gDe v) 2 . (16)

We conduct a set of experiments on the problems specified

n Table 1 . For each problem, we run 10 replications, where the

earch process is terminated after 80 0 0 0 fitness evaluations have

een performed (the same number of offspring are generated). A

omparison of the best results obtained by our algorithm with the

ptimal solutions (Table 2) shows that these are almost the same

or the problem instances 1 to 8. That is, for small- and medium-

ized problems, the average and standard deviation from the opti-

al solution are close to 0.0. However, the quality of the solutions

onsiderably degrades as the size of the problem increases. In the

emainder of this paper, we introduce more efficient GAs that also

roduce high-quality solutions for large problem instances.

In the collaborative case where agents interact with one an-

ther, the Hungarian method cannot be applied. Thus, the accuracy

f the algorithm is tested using a simple data set given in Tables 4

nd 5 . The data set is designed in such a manner that the opti-

al solution can easily be found, and the correctness of the algo-

ithm can be verified. For instance, problem #1 has four tasks and

our teams of agents. The numbers of agents in each team are two,

hree, two, and three. Each agent has the highest value of 4.0 for

xactly one attribute, and for each task the attributes that have the

ighest weight (4.0) determine which agents should be assigned

o the task. For example, for task number 1 only the weights w 1

nd w 2 of the attributes c 1 and c 2 are 4.0, while the remaining

eights are 1.0. The gain will be maximized if this task is assigned

414 I. Younas et al. / Neurocomputing 314 (2018) 409–428

Table 2

Computational results for the GA with a one-point crossover operator, where agents work in teams without interactions. avgDev and σ are the mean and standard deviation

(for 10 replication) of the dev i (relative deviation from the optimal solution obtained by the Hungarian method), respectively. The search process is terminated after 80 0 0 0

offspring have been generated.

Prob # Solution in each of the 10 trials Average

execution

time (s)

Best found

solution

Hungarian

method

avgDev (%) σ (%)

1 466 466 466 466 466 466 466 466 466 466 0.16 466 466 0.00 0.00

2 934 934 934 934 931 934 934 931 934 936 0.29 936 936 0.26 0.15

3 876 873 873 873 875 870 868 873 870 869 0.28 876 876 0.46 0.28

4 1202 1205 1201 1203 1206 1207 1205 1204 1203 1207 0.42 1207 1207 0.22 0.16

5 1290 1289 1291 1291 1285 1287 1291 1283 1288 1290 0.43 1291 1291 0.19 0.20

6 2833 2830 2833 2834 2838 2830 2837 2832 2833 2835 0.78 2838 2842 0.30 0.09

7 3825 3817 3817 3814 3823 3824 3822 3823 3816 3818 1.03 3825 3838 0.47 0.10

8 4548 4551 4539 4536 4546 4533 4541 4548 4554 4543 1.21 4554 4581 0.81 0.14

9 17886 17778 17842 17832 17887 17767 17845 17785 17914 17919 5.79 17919 19107 6.60 0.28

10 18020 17939 18090 18063 18067 18064 18079 18012 18047 17934 6.18 18090 21156 14.77 0.25

Table 3

Comparison of GA results with the optimal solution calculated manually for problem 1 consisting of four tasks. g S j is a team of d j agents performing task t j .

Prob # Solution in each of the 10 trials (using GA Heuristic) Average execution

time (s)

Agents assignment

(obtained by GA)

Optimal solution

value (calculated

manually)

Optimal assignment

(calculated

manually)

1 346 346 346 346 346 346 346 346 346 346 0.32 g S 1 = { 1 , 2 } 346 g S 1 = { 1 , 2 }
g S 2 = { 3 , 4 , 5 } g S 2 = { 3 , 4 , 5 }
g S 3 = { 6 , 7 } g S 3 = { 6 , 7 }
g S 4 = { 8 , 9 , 10 } g S 4 = { 8 , 9 , 10 }

Table 4

Data set for agent attributes (accuracy test).

Agent # Capabilities values

c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10

1 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0

5 1.0 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0

6 1.0 1.0 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0

7 1.0 1.0 1.0 1.0 1.0 1.0 4.0 1.0 1.0 1.0

8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 1.0 1.0

9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 1.0

10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0

Table 5

Data set for task attributes (accuracy test).

Task # Weights for attributes

w 1 w 2 w 3 w 4 w 5 w 6 w 7 w 8 w 9 w 10

1 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0 1.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0 4.0 4.0 1.0 1.0 1.0

4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 4.0 4.0

o

o

t

I

o

d

I

G

i

w

s

r

b

p

c

d

(

b

s

p

fi

o

t

7

s

d

p

n

c

p

t

M

a

p
to agents number 1 and 2 in Table 4 , because they have the high-

est values for the capabilities c 1 and c 2 . Optimal assignments for

the other tasks are determined similarly. The correctness of the al-

gorithm can be verified by considering the results given in Table 3 .

The results obtained by executing the proposed GA are consistent

with the manually determined optimal values.

6.2. Efficiency

As shown in Table 2 , the relative deviations from the optimal

solutions for the results obtained using the GA for problems 9

and 10 are (on average) 6.60% and 14.77%, respectively. A proposed

method to improve the results of the GA is to increase the number

of offspring (fitness evaluations). However, increasing the number
f fitness evaluations does not monotonically increase the fitness

f the best individual, although it always leads to an increase in

he execution time, which sometimes may violate time constraints.

n order to study the effect of the number of fitness evaluations

n the performance of the GA, two sets of experiments were con-

ucted on the problem instances 9 and 10, as shown in Table 1 .

n these experiments, the average of the relative deviations of the

A results (from the optimal solution determined by the Hungar-

an method) is calculated as a function of the number of offspring,

hich is varied from 10 0 0 0 to 2 560 0 0 0 by factors of 2. The re-

ults are summarized in Tables 6 and 7 for problems 9 and 10,

espectively.

As the results show, the average execution time is roughly dou-

led when the number of offspring is doubled, which is an ex-

ected behavior. However, the improvement in the results (de-

rease of the average relative deviation from the optimal solution)

oes not change at the same rate. For instance, for problem #10

 Table 7) the rate of the improvement is significantly diminished

eyond 640 0 0 0 fitness evaluations. These results clearly demon-

trate that the GA with the one-point crossover operator is not ca-

able of efficiently solving the problem. In order to improve the ef-

ciency of the GA, in the next section we present several crossover

perators and suggest modifications to them, and we introduce

wo new crossover operators.

. Genetic crossover operators

Crossover is one of the main operators of a GA, and is respon-

ible for exchanging information between chromosomes and pro-

ucing new solutions. It plays a central role in determining the

erformance of an algorithm. Efficient GAs that are able to achieve

ear-optimal solutions in relatively short execution times require a

areful selection of the (crossover) operators. In this section, we

resent several crossover operators that have been employed in

he GA literature, demonstrating why they might not be feasible.

oreover, we introduce modifications to these crossover operators,

nd introduce new operators to address these shortcomings.

Achieving an appropriate balance between exploration and ex-

loitation is crucial to the success of a GA. A search that is too

I. Younas et al. / Neurocomputing 314 (2018) 409–428 415

Table 6

Computational results of the GA with a one-point crossover operator for problem #9 and for a varying number of offspring (the first column denotes the number of fitness

evaluations). Agents work in teams without interactions, and the optimal solution is obtained using the Hungarian method. avgDev and σ are the mean and standard

deviation (for 10 replications) of the dev i (relative deviation from the optimal solution), respectively.

Number of

fitness

evaluations

Solution in each of the 10 trials Average execution

time (s)

Best found

solution

Hungarian

method

avgDev (%) σ (%)

10 0 0 0 16902 16881 16850 16761 16821 16820 16785 16862 16838 16857 0.83 16902 19107 11.88 0.21

20 0 0 0 17120 17071 17059 17046 17159 17214 17020 17054 17082 17139 1.51 17214 19107 10.52 0.3

40 0 0 0 17419 17511 17448 17468 17457 17437 17381 17366 17413 17389 2.93 17511 19107 8.78 0.22

80 0 0 0 17886 17778 17842 17832 17887 17767 17845 17785 17914 17919 5.79 17919 19107 6.60 0.28

160 0 0 0 18271 18233 18277 18249 18272 18275 18305 18261 18241 18263 11.46 18305 19107 4.41 0.10

320 0 0 0 18611 18602 18589 18629 18648 18576 18622 18626 18638 18630 22.76 18648 19107 2.56 0.11

640 0 0 0 18855 18857 18875 18835 18860 18825 18843 18830 18861 18862 45.46 18875 19107 1.34 0.08

1280 0 0 0 18970 18972 18975 18965 18985 18945 18966 18959 18960 18946 88.47 18985 19107 0.75 0.06

2560 0 0 0 19018 18993 18986 19001 18983 19005 18996 18994 19019 18984 178.49 19019 19107 0.57 0.06

Table 7

Computational results for the GA with a one-point crossover operator for problem #10 and with a varied number of offspring (the first column denotes the number of

fitness evaluations). Agents work in teams without interaction, and the optimal solution is obtained using the Hungarian method. avgDev and σ are the mean and standard

deviation (for 10 replications) of the dev i (relative deviation from the optimal solution), respectively.

Number of

fitness

evaluations

Solution in each of the 10 trials Average execution

time (s)

Best found

solution

Hungarian

method

avgDev (%) σ (%)

10 0 0 0 16945 16885 16924 17085 17073 17062 16908 17019 17040 16974 0.95 17085 21156 19.68 0.33

20 0 0 0 17248 17453 17332 17293 17237 17347 17344 17238 17237 17235 1.72 17453 21156 18.24 0.32

40 0 0 0 17656 17762 17677 17539 17693 17590 17762 17589 17456 17638 3.23 17762 21156 16.64 0.43

80 0 0 0 18020 17939 18090 18063 18067 18064 18079 18012 18047 17934 6.18 18090 21156 14.77 0.25

160 0 0 0 18343 18533 18391 18503 18439 18506 18533 18428.0 18400 18466 12.12 18533 21156 12.77 0.29

320 0 0 0 18831 18766 18772 18880 18830 18820 18843 18909 18836 18768 24.16 18909 21156 11.02 0.21

640 0 0 0 19079 19132 19034 19110 18997 19040 19029 18998 18989 19061 47.38 19132 21156 9.97 0.22

1280 0 0 0 19169 19177 19142 19231 19141 19216 19155 19033 19017 18956 92.73 19231 21156 9.61 0.41

2560 0 0 0 19138 19197 19166 19159 19201 19236 19217 19155 19118 19188 208.20 19236 21156 9.35 0.16

e

w

t

c

s

b

n

p

i

a

i

t

a

o

c

c

e

k

a

o

a

n

w

2

g

a

c

7

w

t

t

m

7

n

(

p

m

w

O

t

(

t

t

(

f

p

r

l

p

o

i

a

s

s

o

o

s

F

o

t

xploratory in nature may degenerate the GA into a random walk,

here the advantages of the GA are lost. On the contrary, a search

hat is too exploitative in nature may converge prematurely to a lo-

al optimum, and leave large parts of the search space unexplored.

The crossover operator combines parts of two different parent

olutions to construct a new offspring solution. However, the com-

ination of two solutions may lead to a new solution that does

ot respect the imposed constraints. In general, there are two ap-

roaches to this problem. The first is to allow the existence of

ndividuals that violate the Constraints, but discriminate them by

 high penalty. The other approach, which is adopted here, is to

ncorporate the constraints into the crossover operator, in order

o keep the offspring in the feasible region. Using this approach,

n offspring is not formed only by mixing the clusters of genes

f two parents. Therefore, one interesting problem is to study the

rossover operators to determine the most successful ones.

In this section, we start by explaining several well-known

rossover operators, before proceeding to describe the efficient op-

rators that are introduced in this article. We employ the well-

nown operators both as a base-line to compare our results with

nd also as a means to intuitively clarify why the new crossover

perators perform better.

Before proceeding to the details of these crossover operators,

 simple example is described, which will be referred to when

ecessary. In this example, 10 agents are assigned to four teams,

here teams 1 and 3 require three agents each, whereas teams

 and 4 each require two. Thus, each chromosome consists of 10

enes (positions), where the value of each gene is the index of an

gent. In all crossover operators, two parents (named A and B) are

hosen from the population using tournament selection.

.1. Well-known crossover operators

In the following, several crossover operators that have been

idely employed in the literature are described. Later, we discuss

he pitfalls of these operators, and present modifications to them
hat address these problems and enhance their efficiency. Further-

ore, we will introduce our new operators.

.1.1. k -point crossover operator

The k -point crossover operator, where k is usually a fixed small

umber (e.g. 1, 2, or 3), picks k cutting points from { 1 , ̇ , n − 1 }
where n is the number of genes) uniformly at random without re-

lacement. These cutting points divide both parents into k + 1 seg-

ents, which are used to assemble offspring chromosomes. Here,

e only describe the details for the one-point crossover operator.

ther k -point crossover operators are implemented similarly, with

he only difference being that they have k crossover points.

A chromosome with n genes consists of n − 1 division points

crossover points). In the one-point crossover operator, one of

hese division points is randomly selected (with equal probability)

o divide one of the parents (parent A) into two parts. The values

agent assignments) of the first p genes of parent A are deleted

rom parent B (where p is the selected crossover point). The first

 genes of the offspring 1 are inherited from parent A, and the

emaining n − p genes are taken from parent B, in sequence from

eft to right [34] . After switching the roles of the parents, the same

rocess is applied to generate the second offspring. This crossover

perator is illustrated in Fig. 2 . The selected crossover point p = 4

s represented by a vertical line for parent A. The first four genes

ssignments (8, 2, 6, and 9) of parent A are copied to the corre-

ponding genes of offspring 1, and are deleted from parent B, as

hown by small horizontal lines. The remaining six unfixed genes

f the offspring are populated by assigning the remaining six genes

f parent B (5, 3, 4, 10, 7, and 1) in sequence from left to right, as

hown in Fig. 2 .

Two flavors of two-point crossover operators are also shown in

igs. 3 and 4 . The difference between these two versions of the

perator lies in the segments in parent A from which the genes in

he offspring 1 are inherited.

416 I. Younas et al. / Neurocomputing 314 (2018) 409–428

Fig. 2. One-point crossover operator.

Fig. 3. Two-point v1 crossover operator.

Fig. 4. Two-point v2 crossover operator.

Fig. 5. Position-based crossover operator.

Fig. 6. Order-based crossover operator.

b

r

t

e

s

a

T

a

a

S

c

i

p

7

t

c

n

7

t

d

i

e

a

s

o

e

s

t

1

s
7.1.2. Position-based crossover operator

In the position-based crossover operator, each position (gene)

in parent A is selected randomly with a probability of 0.5. The val-

ues of these selected positions (agent numbers) are copied into the

corresponding positions of the offspring. The values of the already

selected genes are deleted from parent B. The remaining values of

the genes from parent B are copied into the empty positions in

the offspring, in sequence from left to right [16] . For instance, in

Fig. 5 , the genes numbered by 2, 4, 6, 8, and 10 are randomly se-

lected from parent A. The corresponding values (2, 9, 7, 5, and 4)

of the selected genes are copied into the corresponding positions

of the offspring. These selected values (agent numbers) are deleted

from parent B, and starting from the left the remaining values (6,

3, 8, 10, and 1) are copied into the empty positions of the offspring

in sequence. Similarly, another offspring is generated by switching

the roles of the parents.

7.1.3. Order-based crossover operator

The order-based crossover operator is a variation of the

position-based crossover operator, and was proposed by Syswerda

[39] . A set of positions in parent A are selected with a probability

of 0.5 for each position (gene). The values (assigned agent num-
ers) in these selected genes are deleted from parent B, and the

emaining values of B are copied to the corresponding genes of

he generated offspring 1. Then, the selected genes values of par-

nt A are copied to the remaining unfixed genes of offspring 1 in

equence from left to right. In Fig. 6 , the gene numbers 2, 4, 6, 8,

nd 10 of parent A are selected randomly with a probability of 0.5.

he corresponding values of the selected genes (2, 9, 7, 5, and 4)

re deleted from parent B. The remaining values (6, 3, 8, 10, and 1)

re copied to the corresponding positions (genes) of the offspring.

ubsequently, the selected agent numbers (2, 9, 7, 5, and 4) are

opied to the unfixed positions of the offspring in sequence. Sim-

larly, another offspring is generated by switching the roles of the

arents.

.2. Modified and new crossover operators

The crossover operators presented above suffer from at least

wo problems:

• As the genes from parent B are copied to the offspring after

deleting the genes that are already represented in parent A, the

order of the genes is largely disturbed, and valuable informa-

tion stored in parent B is lost. The GA is based on the sur-

vival of the fittest, and the assumption that the solutions that

survive will pass their characteristics to new generations. Dis-

turbing the order of the genes in one of the parents appears to

weaken the GA algorithm.
• In the instances of the problem where the number of agents

is considerably larger than the number of required agents, i.e.,

problem instances #10 and #11, agents that are not part of the

initial population will not efficiently be incorporated in new so-

lutions (other than through mutation). Therefore, a more pow-

erful exploration mechanism is required to reach the part of the

search space where agents not chosen in the initial population

are also involved.

In the following, we suggest modifications to the standard

rossover operators presented in Section 7.1 and also introduce two

ew crossover operators to address these shortcomings.

.2.1. k -point shuffled list crossover operator

The k -point shuffled list crossover operator represents an ex-

ension of the k -point operator, and uses a shuffled repair list to

octor the unfixed genes in the generated offspring. The principle

s illustrated in Fig. 7 for the case of the one-point crossover op-

rator. The crossover point p is selected, and the first p = 4 gene

ssignments (8, 2, 6, and 9) of parent A are copied to the corre-

ponding genes of offspring 1, similarly as above for the simple

ne-point crossover. These selected values are deleted from par-

nt B. Instead of populating the remaining six genes of the off-

pring from parent B from left to right in sequence, the values of

he undeleted genes of B from p = 4 onward (which are 10, 7, and

 in Fig. 7) are copied to the corresponding positions of the off-

pring 1. The remaining unfixed genes of the offspring are marked

I. Younas et al. / Neurocomputing 314 (2018) 409–428 417

Fig. 7. One-point shuffled list crossover operator.

Fig. 8. Position-based shuffled list crossover operator.

b

p

i

l

(

a

g

fl

s

f

c

7

l

(

T

a

v

a

a

m

a

t

g

f

Fig. 9. Uniform shuffled list crossover operator.

s

s

S

t

7

n

t

s

n

p

c

n

r

m

m

c

o

p

7

b

b

I

i

S

b

7

s

o

s

p

t

a

p

m

(

t

s

o

t
y symbol ∗. In order to fix these marked genes, the operator em-

loys a shuffled repair list. The length of the shuffled repair list

s equal to the total number of agents available A t . It is a shuffled

ist containing the agent numbers { 1 , 2 , . . . A t } . The gene symbols

8, 2, 6, 9, 10, 7, and 1) that are already present in the offspring

re deleted from the shuffled repair list. The values of the leftover

enes are copied in sequence (from left to right) from the shuf-

ed repair list to the generated offspring’s genes marked with

∗, as

hown in Fig. 7 . The other k -point shuffled list crossover operators

ollow the same principle, and they differ only in the number of

rossover points.

.2.2. Position-based shuffled list crossover operator

In the position-based shuffled list crossover operator, simi-

arly to the simple position-based crossover operator, each position

gene) in parent A is randomly selected with a probability of 0.5.

he symbols in these selected positions (agents assigned to tasks)

re copied into the corresponding positions of the offspring. The

alues of genes (agent numbers) that have already been selected

re deleted from parent B, and the remaining genes of parent B

re copied to the corresponding genes of the offspring. The re-

aining unfixed genes of the offspring are marked by symbol ∗,

s shown in Fig. 8 . In order to fix these marked genes, the opera-

or employs a shuffled repair list, as described in Section 7.2.1 . The

ene symbols that are already present in the offspring are deleted

rom the shuffled list. The values of the leftover genes are copied in
equence (from left to right) from shuffled list to the generated off-

pring’s genes marked with

∗. This method is illustrated by Fig. 8 .

imilarly, another offspring is generated by switching the roles of

he parents.

.2.3. Uniform shuffled list crossover operator

In the uniform shuffled list crossover operator, a random

umber is generated for each position (gene) with a uniform dis-

ribution. If the random number is less than 0.5, then the corre-

ponding gene (agent assignment) of parent A is inherited by a

ew offspring. Otherwise, the corresponding gene is taken from

arent B. While inheriting from parent A or B, there is a need to

heck for duplicate assignments (the inherited gene symbol should

ot already be present in the offspring). If the gene symbol is al-

eady present, then the corresponding position in the offspring is

arked by symbol ∗ (called an unfixed gene). In order to fix these

arked genes, the operator employs the same shuffled list as dis-

ussed earlier. The procedure is illustrated by Fig. 9 , where the sec-

nd offspring is generated by switching the roles of the selected

arents.

.2.4. Random point shuffled list crossover operator

In the random point shuffled list crossover operator, the num-

er of crossover points is selected randomly (with a uniform distri-

ution) between two and n − 1 , where n is total number of genes.

f the selected number of crossover points is two, then the operator

s similar to the two-point shuffled list described in Section 7.2.1 .

imilarly, it will be a three-point shuffled list if the selected num-

er of crossover points is three, and so on.

.2.5. Team-based crossover operator

The team-based crossover operator takes into the account the

pecial characteristics of the problem and the fact that the order

f the genes does not affect the solution as long as they corre-

pond to the same task. The goal of this operator is to mitigate the

roblem of disturbing the order of the genes in parent B during

he crossover operation as far as possible, by attempting to assign

gents to the same task in the offspring if possible.

In the team-based crossover operator, each position (gene) in

arent A is randomly selected with probability p s (in our experi-

ents, we set p s = 0 . 5). The symbols in these selected positions

agents assigned to tasks) are copied into the corresponding posi-

ions of the offspring, as shown in Fig. 10 . The values of already

elected genes are deleted from parent B, and the remaining genes

f parent B are copied according to the relations of the agents to

he tasks. We prioritize copying the remaining genes of parent B

418 I. Younas et al. / Neurocomputing 314 (2018) 409–428

Fig. 10. Team-based crossover operator.

Fig. 11. Team-based shuffled list crossover operator.

a

c

fi

s

p

t

s

8

s

(

n

T

E

o

b

a

a

f

w

p

a

a

S

i

o

s

r

m

c

a

c

n

l

a

v

t

t

T

e

p

i

i

m

s

(

d

w

s

s

c

c

t

9

a

l

i

g
to the empty positions of the corresponding tasks in the offspring.

The remaining genes that cannot be copied to the corresponding

tasks in the offspring are copied in sequence (from left to right)

to the empty positions in the offspring. For example, in Fig. 10 , af-

ter copying the agents 6, 9, 1, and 5 from parent A to offspring 1,

agent 3 should be assigned to task 1, agents 8 and 10 to task 3,

and agent 7 to task 4. The remaining values (4 and 2) of parent

B are copied to the empty positions of the offspring in sequence.

Similarly, another offspring is generated by switching the roles of

the parents.

7.2.6. Team-based shuffled list crossover operator

In the team-based shuffled list crossover operator, similarly to

the simple team-based crossover operator, each position (gene) in

parent A is randomly selected with probability p s (in our exper-

iments we set p s = 0 . 5). The symbols in the selected positions

(agents assigned to tasks) are copied into the corresponding po-

sitions of the offspring. The values of already selected genes (agent

numbers) are deleted from parent B, and the remaining genes of

parent B are copied according to the relations of the agents to the

tasks, in the same manner as described in Section 7.2.5 . The re-

maining unfixed genes of the offspring are marked by symbol ∗,

as shown in Fig. 11 . In order to fix these marked genes, the op-

erator employs the shuffled repair list. The gene symbols that are

already present in the offspring are deleted from the shuffled list.

The values of the leftover genes are copied in sequence (from left

to right) from the shuffled list to the generated offspring’s genes

marked with

∗. Similarly, another offspring is generated by switch-

ing the roles of the parents.

8. Experimental results for crossover operators

In this section, a series of computational experiments on large

instances of the problem (instances 9, 10, 11, 12, and 13 in Table 1)
re presented to compare and analyze the performances of the

rossover operators proposed in Section 7 .

The aim of these experiments is to first identify the most ef-

cient crossover operators, which are able to yield near-optimal

olutions to our AP within a short computing time (on different

opulation sizes and a small number of fitness evaluations), and

o fine-tune the relevant GA parameters to further improve the re-

ults.

.1. Experiment setup

Computational experiments are performed on the problem in-

tances #9 − #13 (given in Table 1). In the first problem instance

problem #9), the total number of agents is equal to the required

umber of agents, i.e., all available agents are assigned to teams.

he numbers of agents and tasks are 400 and 100, respectively.

ach task requires four agents. In problem #10 , the total number

f agents is greater than the required number of agents. The num-

ers of agents and tasks are 800 and 100, respectively. Each task

gain requires four agents. In problem #11 , the numbers of agents

nd tasks are 1600 and 100 respectively, where each task requires

our agents. Problem #12 consists of 1600 agents and 100 tasks,

here a team of 16 agents is assigned to each task. In the final

roblem (problem #13), the numbers of agents and tasks are 400

nd 200, respectively, where each task requires two agents.

These five APs are motivated by real-world scenarios, where the

im is to assign recruited soldiers to different position types. In

weden, new recruits are trained in basic military training (GMU

n Swedish) for a period of three months. The number of recruits

n each occasion is to the order of several hundred, and they

hould be placed in different working areas and geographical gar-

isons. The combination of working areas and geographical place-

ents is used to cluster the available positions into around 100

lusters. Each recruit has several capabilities (e.g., physical strength

nd high school grades), and for different type of positions these

apabilities may be differently weighted. Although the recruits do

ot necessarily work as a team, the added value cannot be calcu-

ated as a sum of the values of the agents. In the same manner

s described in Section 6 , one may define a function and calculate

 (a i , g S j
, t j) , i.e., the value added when a i is assigned to t j , within

he group g S j
.

For these problem instances, we compare the performances of

he crossover operators for solving the problem defined in Eq. (13) .

he search process is terminated after M offspring (called M fitness

valuations) have been generated. For each experiment, 10 inde-

endent runs are conducted for each crossover operator introduced

n Section 7 . The GA is started from the same randomly generated

nitial population. However, because in the general case the opti-

al solution is unknown, a modified version of the definition pre-

ented in Section 6.1 is adopted to define the relative deviation (Eq.

14)), i.e.,

e v i =

100(x b − x i)

x b
, (17)

here the optimal solution x ∗ is substituted for the best global

olution found, x b . In the following experiments, unless otherwise

pecified the value x b is the best solution value obtained by exe-

uting our GA with all the discussed crossover operators. For each

rossover operator, the GA terminates after 320 0 0 0 fitness evalua-

ions. The best solution values obtained for the problem instances

, 10, 11, 12, and 13 are 22 632.08, 24 731.92, 25 737.67, 96 201.58,

nd 21 006.42, respectively. The values of avgDev and σ are calcu-

ated accordingly, as defined in Eqs. (15) and (16) , respectively.

Obviously, the mean and standard deviation of the dev i only

ndicate how close the solution of an algorithm is to the best

lobal solution found, and do not provide a rigorous analysis of

I. Younas et al. / Neurocomputing 314 (2018) 409–428 419

Table 8

Computational results of the GA with the one-point shuffled list crossover operator for problem #10 and a varying number of offspring. Agents work in teams without

interactions, and the optimal solution is obtained using the Hungarian method. avgDev and σ are the mean and standard deviation (for 10 replications) of the dev i (relative

deviation from the optimal solution), respectively.

Number of

fitness

evaluations

Solution in each of the 10 trials Average execution

time (s)

Best found

solution

Hungarian

method

avgDev (%) σ (%)

10 0 0 0 18254 18213 18285 18316 18301 18275 18201 18317 18268 18273 0.99 18317 21156 13.64 0.18

20 0 0 0 18913 18936 18864 19057 18983 190 0 0 18973 19002 18958 18905 1.85 19057 21156 10.38 0.25

40 0 0 0 19574 19453 19491 19471 19504 19608 19532 19451 19575 19555 3.57 19608 21156 7.73 0.25

80 0 0 0 19985 19997 20049 19982 19969 19952 19976 19958 20 0 04 19977 6.97 20049 21156 5.54 0.12

160 0 0 0 20372 20297 20383 20308 20355 20307 20341 20399 20348 20328 13.71 20399 21156 3.84 0.15

320 0 0 0 20670 20719 20646 20596 20646 20652 20659 20630 20669 20648 27.03 20719 21156 2.38 0.14

640 0 0 0 20868 20863 20845 20883 20869 20833 20870 20847 20846 20864 53.15 20883 21156 1.40 0.07

1280 0 0 0 20971 20966 20969 20984 20947 20946 20940 20974 20991 20972 106.33 20991 21156 0.90 0.08

2560 0 0 0 20991 20994 21022 20985 20993 21015 20976 20987 20974 20988 214.38 21022 21156 0.77 0.07

t

s

l

c

t

o

r

g

t

s

t

t

s

u

i

o

o

o

T

fi

8

c

u

o

t

8

v

o

a

u

p

c

p

w

T

t

T

fi

t

8

t

Fig. 12. Effect of the initial population size on the quality of solutions (results on

problem #9 with the number of fitness evaluations = 10 0 0 0).

Fig. 13. Effect of the initial population size on the quality of solutions (results on

problem #9 with the number of fitness evaluations = 40 0 0 0).

fi

t

T

d

v

he efficiency of the algorithm, unless the best solution found is

ufficiently close to the optimal solution (i.e., is a near-optimal so-

ution).

In Section 6.2 , we showed that the GA with the one-point

rossover operator is not capable of providing near-optimal solu-

ions for at least problem instance 10, even after a large number

f fitness evaluations.

In order to ensure that at least some of the presented algo-

ithms can find near-optimal solutions, so that we can obtain a

lobal near-optimal solution to compare the results with, we test

he algorithm with the one-point shuffled crossover operator for

olving problem instance 10 in the case that there are no interac-

ions between agents. Then, we compare the results with the op-

imal solution provided by the Hungarian method. The results are

ummarized in Table 8 , showing that after 320 0 0 0 fitness eval-

ations the average relative deviation from the optimal solution

s 2.38. The ability of the one-point shuffled list to find a near-

ptimal solution for the special case where agents do not collab-

rate indicates that the algorithm is also capable of finding near-

ptimal solutions in the general case when the agents collaborate.

his result can be compared with 11.02 for the same number of

tness evaluations using the original one-point crossover (Table 7).

.2. Comparison and discussion

In the following, we compare the efficiency of our suggested

rossover operators with the baseline operators (on different pop-

lation sizes, numbers of fitness evaluations, and so on), and elab-

rate on how other parameters such as the mutation rate influence

he efficiency of the best operators found for the AP.

.2.1. Performance comparison for different crossover operators on a

arying population size

In the first set of experiments, we study how different crossover

perators perform on problem instances 9–13 (see Table 1) on

 varying population size (given a fixed number of fitness eval-

ations). The crossover operators considered in this set of ex-

eriments are the one-point crossover (ONE_POINT), two-point

rossover (TWO_POINT), three-point crossover (THREE_POINT),

osition-based crossover (PBX), and their corresponding versions

ith a shuffled repair list, denoted by (operator_name_SHUFFLE).

he mutation is applied by applying one swap operation, where

wo genes are randomly chosen and their values are exchanged.

he mutation probability is set to 20%.

The results of these experiments are shown in Figs. 12 –17 . The

rst three figures depict the experiments on problem #9 , where

he numbers of fitness evaluations are set to 10 0 0 0, 40 0 0 0, and

0 0 0 0, respectively. In Figs. 15 –17 , the results of experiments on

he problem instances 10 − 12 are illustrated, with the number of
tness evaluations set to 10 0 0 0. In Figs. 12 –17 the initial popula-

ion size, depicted on the horizontal axis, is varied from 2 to 1024.

he vertical axis represents the quality of the solutions, which is

efined as the average percentage deviation from the best solution

alue obtained after 320 0 0 0 fitness evaluations.

420 I. Younas et al. / Neurocomputing 314 (2018) 409–428

Fig. 14. Effect of the initial population size on the quality of solutions (results on

problem #9 with the number of fitness evaluations = 80 0 0 0).

Fig. 15. Effect of the initial population size on the quality of solutions (results on

problem #10 with the number of fitness evaluations = 10 0 0 0).

Fig. 16. Effect of the initial population size on the quality of solutions (results on

problem #11 with the number of fitness evaluations = 10 0 0 0).

Fig. 17. Effect of the initial population size on the quality of solutions (results on

problem #12 with the number of fitness evaluations = 10 0 0 0).

o

i

F

p

w

I

l

c

i

(

p

T

t

n

a

w

p

M

w

m

3

p

i

a

o

c

q

c

s

v

w

F

s

m

i

p

u

o
Figs. 12 –17 show that the simple crossover operators (with-

ut any shuffled list) continue to degrade as we increase the

nitial population size for a given number of fitness evaluations.

or example, in Fig. 12 the average percentage deviations for the

osition-based crossover operator (PBX) are 7.29, 8.35, and 10.7

hen the initial population sizes are 2, 16, and 64, respectively.

n case of operators with a shuffled list, the quality of the so-

utions improves as we increase the initial population size to a

ertain limit, and thereafter it continues to degrade. For example,

n the case of the position-based shuffled list crossover operator

PBX_SHUFFLE), the quality of solutions improves when the initial

opulation size varies from 2 to 16, and then degrades thereafter.

he average percentage deviations are 7.13, 5.62, and 7.61, when

he initial population sizes are 2, 16, and 64, respectively (Fig. 12).

This behavior can be explained by the fact that for a fixed

umber of fitness evaluations, a larger population size introduces

 stronger exploration property to the search method. Operators

ithout a shuffled list already suffer from lack of sufficient ex-

loitation, and this is enhanced as the population size is increased.

ost of the operators with a shuffled list provide the best results

hen the initial population size is between 8 and 16. Their perfor-

ance begins to degrade as the initial population size increases to

2 and above.

We further analyze the results depicted in Figs. 12 –17 to com-

are the effect of the shuffled list on different operators, especially

n the interesting population size range (i.e., 8 to 64).

For instance, in Fig. 12 when the initial population size is 8, the

verage percentage deviation for the simple one-point crossover

perator is 9.19, while this decreases to 6.71 for the one-point

rossover with a shuffled list (an almost 27% improvement in the

uality of the solution). Similarly, the results for the two-point

rossover without and with the shuffled list are 8.39 and 6.15, re-

pectively. Other operators also exhibit similar behavior, i.e., the

ersions with the shuffled list provide better results compared

ith those without the shuffled list. This can also be observed in

igs. 13 and 14 , where the total number of fitness evaluations is

et to 40 0 0 0 and 80 0 0 0, respectively.

The superiority of the shuffled list operators can be observed

ore clearly in Figs. 15 and 16 , where the total number of agents

s greater than the required number of agents (problem #10 and

roblem #11). For example, in problem #10 when the initial pop-

lation size is 8, the average percentage deviation for the simple

ne-point crossover operator is 16.73, while this decreases to 9.01

I. Younas et al. / Neurocomputing 314 (2018) 409–428 421

f

i

o

c

u

b

f

p

i

w

fl

fi

e

o

p

c

c

m

s

o

s

i

f

l

f

i

c

g

w

b

w

r

e

u

a

o

t

s

8

a

fl

o

t

e

r

t

T

w

2

t

t

h

t

8

s

p

t

Fig. 18. Effect of the number of fitness evaluations on the quality of the solution

(results on problem #9 with an initial population size = 8).

Fig. 19. Effect of the number of fitness evaluations on the quality of the solution

(results on problem #9 with the initial population size = 64).

Fig. 20. Effect of the number of fitness evaluations on the quality of the solution

(results on problem #9 with the initial population size = 128).
or the one-point crossover with the shuffled list (an almost 46%

mprovement in the quality of the solution).

Summarizing Figs. 12 –17 , we can conclude that the crossover

perators with shuffled lists achieve superior performances to the

orresponding operators without shuffled lists for all initial pop-

lation sizes, especially when the population size is in the range

etween 8 and 64. Moreover, all operators with shuffled lists per-

orm better than all those without shuffled lists (except for the

osition-based crossover with a shuffled list, which degrades for

nitial population sizes larger than 128).

For a fixed population size (up to a certain limit), operators

ithin each group of crossover operators (with and without shuf-

ed lists) can be ordered by their performance. Figs. 12 –17 con-

rm that operators with a higher number of crossover points gen-

rally exhibit a superior performance. The order is as follows:

ne-point crossover, two-point crossover, three-point crossover,

osition-based crossover. The same order is preserved within the

orresponding operators with shuffled lists. For the position-based

rossover operator, the number of crossover points is approxi-

ately n /2, where n is the total number of genes. This number is

ignificantly larger than the number of crossover points for other

perators.

To explain the inferior performances of the operators with

maller numbers of crossover points, the position-based crossover

s compared with the one-point crossover operator. While in the

ormer all genes have the same probability of being chosen, in the

atter the starting sequence of genes from the first parent is trans-

erred to future offspring with a very high probability. That is, the

nheritance of genes is biased, and depends on their position in the

hromosome. As a result, some genes may be transferred to future

enerations although they are not desirable. This bias decreases

hen the number of crossover points is increased. The position-

ased crossover is completely free of this bias.

However, as Figs. 12 –17 show, the performances of operators

ith a larger number of crossover points become worse at higher

ates when the population size increases while number of fitness

valuations is kept fixed. For example, in Fig. 12 , for an initial pop-

lation size greater than 64 the position-based shuffled list oper-

tor provides poor results compared with the other shuffled list

perators. The simultaneous increase in the population size and

he number of crossover points results in more exploration of the

earch space than required, leading to a late convergence.

.2.2. Performance comparison for different crossover operators with

 varying number of fitness evaluations

To ensure that the superior performance of operators with shuf-

ed lists holds for different numbers of fitness evaluations, a sec-

nd set of experiments is performed. In these experiments, we fix

he initial population size and observe how different crossover op-

rators behave under different numbers of fitness evaluations. The

esults for experiments on problem #9 with population sizes equal

o 8, 64, and 128 are presented in Figs. 18 , 19 , and 20 , respectively.

he results for experiments on problem instances 10, 11, and 13

ith a population size equal to 8 are shown in Figs. 21 , 22 , and

3 respectively. The studied crossover operators are the same as in

he first set of experiments above.

Figs. 18 –23 show that for different numbers of fitness evalua-

ions from 50 0 0 to 320 0 0 0, the operators with shuffled lists ex-

ibit a globally superior performance to the simple genetic opera-

ors (without shuffled lists).

Fig. 20 shows that the position-based shuffled list requires

0 0 0 0 fitness evaluations before it can provide high quality re-

ults. In other words, operators with high numbers of crossover

oints are more Sensitive, and their performance may degrade if

he initial population size is not carefully chosen.

422 I. Younas et al. / Neurocomputing 314 (2018) 409–428

Fig. 21. Effect of the number of fitness evaluations on the quality of the solution

(results on problem #10 with the initial population size = 8).

Fig. 22. Effect of the number of fitness evaluations on the quality of the solution

(results on problem #11 with the initial population size = 8).

Fig. 23. Effect of the number of fitness evaluations on the quality of the solution

(results on problem #13 with the initial population size = 8).

Fig. 24. Comparison of the position-based shuffled list with the other remaining

implemented crossover operators (results on problem #9 with the number of fit-

ness evaluations = 10 0 0 0).

Fig. 25. Comparison of the position-based shuffled list with the other remaining

implemented crossover operators (results on problem #12 with the number of fit-

ness evaluations = 10 0 0 0).

8

fl

c

m

fi

t

(

w

(

w

D

a

(

e

p

o

f
.2.3. Performance comparison of other crossover operators

So far, we have shown that for the one-point, two-point (first

avor), three-point, and position-based crossover operators, the

rossover operators with shuffled lists exhibit a superior perfor-

ance compared with those without shuffled lists. In order to con-

rm that this finding holds for a wider range of operators, in a

hird set of experiments we compare the position-based operator

both with and without shuffled lists) with two other operators

ithout shuffled lists, namely order-based (OBX) and team-based

TEAM_BASED) crossover operators, and three more operators

ith shuffled lists, namely random point shuffled list (RAN-

OM_POINT_SHUFFLE), uniform shuffled list (UNIFORM_SHUFFLE),

nd team-based shuffled list (TEAM_BASED_SHUFFLE) operators

see Section 7).

The results, illustrated in Figs. 24 –27 , demonstrate that the op-

rators with shuffled lists (position-based shuffled list, random

oint shuffled list, and uniform shuffled list) and the team-based

perators (with and without shuffled lists) all achieve stronger per-

ormances, i.e., smaller average deviations from the best known

I. Younas et al. / Neurocomputing 314 (2018) 409–428 423

Fig. 26. Comparison of the position-based shuffled list with the other remaining

implemented crossover operators (results on problem #13 with the number of fit-

ness evaluations = 10 0 0 0).

Fig. 27. Comparison of the position-based shuffled list with the other remaining

implemented crossover operators (results on problem #9 with the initial population

size = 8).

s

a

t

a

S

t

fl

b

o

w

o

8

c

b

a

w

P

Fig. 28. Effect of the conservative approach (results on problem #9 with the num-

ber of fitness evaluations = 10 0 0 0).

Fig. 29. Comparison of position-based crossover operators with different mutation

probabilities (results on problem #9 with the initial population size = 8).

t

o

e

i

c

P

a

fl

p

c

t

(

b

p

a

f

p

fl

(

a
olution. A common feature of these operators is that the offspring

t a higher degree inherit the genes from both their parents, ei-

her by using a shuffled list or (in the case of team-based oper-

tors) by taking advantage of the structure of the problem (see

ections 7.2.5 and 7.2.6).

However, our extensive experiments demonstrate that among

he efficient operators, the performance of the position-based shuf-

ed list operator can be enhanced more than the other operators

y tuning its parameters. We do not include these experiments in

ur study, but continue by presenting two sets of experiments in

hich we tune the parameters of the position-based shuffled list

perator for the best results.

.2.4. Fine-tuning the GA with the position-based shuffled list

rossover operator

In the fourth set of experiments, we compare different position-

ased (PBX) and position-based shuffled list (PBX_SHUFFLE) oper-

tors, where each position (gene) in parent A is randomly selected

ith a different probability (40%, 50%, 60%, 70%, 80%, and 90%).

BX_N means that N % of the genes of parent A are copied into
he corresponding positions of the offspring. A higher probability

f choosing genes from parent A means that the exploitation prop-

rty of the search method is increased (at the cost of exploration),

.e., a more conservative search strategy is enacted. PBX_90 is more

onservative than PBX_80, and PBX_80 is more conservative than

BX_70, etc.

As seen in Fig. 28 , a more conservative search strategy has

 positive effect on the position-based operator without a shuf-

ed list, which, as discussed above, is too “exploratory.” For the

osition-based shuffled list operator, a search strategy that is too

onservative, such as PBX_SHUFFLE_90, has a moderating effect on

he performance, i.e., it degrades the performance if it was good

less than 64) and improves it if it was bad (larger than 64). This

ehavior is consistent with the observations in the first set of ex-

eriments. Fig. 28 shows that when the initial population size is

round 16, PBX_SHUFFLE_70 achieves the strongest performance

or 10 0 0 0 fitness evaluations.

In the fifth set of experiments, the effect of the mutation

robability on the quality of the results of position-based shuf-

ed list operator is studied. Five different mutation probabilities

20%, 40%, 60%, 80%, and 100%) are considered, and the results

re presented in Fig. 29 , where PBX_SHUFFLE_mpN means that the

424 I. Younas et al. / Neurocomputing 314 (2018) 409–428

Table 9

Statistical results for different GA crossover operators using one-tailed t-test with a 99% confidence interval for large-sized problems (9, 10, 11, 12, and

13). Iterations = 10 0 0 0, population size = 8, and avgDev and σ are the mean and standard deviation (for 10 replications) of the dev i (relative deviation

from the global best solution), respectively.

Problem # Crossover Operator 1 avgDev (%) σ (%) Crossover Operator 2 avgDev (%) σ (%) p value Significantly different?

9 ONE_POINT 9.25 0.17 ONE_POINT_SHUFFLE 6.72 0.23 < 0.001 Yes

THREE_POINT 8.75 0.21 THREE_POINT_SHUFFLE 6.25 0.34 < 0.001 Yes

PBX 8.11 0.18 PBX_SHUFFLE 5.67 0.22 < 0.001 Yes

PBX 8.11 0.18 TEAM_BASED_SHUFFLE 5.72 0.19 0 Yes

10 ONE_POINT 9.19 0.32 ONE_POINT_SHUFFLE 6.71 0.24 0.001 Yes

THREE_POINT 8.75 0.24 THREE_POINT_SHUFFLE 6.09 0.23 < 0.001 Yes

PBX 8.35 0.31 PBX_SHUFFLE 5.48 0.21 < 0.001 Yes

PBX 8.35 0.31 TEAM_BASED_SHUFFLE 5.57 0.23 < 0.001 Yes

11 ONE_POINT 9.26 0.12 ONE_POINT_SHUFFLE 7.8 0.07 0 Yes

THREE_POINT 8.89 0.15 THREE_POINT_SHUFFLE 7.48 0.16 < 0.001 Yes

PBX 8.52 0.19 PBX_SHUFFLE 7.03 0.13 < 0.001 Yes

PBX 8.52 0.19 TEAM_BASED_SHUFFLE 7.22 0.09 < 0.001 Yes

12 ONE_POINT 20.41 0.6 ONE_POINT_SHUFFLE 11.28 0.58 0 Yes

THREE_POINT 19.84 0.66 THREE_POINT_SHUFFLE 10.48 0.33 0 Yes

PBX 19.48 0.41 PBX_SHUFFLE 9.64 0.19 0 Yes

PBX 19.48 0.41 TEAM_BASED_SHUFFLE 10.19 0.35 0 Yes

13 ONE_POINT 9.73 0.35 ONE_POINT_SHUFFLE 7.21 0.1 < 0.001 Yes

THREE_POINT 9.4 0.24 THREE_POINT_SHUFFLE 6.66 0.22 < 0.001 Yes

PBX 8.69 0.26 PBX_SHUFFLE 6.09 0.29 < 0.001 Yes

PBX 8.69 0.26 TEAM_BASED_SHUFFLE 6.07 0.22 < 0.001 Yes

Table 10

Parameter values used in different algorithms.

GA and chaotic GA with PBX_Shuffle PSO Differential evolution

Parameter Value Parameter Value Parameter Value

Population size 10 Swarm size 10 Population size 10

Crossover rate 1.0 C 1 = social parameter 1.5 CR = crossover rate 0.9

Mutation probability 0.2 C 2 = cognitive parameter 1.5 F = scaling factor 0.5

Mutation operator Swap w = inertia weight (upper and lower) 0.9

Selection operator Tournament

O

c

O

o

a

r

a

k

o

o

t

e

t

9

a

[

g

p

w

9

r

c

s

r

mutation probability for each generated offspring is set to N %. The

initial population size is set to 16, and PBX_SHUFFLE_70 is con-

sidered, which is a position-based shuffled list (PBX_SHUFFLE) op-

erator where each position (gene) in parent A is selected with a

probability of 70%.

Analyzing Fig. 29 shows that increasing the mutation probabil-

ity (from 20% to 80%) generally improves the results. For instance,

if we consider PBX_SHUFFLE for 10 0 0 0 fitness evaluations, the av-

erage percentage deviation of the solutions from the best solution

decreases from 5.69% to 4.56% upon increasing the mutation prob-

ability from 20% to 80%. This behavior can be attributed to the im-

proved exploration property of the search method. However, set-

ting a higher mutation probability than necessary can also degrade

the quality of the solution. For example, the 100% mutation prob-

ability generally exhibits a higher deviation from the best solution

than the 80% mutation probability. An appropriate parameter set-

ting is crucial for maintaining a good balance between exploration

and exploitation.

8.2.5. Significance test results for crossover operators

Statistical significance tests were performed to compare the dif-

ferent crossover operators. For each experiment, 10 independent

runs were conducted and one tail t-test was adopted to compare

the results. Significance tests were only performed for the large-

sized problems (9, 10, 11, 12, and 13) presented in Table 1 . The

number of iterations was set as 10 0 0 0, and population size was

eight.

Table 9 presents the results (p value) of the one-tail t-test at

a 99% confidence interval. For the performance evaluation of the

proposed SHUFFLE list operators, the ONE_POINT, THREE_POINT,

and PBX crossover operators were compared with the
NE_POINT_SHUFFLE, THREE_POINT_SHUFFLE, and PBX_SHUFFLE

ounterparts, respectively. The p values in Table 9 show that the

NE_POINT_SHUFFLE, THREE_POINT_SHUFFLE, and PBX_SHUFFLE

perators significantly outperform the ONE_POINT, THREE_POINT,

nd PBX crossover operators, respectively. These statistical test

esults indicate that the k-point shuffled list crossover operators

chieve significantly better results compared with the simple

-point crossover operators.

The results of our proposed TEAM_BASED_SHUFFLE operator are

nly compared with the PBX operator, because the PBX operator

utperforms all other k-point crossover operators. Table 9 shows

hat TEAM_BASED_SHUFFLE significantly outperforms the PBX op-

rator at the 99% confidence interval, because the p value is less

han 0.001 for all large-sized problems.

. Comparison of GA with other nature-inspired metaheuristics

nd an approximation algorithm

The “no free lunch” theorem of Wolpert and Macready

42] states that no algorithm is perfect. This means that each al-

orithm is only effective for particular problems. However, a com-

arison can provide insight into the algorithm, and demonstrate

hich algorithm is suitable for which problem.

.1. Comparison of GA with PSO and differential evolution algorithm

We compared the performances of four different search algo-

ithms, namely PSO [11,26] , DE [38] , GA (using PBX_SHUFFLE), and

haotic GA (using PBX_SHUFFLE). The aim of the experiments de-

cribed in this section is to identify the most effective search algo-

ithm for our problem.

I. Younas et al. / Neurocomputing 314 (2018) 409–428 425

h

p

r

C

i

c

x

w

a

u

t

w

e

o

c

e

(

w

s

o

a

p

l

c

n

σ

s

i

g

t

u

t

b

(

9

o

t

d

i

fi

p

t

p

l

f

w

o

P

l

5

o

t

(

p

t

6

s

a

t

f b
le

11

m
p

a
ri

so
n

o

f
ch

a
o

ti
c

G
A

(u

si
n

g

P

B
X

_
S

H
U

F
F

LE
)

w
it

h

th

e

G

A

(u

si
n

g

P

B
X

_
S

H
U

F
F

LE
),

P

S
O

,
a

n
d

D

E

a

lg
o

ri
th

m
s.

It

e
ra

ti
o

n
s

=
1

0

0

0

0

,
p

o
p

u
la

ti
o

n

si

ze

=

8
,

a
n

d

a

v
g

D
ev

a

n
d

σ
a

re

th

e

m

e
a

n

a

n
d

st

a
n

d
a

rd

d

e
v

ia
ti

o
n

(f

o
r

1
0

re

p
li

ca
ti

o
n

s)

th

e

d

ev
 i

(r
e

la
ti

v
e

d

e
v

ia
ti

o
n

fr

o
m

th

e

g

lo
b

a
l

b
e

st

so

lu
ti

o
n

),

re

sp
e

ct
iv

e
ly

.

In
st

a
n

ce

C
h

a
o

ti
c

G
A

w

it
h

P

B
X

_S
h

u
ffl

e

G
A

w

it
h

P

B
X

_S
h

u
ffl

e

P
a

rt
ic

le

sw

a
rm

o

p
ti

m
iz

a
ti

o
n

D
if

fe
re

n
ti

a
l

e
v

o
lu

ti
o

n

(C
G

A
_

P
B

X
_

S
H

U
F

F
LE

)
(G

A
_

P
B

X
_

S
H

U
F

F
LE

)
(P

S
O

)
(D

E
)

P
ro

b

#

G
lo

b
a

l
b

e
st

(g
 b

es
t)

B
e

st

A
v

g

a
v

g
D

ev

(σ

)
(%

)
B

e
st

A
v

g

a
v

g
D

ev

(σ

)
(%

)
B

e
st

A
v

g

a
v

g
D

ev

(σ

)
(%

)
B

e
st

A
v

g

a
v

g
D

ev

(σ

)
(%

)

1

5
3

5

5
3

5

5
3

5

0
.0

4

(0

.0
6

)
5

3
5

5
3

5

0
.6

0

(0

.6
0

) a

5
3

5

5
3

1

0
.7

0

(0

.7
2

) a

5
3

5

5
3

4

0
.1

6

(0

.1
3

) a

2

11
7

3

11
7

3

11
7

2

0
.0

7

(0

.0
8

)
11

7
3

11
7

2

0
.0

7

(0

.0
8

) d

11
6

9

11
5

1

1.
8

6

(0

.8
7

) a

11
7

0

11
6

1

1.
0

4

(0

.6
3

) a

3

1
0

1
3

1
0

1
3

1
0

1
2

0
.0

7

(0

.1
3

)
1

0
1

3

1
0

1
0

0
.2

7

(0

.3
0

) b

9
8

2

9
6

6

4
.6

4

(1

.3
3

) a

9
9

4

9
8

4

2
.9

0

(0

.5
9

) a

4

1
4

3
8

1
4

3
3

1
4

2
6

0
.8

2

(0

.2
7

)
1

4
3

6

1
4

3
0

0
.5

5

(0

.3
4

) c
1

3
8

4

1
3

6
0

5
.3

8

(0

.8
9

) a

1
4

0
1

1
3

8
5

3
.6

6

(0

.8
3

) a

5

1
4

8
4

1
4

8
1

1
4

7
7

0
.5

2

(0

.2
0

)
1

4
8

3

1
4

7
8

0
.4

2

(0

.2
8

) d

1
4

2
6

1
4

0
2

5
.5

1

(1

.1
2

) a

1
4

5
1

1
4

2
7

3
.8

8

(0

.7
1

) a

6

3
5

7
6

3
5

4
8

3
5

3
5

1
.1

5

(0

.2
9

)
3

5
4

9

3
5

2
5

1.
4

3

(0

.4
5

) d

3
3

2
6

3
3

0
0

7.
7

3

(0

.5
3

) a

3
3

3
4

3
2

8
4

8
.1

7

(0

.6
4

) a

7

4
7

11

4
6

5
4

4
6

3
3

1
.6

6

(0

.2
4

)
4

6
4

1

4
6

2
3

1.
8

7

(0

.2
3

) b

4
3

0
3

4
2

3
7

1
0

.0
7

(1

.1
3

) a

4
3

6
4

4
2

3
2

1
0

.1
7

(0

.9
5

) a

8

5
5

1
2

5
4

2
2

5
3

8
7

2
.2

8

(0

.2
8

)
5

3
9

2

5
3

7
6

2
.4

8

(0

.2
4

) d

4
9

8
5

4
9

1
3

1
0

.8
8

(1

.2
4

) a

4
9

1
3

4
8

7
8

11
.5

0

(0

.2
8

) a

9

2
2

6
3

2

2
1

4
4

3

2
1

3
9

1

5
.4

8

(0

.2
1

)
2

1
3

7
8

2
1

3
3

1

5
.7

5

(0

.1
5

) b

1
9

4
9

9

1
9

3
7

4

1
4

.4
0

(0

.5
0

) a

1
9

4
6

2

1
9

3
9

5

1
4

.3
1

(0

.1
3

) a

1
0

2
4

7
3

2

2
3

0
7

7

2
2

8
7

8

7.
5

0

(0

.3
5

)
2

2
9

5
8

2
2

8
0

9

7.
7

8

(0

.3
1

) b

1
9

5
6

3

1
9

1
8

2

2
2

.4
4

(0

.5
3

) a

2
0

4
5

1

1
9

9
2

4

1
9

.4
4

(1

.2
4

) a

11

2
5

7
3

8

2
3

4
4

3

2
3

3
4

5

9
.3

0

(0

.1
6

)
2

3
4

1
9

2
3

2
7

9

9
.5

5

(0

.4
1

) b

1
9

5
8

8

1
9

3
8

5

2
4

.6
8

(0

.5
9

) a

2
0

4
5

1

1
9

9
2

4

1
9

.4
4

(1

.2
4

) a

1
2

9
6

2
0

2

8
9

8
7

4

8
9

7
0

7

6
.7

5

(0

.1
3

)
8

9
5

7
2

8
9

3
3

0

7.
1

4

(0

.1
3

) a

8
5

5
3

2

8
5

1
3

5

11
.5

0

(0

.3
4

) a

8
5

3
6

3

8
5

2
7

3

11
.3

6

(0

.0
6

) a

1
3

2
1

0
0

6

1
9

8
7

9

1
9

7
9

6

5
.7

6

(0

.3
1

)
1

9
8

2
0

1
9

7
3

7

6
.0

4

(0

.2
5

) b

1
8

1
4

6

17
9

3
9

1
4

.6
0

(0

.5
3

) a

1
8

0
2

7

17
9

8
2

1
4

.4
0

(0

.1
1

) a

a

C
G

A
_

P
B

X
_

S
H

U
F

F
LE

sh

o
w

s
si

g
n

ifi
ca

n
tl

y

b

e
tt

e
r

p
e

rf
o

rm
a

n
ce

in

th

e

co

m
p

a
ri

so
n

(w

it
h

a

lp
h

a

=

0
.0

1
).

b

C
G

A
_

P
B

X
_

S
H

U
F

F
LE

sh

o
w

s
si

g
n

ifi
ca

n
tl

y

b

e
tt

e
r

p
e

rf
o

rm
a

n
ce

in

th

e

co

m
p

a
ri

so
n

(w

it
h

a

lp
h

a

=

0
.0

5
).

c
C

G
A

_
P

B
X

_
S

H
U

F
F

LE

sh

o
w

s
si

g
n

ifi
ca

n
tl

y

w

o
rs

e

p

e
rf

o
rm

a
n

ce

in

th

e

co

m
p

a
ri

so
n

(w

it
h

a

lp
h

a

=

0
.0

5
).

d

C
G

A
_

P
B

X
_

S
H

U
F

F
LE

sh

o
w

s
e

q
u

a
l

p
e

rf
o

rm
a

n
ce

in

th

e

co

m
p

a
ri

so
n

.
Chaotic number generators, developed from chaotic systems,

ave been employed to generate random numbers, yielding su-

erior results. The use of chaotic sequences in evolutionary algo-

ithms was introduced and proposed by Yang and Chen [43] , and

aponetto et al. [5] . We have also employed chaotic sequences to

mprove the results of the GA algorithm. The logistic map function,

haracterized by Eq. (18) [30] , was adopted in our experiments:

 k +1 = α.x k (1 − x k) (18)

here α is a control parameter for generating numbers in (0,1),

nd is set to 4. We employed chaotic sequences for the initial pop-

lation generation, parent selection, crossover operators, and mu-

ation probability. Regarding the crossover operators, experiments

ere conducted using chaotic sequences for all the discussed op-

rators, but only the results for the PBX_SHUFFLE operator (best

perator) are reported in Table 11 . For the crossover operators, the

rossover points are selected using a chaotic number generator. For

xample, for the position-based crossover operator, each position

gene) in parent A is selected using a chaotic number generator

ith a probability of 0.5.

In Table 11 , the problem instances are the same as those de-

cribed in the dataset given in Table 1 . Because the PBX_SHUFFLE

perator exhibits a better performance than the other operators,

s discussed in Section 8.2.3 , we employed this operator in the ex-

eriments presented here. The value of the global best (g best) so-

ution is obtained using the best solution value obtained by exe-

uting our GA with the PBX_SHUFFLE operator, and the GA termi-

ates after 320 0 0 0 fitness evaluations. The values of avgDev and

are calculated accordingly, as defined in Eqs. (15) and 16 , re-

pectively. Ten independent runs were conducted for each exper-

ment, and Avg represents the average over the 10 runs. Each al-

orithm terminated after 10 0 0 0 fitness evaluations. The parame-

ers for all algorithms were optimized empirically, and the values

sed in our experiments are presented in Table 10 . The one-tail

-test was adopted to test the significance of the results obtained

y CGA_PBX_SHUFFLE and those of the three compared algorithms

PSO, DE, GA_PBX_SHUFFLE) at a confidence interval of 95% and

9%. Here, ‡ indicates that the compared algorithm is significantly

utperformed by CGA_PBX_SHUFFLE according to the one-tail t-

est at the 99% confidence interval. Furthermore, † , - and ≈ in-

icate that CGA_PBX_SHUFFLE performs better, worse, and equally

n the comparison according to the one-tail t-test at the 95% con-

dence interval, respectively.

We analyze the results depicted in Table 11 to compare the

erformances of the different search algorithms. The results show

hat GA with the PBX_SHUFFLE operator (GA_PBX_SHUFFLE) out-

erforms PSO and DE on all the problem instances, as it provides

ower values of avgDev . As the problem size increases, the dif-

erence in the quality of solutions of GA_PBX_SHUFFLE compared

ith the other algorithms also increases. For instance, the avgDev

f GA_PBX_SHUFFLE for problem #1 is 0.6, whereas it is 0.7 for

SO and 0.16 for DE. For large problems, we can consider prob-

em #9 as an example. Here, the avgDev of GA_PBX_SHUFFLE is

.75, whereas it is 14.4 for PSO and 14.31 for DE. The superiority

f the GA can be observed more clearly for problems where the to-

al number of agents is greater than the required number of agents

problems #10 and #11). For example, in problem #10 the average

ercentage deviations for PSO and DE are 22.4 and 19.44, respec-

ively, while this decreases to 7.78 for GA_PBX_SHUFFLE (an almost

0% improvement in the quality of the solution). We do not ob-

erve any significant differences in the quality of solutions for PSO

nd DE. It can be concluded from these results that PSO and DE fail

o maintain a good balance between exploration and exploitation

or the problem.
T
a

C
o

o
f

426 I. Younas et al. / Neurocomputing 314 (2018) 409–428

Fig. 30. Comparison of the GA with chaotic GA for different crossover operators

(results on problem #9 with the number of fitness evaluations = 10 0 0 0).

Fig. 31. Comparison of the GA with chaotic GA for different crossover operators

(results on problem #10 with the number of fitness evaluations = 10 0 0 0).

9

m

O

o

T

i

s

l

o

s

s

p

t

p

i

x

a

o

o

p

u

b

a

o

b

i

i

r

o

a

i
Another observation from results of GA_PBX_SHUFFLE is that

for smaller problems the avgDev is less than 1%, but for larger

problems the maximum average deviation increases to almost 10%.

The reason for this difference is the effect of the number of fit-

ness evaluations on different problem sizes. Figs. 21 –23 illustrate

that the quality of solutions improves as the number of fitness

evaluations increases. For the experiments in this section, 10 0 0 0

fitness evaluations were conducted for each algorithm. However,

if the number of fitness evaluations is increased from 10 0 0 0 to

80 0 0 0, the value of avgDev drops from almost 10% to 2%, as

shown in Figs. 21 –23 . The number of fitness evaluations has the

same effect on PSO and DE, i.e., if the number of fitness evalu-

ations increases the results are improved. However, the GA still

outperforms these algorithms, even for a large number of fitness

evaluations.

The results of the GA with the PBX_SHUFFLE operator can

be further enhanced using chaotic sequences. The best value of

the avgDev among the four algorithms for each problem is high-

lighted in bold in Table 11 . We can observe that for most of the

problems, chaotic sequences help to improve the quality of solu-

tions for the GA. In order to observe the behavior of chaotic se-

quences on different GA crossover operators, we report the re-

sults for the three crossover operators ONE_ POINT (the worst

operator), PBX, and PBX_SHUFFLE (the best operator), as shown

in Figs. 30 and 31 . In general, on small initial population sizes

chaotic GA with the PBX_SHUFFLE operator outperforms simple

GA with the PBX_SHUFFLE operator for different crossover oper-

ators. For example, in Fig. 31 the average percentage deviation

for GA with the one point crossover (GA_ONE_POINT) is 8.21,

while this decreases to 7.3 for chaotic GA with the one-point

crossover (CGA_ONE_POINT). Similarly, the average percentage de-

viation for the GA with PBX_SHUFFLE (GA_PBX_SHUFFLE) is 6.83,

while this decreases to 5.75 for chaotic GA with PBX_SHUFFLE

(CGA_PBX_SHUFFLE).

The t-test results in Table 11 show that CGA_PBX_SHUFFLE

performs significantly better than PSO and DE at a 99% con-

fidence interval for all problems. CGA_PBX_SHUFFLE is also

significantly better than GA_PBX_SHUFFLE at the 95% confi-

dence interval for all large-scale problems (9 to 13). On small

problems (1 to 8), the performance of CGA_PBX_SHUFFLE is

equivalent to, or sometimes better than, that of GA_PBX_

SHUFFLE.
.2. Approximation algorithm

To the best of our knowledge, there are no existing approxi-

ation algorithms for this particular kind of assignment problem.

ne possible approximation scheme for assigning tasks to teams

f collaborating agents is to employ the Hungarian algorithm [27] .

he Hungarian algorithm finds the optimal solution for the case

n which agents do not collaborate in teams. Our approximation

cheme works as follows:

1. The Hungarian algorithm is employed to find the optimal solu-

tion for the case in which agents do not collaborate in teams.

2. New capabilities of agents for the teams formed in step 1 are

calculated using Eq. (11) .

3. The solution, which represents the weighted sum of these new

capabilities, is calculated using Eq. (13) .

A loose upper bound for our problem can be computed as fol-

ows. At most, an agent’s capability can be increased to 50% of its

riginal capability value according to the collaborative model pre-

ented in Eq. (11) . In the worst case, the proposed approximation

cheme will form teams in such a way that none of the agents’ ca-

abilities are increased. This means that the proposed approxima-

ion scheme will find at least 66.6% of the upper bound. For exam-

le, suppose the original capability of an agent is x , and this can be

ncreased to a maximum value of y , where y = x + (50
100) × x . Then,

 is 66.6% of y . Therefore, the approximation ratio of the suggested

pproximation algorithm is two-thirds of the upper bound of the

ptimal solution.

The aforementioned upper bound is a loose upper bound for

ur experiments. However, we have computed a more realistic up-

er bound for the optimal solution of our problem. The previous

pper bound assumes that each agent’s capability can be increased

y 50% of its original value. In reality, the maximum increase in

n original capability for most agents will be less than 50% of the

riginal capability, as it depends on the value of the original capa-

ility of the agent.

For example, the capabilities of agents used in the above exper-

ments range from 0 to 4, and will increase as shown in Table 12 . It

s clear from this table that an agent with a capability of 1 or 3 can

eceive a maximum benefit of 0.75, and an agent with a capability

f 2 can receive a maximum benefit of 1. The capabilities of agents

re influenced by the maximum capability of that type (c max
k

)

n the team (g S j
), and the new capabilities (c ′

ik
) are calculated

I. Younas et al. / Neurocomputing 314 (2018) 409–428 427

Table 12

Benefits gained in capabilities of agents according to Eq. (11).

Capability Max capability in team Benefit Increased capability

1 1 0 1

1 2 0.5 1.5

1 3 0.67 1.67

1 4 0.75 1.75

2 1 0 2

2 2 0 2

2 3 0.67 2.67

2 4 1 3

3 1 0 3

3 2 0 3

3 3 0 3

3 4 0.75 3.75

4 1 0 4

4 2 0 4

4 3 0 4

4 4 0 4

Table 13

Comparison of results of the approximation algorithm and upper bound on the op-

timal solution.

Problem # GA Approximation alg. Upper bound % of Upper bound

1 535 518 640 81

2 1172 1145 1304 81

3 1013 992 1215 82

4 1431 1380 1667 83

5 1480 1454 1778 82

6 3557 3451 3783 91

7 4686 4545 5101 89

8 5481 5285 6068 87

9 22277 21877 24915 88

10 24258 23973 26501 90

u

t

c

a

p

t

t

c

u

a

p

s

a

r

r

p

s

1

i

e

q

j

m

l

o

t

b

p

s

p

b

c

a

w

e

c

t

d

p

T

f

t

o

p

t

c

o

t

g

A

r

T

R

sing Eq. (11) . Eq. (11) implies that an agent’s capability receives

he highest benefit if there is another agent with the maximum

apability of that type in the team. The upper bound is computed

s follows:

1. Increase each agent’s capability to its maximum possible value

according to Table 12 .

2. Run the Hungarian algorithm on the new increased capabilities.

3. The solution of the Hungarian algorithm will give an upper

bound for our problem.

Table 13 presents the results of this approximation scheme. We

erformed the experiments for this approximation scheme using

he dataset given in Table 1 . The results given in Table 13 show

hat the proposed approximation scheme performs reasonably well

ompared with upper bound on the optimal solution. The last col-

mn of the table shows the weighted sum capability of the agents

chieved by the approximation scheme as a percentage of the up-

er bound. Although the approximation ratio computed above con-

titutes two-thirds of the upper bound, in general the proposed

pproximation algorithm performs better than this approximation

atio. The values in the last column for different problem sizes

ange from 81% to 91%. Moreover, our proposed GA is also com-

ared with the approximation algorithm in Table 13 , and it can be

een to outperform the approximation algorithm.

0. Summary and conclusions

This paper focuses on a specific class of assignment problems

n which agents work collaboratively as teams. It is assumed that

ach agent has a set of capabilities, and each task has a set of re-

uirements, which are specified as weights for capabilities. The ob-

ective is to assign the agents to the teams such that the gain is

aximized. We present a mathematical formulation of the prob-

em, and suggest the use of GAs to solve the model. The choice
f GAs is motivated by the fact that there are no known methods

hat can solve this class of APs in polynomial time, and GAs have

een widely adopted for a variety of combinatorial optimization

roblems. We demonstrate that for large instances of the problem,

tandard crossover operators are not able to efficiently solve the

roblem.

We suggest modifications to the standard crossover operators

y adding shuffled lists to them, and also introduce two new

rossover operators: team-based and team-based shuffled list oper-

tors. Experiments on synthetically generated data are conducted,

hich demonstrate that the modified and proposed crossover op-

rators perform significantly better.

Among all the studied operators, the position-based shuffled list

rossover operator exhibits the strongest performance. However,

his operator is sensitive to a large initial population size, which

emands that the size of the population is chosen carefully.

Experiments are performed to fine-tune the parameters of the

osition-based shuffled list crossover for the best performance.

wo parameters are tested: (i) the probability of selecting a gene

rom one of the parents to be transferred to the offspring, and (ii)

he mutation probability. In the first case, the best performance is

btained when the probability of selecting a gene from one of the

arents is 70%. In the second case, the highest performance is ob-

ained for an 80% mutation probability. The performance of the GA

an be enhanced further by employing chaotic sequences. More-

ver, the GA is also compared with the PSO and DE algorithms, and

he results demonstrate the superiority of GA over these search al-

orithms.

cknowledgments

We would like to thank Prof. Rassul Ayani for supervising this

esearch and Prof. Christian Schulte at the KTH Royal Institute of

echnology for his valuable comments and suggestions.

eferences

[1] F.S. Al-Anzi , K. Al-Zame , A. Allahverdi , The weighted multi-skill resources

project scheduling, J. Softw. Eng. Appl. 3 (12) (2010) 1125–1130 .
[2] E. Alba , F. Chicano , Software project management with GAs, Inf. Sci. 177 (2007)

2380–2401 .

[3] B.M. Baker , M.A. Ayechew , A genetic algorithm for the vehicle routing problem,
Comput. Oper. Res. 30 (2003) 787–800 .

[4] N. Buchbinder , K. Jain , J.S. Naor , Online primal-dual algorithms for maximizing
ad-auctions revenue, in: Proceedings of the 15th Annual European Conference

on Algorithms, in: ESA’07, Springer-Verlag, 2007, pp. 253–264 .
[5] R. Caponetto , L. Fortuna , S. Fazzino , M.G. Xibilia , Chaotic sequences to improve

the performance of evolutionary algorithms, IEEE Trans. Evol. Comput. 7 (3)

(2003) 289–304 .
[6] P. Cheng , X. Lian , L. Chen , J. Han , J. Zhao , Task assignment on multi-

-skill oriented spatial crowdsourcing, IEEE Trans. Knowl. Data Eng. 28 (2016)
2201–2215 .

[7] F. Chicano , F. Luna , A.J. Nebro , E. Alba , Using multi-objective metaheuristics to
solve the software project scheduling problem, in: Proceedings of the GECCO,

ACM, 2011 .

[8] P.C. Chu , J.E. Beasley , A genetic algorithm for the generalised assignment prob-
lem, Comput. Oper. Res. 24 (1997) 17–23 .

[9] L. Davis , Applying adaptive algorithms to epistatic domains, in: Proceedings
of the 9th International Joint Conference on Artificial Intelligence, 1, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1985, pp. 162–164 .
[10] N. Devanur , T.P. Hayes , The adwords problem: Online keyword matching with

budgeted bidders under random permutations, in: Proceedings of the 10th

ACM Conference on Electronic Commerce, Association for Computing Machin-
ery, Inc., 2009 .

[11] R.C. Eberhart , J. Kennedy , A new optimizer using particle swarm theory, in:
Proceedings of the Sixth International Symposium on Micro Machine and Hu-

man Science, 1995, pp. 39–43 .
[12] O. Etiler , B. Toklu , M. Atak , J. Wilson , A genetic algorithm for flow shop

scheduling problems, J. Oper. Res. Soc. 55 (8) (2004) 830–835 .
[13] J. Feldman, M. Henzinger, N. Korula, V.S. Mirrokni, C. Stein, Online Stochastic

Packing Applied to Display Ad Allocation, Springer Berlin Heidelberg, Berlin,

Heidelberg, pp. 182–194.
[14] M.L. Fisher , R. Jaikumar , L.N.V. Wassenhove , A multiplier adjustment method

for the generalized assignment problem, Manag. Sci. 32 (9) (1986) 1095–1103 .
[15] A. Frank , On Kuhn’s Hungarian method–a tribute from Hungary, Naval Res. Lo-

gist. 52 (2005) 2–5 .

http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0014

428 I. Younas et al. / Neurocomputing 314 (2018) 409–428

M

F

m

e

t

a

t

i

u

t

S

a

t

m

m

a

[16] M. Gen , R. Cheng , Genetic Algorithms and Engineering Optimization, John Wi-
ley Sons Inc., USA, 20 0 0 .

[17] D.E. Goldberg , Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison Wesley, Massachusetts, 1989 .

[18] D.E. Goldberg , R. Lingle , Alleles, loci, and the travelling salesman problem, in:
Proceedings of the First International Conference on Genetic Algorithms and

their Applications, Lawrence Erlbaum, Hillsdale, 1985, pp. 154–159 .
[19] D.E. Goldberg , robert , Alleles, loci, and the traveling salesman problem, in:

J.J. Grefenstette (Ed.), Proceedings of the First International Conference on Ge-

netic Algorithms and Their Applications, Lawrence Erlbaum Associates, Pub-
lishers, 1985 .

[20] J.F. Gonçalves , J.J.M. Mendes , M.G.C. Resende , A genetic algorithm for the re-
source constrained multi-project scheduling problem, Eur. J. Oper. Res. 189 (3)

(2008) 1171–1190 .
[21] C.-J. Ho , J.W. Vaughan , Online task assignment in crowdsourcing markets, in:

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,

AAAI Press, 2012, pp. 45–51 .
[22] J.H. Holland , Adaptation in Natural and Artificial Systems, MIT Press, Cam-

bridge, MA, USA, 1992 .
[23] F. Kamrani , R. Ayani , F. Moradi , A model for estimating the performance of

a team of agents, in: Proceedings IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2011, pp. 2393–2400 .

[24] H. Kazemipoor , R. Tavakkoli-Moghaddam , P. Shahnazari-Shahrezaei , A. Azaron ,

A differential evolution algorithm to solve multi-skilled project portfolio
scheduling problems, Int. J. Adv. Manuf. Technol. 64 (5) (2013) 1099–1111 .

[25] T. Kellegöz , B. Toklu , J.M. Wilson , Comparing efficiencies of genetic crossover
operators for one machine total weighted tardiness problem, Appl. Math. Com-

put. 199 (2008) 590–598 .
[26] J. Kennedy , R.C. Eberhart , Particle swarm optimization, in: Proceedings of the

IEEE International Conference on Neural Networks, 1995, pp. 1942–1948 .

[27] H.W. Kuhn , The Hungarian method for the assignment problem, Naval Res. Lo-
gist. Q. 2 (1955) 83–97 .

[28] M. Kuroda , K. Yamamori , M. Munetomo , M. Yasunaga , I. Yoshihara , A pro-
posal for zoning crossover of hybrid genetic algorithms for large-scale travel-

ing salesman problems, in: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), 2010, pp. 1–6 .

[29] F. Luna , D.L. Gonzlez-lvarez , F. Chicano , M.A. Vega-Rodrguez , The software

project scheduling problem: A scalability analysis of multi-objective meta-
heuristics, Appl. Soft Comput. 15 (2014) 136–148 .

[30] R.M. May , Simple mathematical models with very complicated dynamics, Na-
ture 261 (1976) 459–467 .

[31] J.J.M. Mendes , J.F. Gonçalves , M.G.C. Resende , A random key based genetic algo-
rithm for the resource constrained project scheduling problem, Comput. Oper.

Res. 36 (1) (2009) 92–109 .

[32] M. Mitchell , Introduction to Genetic Algorithms, MIT Press, Cambridge, Mas-
sachusetts, 1999 .

[33] C. Montoya, O. Bellenguez-Morineau, E. Pinson, D. Rivreau, Integrated Column
Generation and Lagrangian Relaxation Approach for the Multi-Skill Project

Scheduling Problem, Springer International Publishing, pp. 565–586.
[34] T. Murata , H. Ishibuchi , Performance evaluation of genetic algorithms for flow-

shop scheduling problems, in: Proceedings of the First IEEE Conference on Evo-
lutionary Computation. IEEE World Congress on Computational Intelligence,

vol.2, 1994, pp. 812–817 .

[35] P.B. Myszkowski , M.E. Skowro ́nski , Ł.P. Olech , K. O ́slizło , Hybrid ant colony op-
timization in solving multi-skill resource-constrained project scheduling prob-

lem, Soft Comput. 19 (12) (2015) 3599–3619 .
[36] I.M. Oliver , D.J. Smith , J.R.C. Holland , A study of permutation crossover opera-

tors on the traveling salesman problem, in: Proceedings of the Second Inter-
national Conference on Genetic Algorithms on Genetic Algorithms and Their

Application, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1987, pp. 224–230 .

[37] D.W. Pentico , Assignment problems: a golden anniversary survey, Eur. J. Oper.
Res. 176 (2) (2007) 774–793 .

[38] R. Storn , K. Price , Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces, J. Global Optim. 11 (4) (1997)

341–359 .
[39] G. Syswerda , Schedule optimization using genetic algorithms, in: L. Davis (Ed.),

Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1990 .

[40] L. Wang , X.L. Zheng , A knowledge-guided multi-objective fruit fly optimization
algorithmfor the multi-skill resource constrained project scheduling problem,

Swarm Evol. Comput. 38 (2017) 54–63 .
[41] L.D. Whitley , T. Starkweather , D. Fuquay , Scheduling problems and traveling

salesmen: the genetic edge recombination operator, in: Proceedings of the 3rd
International Conference on Genetic Algorithms, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1989, pp. 133–140 .
[42] D.H. Wolpert , W.G. Macready , No free lunch theorems for optimization and
search, IEEE Trans. Evol. Comput. 1 (1) (1997) 67–82 .

[43] L.J. Yang , T.L. Chen , Application of chaos in genetic algorithms, Commun. Theor.
Phys. 38 (2002) 168–172 .

[44] I. Younas , F. Kamrani , C. Schulte , R. Ayani , Optimization of task assignment to
collaborating agents, in: Proceedings of the IEEE Symposium on Computational

Intelligence in Scheduling, Paris, France, 2011, pp. 17–24 .
[45] H.-y. Zheng , L. Wang , X.-l. Zheng , Teaching–learning-based optimization al-

gorithm for multi-skill resource constrained project scheduling problem, Soft

Comput. 21 (6) (2017) 1537–1548 .

Irfan Younas received the Ph.D. degree from KTH Royal

Institute of Technology, Stockholm, Sweden. Currently,
he is an Assistant Professor of Computer Science at

National University of Computer and Emerging Sci-
ences. His current research interests include Evolutionary

Algorithms, Bioinformatics, Combinatorial Optimization,

Search Heuristics, Multi-objective Optimization, Many-
Objective Algorithms, and Machine Learning. Previously,

He has worked on different military and defense related
projects carried out at the Swedish Defence Research

Agency (FOI). Moreover, he has around 8 years of exten-
sive industry experience in Design, Development, Imple-

mentation and Management of systems in wide variety of

areas.

Farzad Kamrani is a Scientist at Swedish Defence Re-

search Agency (FOI) in the Department of Decision Sup-
port Systems. He has worked for many years on mod-

elling and simulation and his research interest is in the

field of evolutionary algorithms, machine learning and ar-
tificial intelligence. He has a Masters degree in Computer

Science from the University of Gothenburg and a Ph.D. in
Electronics and Computer Systems from KTH Royal Insti-

tute of Technology.

aryam Bashir is an Assistant Professor of Computer Science at National Univer-

sity of Computer and Emerging Sciences. She earned her doctorate in Computer
Science from Northeastern University in Boston USA. She is recipient of prestigious

ulbright Scholarship for Ph.D. studies in USA. Her research interests include Infor-
ation Retrieval, Machine Leaning, and Data Sciences.

Johan Schubert is Associate Professor of information and

communication technology at the Royal Institute of Tech-

nology and Deputy Research Director of information fu-
sion at the Swedish Defence Research Agency. He re-

ceived the M.Sc. degree in Engineering Physics in 1986
and the Ph.D. degree in Computer Science in 1994, both

from the Royal Institute of Technology, Stockholm. He has
conducted research in artificial intelligence, decision sup-

port, and information fusion for 31 years and published

17 journal articles, 5 book chapters, 52 conference papers,
40 technical reports and 13 popular science articles. He

was the technical program chair of the 7th International
Conference on Information Fusion, editor of the confer-

nce proceedings and guest editor of a double special issue of the journal Informa-
ion Fusion. He is a board member of the Belief Functions and Applications Society

nd member of the editorial board of the Information Fusion journal. He received

he IJAR Best Paper Award at the 4th International Conference on Belief Functions
n 2016. He was the Swedish representative to the NATO S&T Modelling and Sim-

lation Groups Data Farming in Support of NATO 2010–2013 and Developing Ac-
ionable Data Farming Decision Support for NATO 2013–2017. He received the NATO

cientific Achievement Award in 2014. His research interests include theoretical and
pplied aspects of artificial intelligence, soft computing, neural networks, evolu-

ionary algorithms, big data analytics, management of uncertainty, belief functions,

odelling and simulation, data farming, military applications of high-level infor-
ation fusion, decision support, and artificial intelligence for situation and threat

ssessment and its use in decision support systems.

http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0039
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0039
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0039
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0039
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0040
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0040
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0040
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0041
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0041
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0041
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0042
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0042
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0042
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0042
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0042
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0043
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0043
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0043
http://refhub.elsevier.com/S0925-2312(18)30834-8/sbref0043

	Efficient genetic algorithms for optimal assignment of tasks to teams of agents
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Genetic algorithms for the assignment of tasks to teams of agents
	5 Implementation overview and computational complexity of GA
	6 Analysis of the genetic algorithm
	6.1 Accuracy
	6.2 Efficiency

	7 Genetic crossover operators
	7.1 Well-known crossover operators
	7.1.1 k-point crossover operator
	7.1.2 Position-based crossover operator
	7.1.3 Order-based crossover operator

	7.2 Modified and new crossover operators
	7.2.1 k-point shuffled list crossover operator
	7.2.2 Position-based shuffled list crossover operator
	7.2.3 Uniform shuffled list crossover operator
	7.2.4 Random point shuffled list crossover operator
	7.2.5 Team-based crossover operator
	7.2.6 Team-based shuffled list crossover operator

	8 Experimental results for crossover operators
	8.1 Experiment setup
	8.2 Comparison and discussion
	8.2.1 Performance comparison for different crossover operators on a varying population size
	8.2.2 Performance comparison for different crossover operators with a varying number of fitness evaluations
	8.2.3 Performance comparison of other crossover operators
	8.2.4 Fine-tuning the GA with the position-based shuffled list crossover operator
	8.2.5 Significance test results for crossover operators

	9 Comparison of GA with other nature-inspired metaheuristics and an approximation algorithm
	9.1 Comparison of GA with PSO and differential evolution algorithm
	9.2 Approximation algorithm

	10 Summary and conclusions
	 Acknowledgments
	 References

