
Enterprise architecture with executable

modelling rules: A case study at the Swedish

Defence Materiel Administration

Mika Cohen1, Michael Minock2, Daniel Oskarsson1, and Björn Pelzer1

1 FOI, Stockholm, Sweden,
{mika.cohen,daniel.oskarsson,bjorn.pelzer}@foi.se
2 KTH Royal Institute of Technology, Stockholm, Sweden,

minock@kth.se

Abstract. Formal modeling rules can be used to ensure that an enter-
prise architecture is correct. Despite their apparent utility and despite
mature tool support, formal modelling rules are rarely, if ever, used in
practice in enterprise architecture in industry. In this paper we propose
a rule authoring method that we believe aligns with actual modelling
practice, at least as witnessed in enterprise architecture projects at the
Swedish Defence Materiel Administration. The proposed method follows
the business rules approach: the rules are specified in a (controlled) natu-
ral language which makes them accessible to all stakeholders and easy to
modify as the meta-model matures and evolves over time. The method
was put to test during 2014 in two large scale enterprise architecture
projects, and we report on the experiences from that. To the best of
our knowledge, this is the first time extensive formal modelling rules for
enterprise architecture has been tested in industry and reported in the
literature.

Key words: enterprise architecture, data quality, meta-model, seman-
tics, business rules, case study

1 Introduction

An enterprise architecture (EA) model is composed of symbols (boxes, arrows,
words, etc.) that combine to make claims about the business being modelled.
How the symbols combine to express meaningful statements is given by the
model’s semantics. Part of the semantics is typically governed by an explicit
meta-model ; ideally, the rest is governed by informal or tacit agreement across
modellers and model users.

As long as the model semantics is thus fully determined, explicitly or in-
formally, it can, at least in part, be captured by formal (and thus executable)
modelling rules1, e.g. in OCL2 [8, 13, 14], forming an extended meta-model which

1 Sometimes referred to as “compliance rules”
2 Object Constraint Language



2 Mika Cohen et al.

can in turn be used to automatically verify that the model complies with the
semantics.

But what if part of the semantics are not even implicit but thoroughly un-
determined? In a typical modelling scenario, with multiple modellers and stake-
holders modifying and interacting with the model over a span of time, the risk
is then that semantic underdetermination leads to model inconsistencies that
go undiscovered by automatic compliance checking, since that which is undeter-
mined cannot be formalized into compliance rules.

Fortunately, the very process of formulating executable rules lends itself to
weeding out vagueness: Since a rule, to be executable, must be expressed in
precise concepts, formulating the rule entails specifying those concepts that are
yet not precise.

To secure the participation and involvement of a broad range of stakeholders
in the rule formulation process, and thus ultimately to ensure the quality of the
extended meta-model thus produced, it helps if the rules, in addition to being
formal, are expressed in a language that resembles natural language.

So, resting upon the assumptions that (1) it is useful to continually submit
an EA model to validation against semantic rules, (2) the process of expressing
formal rules has the effect of forcing semantic specification, bringing value by
precluding model vagueness, and (3) natural language rules improve quality by
involving a wider range of stakeholders in the formulation of the semantics,
we propose a method for automatic model validation and continual semantic
specification based on semantic rules expressed in a controlled natural language.

We report the results from applying this method within two EA projects
at the Swedish Defence Materiel Administration (FMV) in the main section
of this paper (5). But first, in section 2, we describe the background that
lead us to formulate a set of hypotheses about the role of modelling rules in
EA projects—listed in section 3—which in turn lead to the formulation of the
method—described in section 4. The case study section (5) evaluates the method
in terms of the hypotheses, and the verdict is summarized in Conclusions (6).

Related work The need for enterprise architecture to be correct has been
pointed out repeatedly and formal modelling rules have been proposed as a
suitable means to enforce correctness [1, 4, 6, 8, 10, 13, 14]. Indeed, several
commercial EA-modelling tools allow the user to specify formal modelling rules
in OCL; the modelling environment will then warn the user whenever data is
entered that violates a rule. To the best of our knowledge, however, no extensive
use of formal modelling rules in a large scale industrial EA project has been
reported previously in the literature.

The meta-modelling method described in the present paper can be seen as
domain specific modelling [9], a modelling methodology used in software en-
gineering. In domain specific modelling, the meta-model is tailored to suit a
narrow problem domain, e.g. a particular product line or a particular software
project. The narrow problem domain allows stronger, more effective modelling
rules compared to the rather weak modelling rules that come with general pur-
pose software modelling languages such as UML. Typically, the modelling rules



EA with executable modelling rules: Case study at FMV 3

are expressed in OCL or other similarly low-level constraint language inaccessible
to stakeholders outside IT.

The rule authoring method described in the present paper, by contrast, fol-
lows the business rules approach [5]. In particular, the rules are captured in a
(controlled) natural language which is subsequently transformed into executable
code. In typical business rules applications, the rules capture operational guide-
lines such as regulatory compliance rules rather than, as in our case, modelling
rules for a domain specific modeling language. Moreover, the executable code
(that the rules compile to) is typically decision logic (e.g. in a workflow system)
rather than database integrity constraints.

Richer, extended EA meta-models are considered in [7], which extends Archi-
Mate, an enterprise architecture modelling language, with inference rules that
derive numerical data attributes in an element from other attributes in the same
or related elements. The inference rules reflect empirically established correla-
tions (“laws of causation”) rather than an informal intuitive semantics.

The natural language compiler used in the case study is described in [3].

2 Background

During 2013, FOI3 was called in to lend support to the EA modelling project
SK TS 4 at the Swedish Defence Materiel Administration (FMV). The SK TS
architecture describes, at a high level of abstraction, the dependency relation-
ships between technical systems5, and how the development, production, use and
retirement of the systems is planned over time.

Our task was to design a set of consistency rules and implement them as
queries into the EA tool6 used to host the model. The queries were to be run
on a regular basis to uncover inconsistencies in the models, and thus to eschew
manual “proof reading” that was becoming intractable as the model was growing
in size and complexity.

We discovered at an early stage that having access to the model, attendant
meta-model and other documentation was insufficient as specification for the
rules to be designed; trying to design rules raised a multitude of questions of
interpretation, which we directed at the architecture modelling team. Our second
discovery was that these questions often did not have ready answers, but gave
rise to discussions that fed into the modelling process itself. We also found that
it took a few rounds of execution and redesign of the rule queries for them to
mature. Finally, we found that implementing the rules directly as queries into the
EA modelling tool offered poor overview over the rule set, and that keeping an

3 Swedish Defence Research Agency
4 Systemkarta tekniska system, Swedish for “system map (over) technical systems”
5 The term “technical system” can be loosely defined as a category of equipment
of non-trivial complexity, encompassing aircraft as well as munitions, but not e.g.
clothing.

6 MooD Business Architect 2010



4 Mika Cohen et al.

informal catalogue of rules as a companion to the queries posed its own problems
of synchronization.

These realizations lead to a redefinition of our task, from delivering a bundle
of rules, implemented as queries, to handing over a framework for continuous
rule development, management and execution. Having expressed the rules in the
technical syntax most expedient to the task of implementation, we now turned
to a controlled natural language to make the rule design process accessible to
all stakeholders. The new approach—detailed in the next section—was applied
to the continuation of the SK TS project, as well as to a different EA modelling
project, called FM UFS, at FMV.

3 Hypotheses

Based on the SK TS experience during 2013, we formulated a number of hy-
potheses about the possible role of executable semantic rules in EA modelling:

H1 EA models contain many errors that are missed despite extensive manual
auditing, but which can be captured automatically through the execution of
formal rules.

H2 EA meta-models contain many poorly defined concepts; the activity of de-
signing and executing formal semantic rules uncovers vagueness, imprecision
and ambiguity.

H3 EA modelling tends to require project-specific semantics, even when based
on well-established architecture frameworks.

H4 EA model semantics need to evolve with the modelling process.
H5 A natural language format for the rules boosts the semantic specification

process by stimulating broader participation in rule development.

The rationale behind that last hypothesis (H5) is that if the model semantics
need to be developed continually and specifically for the project, and if—as
H2 suggests—this semantic development is to be catalysed by the development
and execution of semantic rules, then the design and execution of rules is of
concern to a broad range of stakeholders, including non-technical ones. Such
broad participation should be facilitated by being able to directly execute natural
language formulations of rules.

4 Proposed method: Rule authoring as continual

modelling support

The method we propose can be described as a business rules approach to EA
modelling, where one works simultaneously and iteratively with the architecture
modelling process to produce a rule book that encodes project specific semantics
in SBVR7 [12], a controlled natural language. The rule book is continually put

7 Semantics of Business Vocabulary and Rules



EA with executable modelling rules: Case study at FMV 5

to use in validating the architecture model as new rules are formulated, catching
semantic errors early in the modelling process. Meanwhile, the very process of
creating the rule book extends the range of testable semantics, further shoring
up the modelling process.

4.1 Executable natural language rules in SBVR

An SBVR model consists of a vocabulary and a set of rules expressed in terms
of the vocabulary. The vocabulary is made up of nouns (see figure 1), naming
entities in the architecture model, and verbs (see figure 2), naming relationships
between the entities.

Fig. 1. Some noun concepts in the SK TS SBVR model, including (optional) informal
definitions as well as formal definitions (“Definition (primitive)”) in tuple calculus,
mapping the nouns to corresponding elements in the database.

The naming of entities and relationships serves the semantic function of ap-
pealing to human intuition about what states of affairs in the real world the
terms refer to. To provide semantic information to a machine, however, we need
to specify in what patterns the entities and relationships can appear in the ar-
chitecture model. This is done by the rule part of the SBVR model.

The rules are statements in the controlled natural language of SBVR, com-
posed of the nouns and verbs of the vocabulary, bound together by generic
operators, such as and, or, not, it is necessary that, to specify allowable patterns



6 Mika Cohen et al.

Fig. 2. Some verb concepts in the SK TS SBVR model, including (optional) informal
definitions as well as formal definitions (“Definition (primitive)”) in tuple calculus,
mapping the verbs to corresponding elements in the database. Attributes shown here
only for a subset of the verbs.

in the EA model. As an example, take the last rule in figure 3 (r115), “It is

necessary that a system1 that is part of a system2 that has a use phase2, have

a use phase1”. It uses the nouns system and use phase (with indices to identify
distinct variables of the same class) and the verbs system1 is part of system2

and system has life-cycle phase, connected into a meaningful statement by the
modal operator It is necessary that, the existential quantifier a and the specify-
ing operator that. The rule disallows the pattern where a sub-system lacks a use
phase while its super-system has one.

Since the rules follow the controlled grammar of SBVR, they are machine-
readable and can be “executed”, in the sense of generating reports of rule vio-
lations committed by the architecture model. Figure 4 shows an example of a
violations report produced by executing a rule.

The execution of rules over the architecture model is made possible by com-
piling them into SQL code that queries the architecture model—that is, the
database representation of it in the particular EA modelling tool used—for vi-
olations against the rules. To enable such compilation, the nouns and verbs in
the SBVR vocabulary must be formally mapped onto entities and relationships
of the model, as represented in the database. In our current implementation, the
mappings are encoded in Codd’s tuple calculus [2] (as can be seen in figures 1
and 2), and the compilation is performed by a modified version [3] of the natural
language question-answering engine C-Phrase [11].



EA with executable modelling rules: Case study at FMV 7

Fig. 3. Some rules in the SK TS SBVR model.

Fig. 4. Violations report produced when executing the rule “It is necessary that a

system that is in a use phase be used by some combat unit.”. Results shown here are
from a public demo release of SK TS, not the actual SK TS model, which is confidential.

4.2 Process

The semantic rules should be developed in parallel with the meta-model, as an
integral part of the meta-model development itself, with the participation of as
broad a range of stakeholders as possible: enterprise architects, problem owners,
domain experts, database technicians, etc. As long as the meta-model has not
been set in stone, the rule book should equally be considered a living document.
The process we propose can be roughly summarized in the following steps, to be
repeated indefinitely:

1. Express intended model semantics as rules (either by adding new rules or
modifying existing ones). If questions are raised as to what is meant by some
of the terms, engage in a discussion, agree upon a meaning, and let the rules
reflect the agreement.



8 Mika Cohen et al.

2. Execute rules to generate violation reports.
3. Examine the violation reports and figure out to what extent they indicate

errors in the model, errors in the meta-model (the rules), or temporary and
tolerable incongruence between them.

4. Act accordingly, that is, correct the model, modify the rules, or tolerate.

5 Case study: Two EA projects at FMV

In this section, we evaluate the method just proposed, in terms of the hypotheses
that underpin it (as listed in section 3), in the context of two EA modelling
projects at FMV.

Throughout 2014 the method was applied to a continuation of the SK TS
project and to FM UFS8, another EA modelling project at FMV. FM UFS
describes the capabilities, current and targeted, of military units at different
levels of aggregation, what types of tasks the units are expected to perform, and
the relationships between capabilities and tasks. Both cases differ somewhat from
the ideal application scenario in that the rule development process was initiated
well into the EA modelling process.

5.1 Executing rules to find errors (H1)

Executing the rule book for SK TS produced a list of several thousand violations—
despite the extensive manual validation and verification that had already been
performed on the model. Most of the rule violations trace back to errors in the
various data sources that feed the SK TS model, and to inconsistencies between
the data sources. As an example, the rule “It is forbidden that a system that

specialises an abstract system has an object-group1 that generalises the object-

group2 of the abstract system” identifies cases where the object group hierarchy
(imported from one particular data source) and the system hierarchy (imported
from another data source) run in different directions of abstraction. More than
10% of all systems in SK TS violate this particular rule; one instance is the
system Grävmaskin hjul (“Wheeled excavator”), of object group L151 and with
the specialisation GM HB 19T (“Wheeled excavator 19T”), of object group L15,
which is a more general group than L151.

Executing rules also uncovered more trivial inconsistencies in SK TS. For
instance, the rule “The start date of a life cycle phase must precede its end date”

identifies several life cycle phases with inconsistent start- and end dates.
In addition to uncovering inconsistencies, executing the SK TS rule book

also uncovered incompleteness in the model. The rule “Every system in use

phase must have a decision of use”, for instance, identified more than a hundred
incompletely specified systems, that is, systems that were required to have been

8 Försvarsmaktens uppgifts-, förm̊age- och systemkartor, Swedish for “the Armed
Forces’ maps over tasks, capabilities and systems”, with “systems” in this case re-
ferring roughly to military units



EA with executable modelling rules: Case study at FMV 9

cleared for use according to FMV policy, but where this use decision had not
been entered into the model.

We do not report error rates in the FM UFS model, since at the time of writ-
ing, the version of model for which we designed rules has not yet been released,
except for a small preview sample. However, FMV plans to use the rule book as
part of the validation step prior to the release of the model. Presently, the UFS
rule book contains approximately 100 rules.

5.2 Specifying the semantics through rules (H2)

The rule authoring process quickly uncovered ambiguities in both SK TS and
FM UFS meta-models—some local, others affecting the entire architectures.
Throughout the efforts of formulating rules for both SK TS and FM UFS, ques-
tions of interpretation kept coming up for the modelling teams to address. Some
were answered promptly because the interpretation, while not being explicitly
encoded in any meta-model, was a matter of implicit consensus among the mod-
ellers. Some questions triggered discussions about the meaning of terms and
how they should relate to each other. Both modelling teams stated that these
discussions brought clear value to their respective modelling efforts.

The rule authoring process for FM UFS uncovered ambiguity in each and
every relation (both properties and associations) in the FM UFS meta-model.
For instance, when discussing the rule “A combat unit that performs a task that

supports a capability, must have the capability.” we found that the relation task

supports capability was interpreted differently by different members of the mod-
elling team. Some understood it to mean that the task single-handedly realises
the capability; others, that the task is one of a possible multitude of tasks that
together realise the capability. The ambiguity had not been spotted before, and
there was nothing in the meta-model to resolve it.

The process of authoring rules for the SK TS model also uncovered many
ambiguities. As an example, when evaluating the rule “Every system used by a

combat unit must be in its use phase.” it was discovered that the relation system

is used by combat unit is used in two different senses, namely: (1) “the system
has been allocated to the combat unit in the defence planning” and (2) “the
combat unit has requested the system”. The rule in question is valid only under
the first interpretation.

We also found that being able to execute the rules under design provided
input to that design, and hence helped specify the semantics thus expressed.
As an example, executing the rule “Each system that is used by a combat unit

must be in use phase.”, intended to capture cases of erroneously planned use
phases, returned instances of systems that, for acceptable reasons (according to
the modellers), did not have a use phase registered. The rule was then changed
to “Each system that is used by a combat unit that has a use phase must be in the

use phase.”. In this and many more cases then, an iterative rule design-execution
process was key to uncovering semantic subtleties that needed to be sorted out.

The previous example highlights an all-encompassing case of semantic un-
derdetermination in the SK TS meta-model that kept coming up during rule



10 Mika Cohen et al.

authoring, namely: What is the meaning of absent data? For example, what is
the meaning of an absent system life-cycle phase? That no such phase has in
fact (yet) been planned? That data about a possible plan has not been entered
into the model? Or, that life-cycle phases of systems at this level of abstraction
are to be inferred from those of higher or lower level systems?

5.3 Project-specific semantics (H3)

Both SK TS and FM UFS modelling efforts were based on the MODAF9 archi-
tecture framework and its attendant meta-model M310, and the modellers were
experienced MODAF practitioners. Yet the two projects took quite different
approaches to the application of M3.

For reasons of practical expediency, SK TS redefined how concepts such as
the life-cycle phases of systems and resource interactions between systems where
to be represented in M3 terms. While these redefinitions did not introduce any
concepts that couldn’t have been represented in an orthodox application of M3,
they did shuffle the relationships between terms and referents, invalidating any
inheritance of meaning from M3.

FM UFS also departed quite radically from orthodox M3 usage, but in a
different way. MODAF is designed to support capability based planning, whereby
plans are initially expressed at a high level of abstraction (“what”-questions),
deferring specifics (“how”-questions) to a later time and lower-level decision-
making. M3 thus has capabilities at a “strategic” level, that are realised by
nodes that perform operational activities at an “operational” level; nodes are
then further realised by resource configurations at the lowest, “systems” level.
In FM UFS, though, capabilites and operational activities—rebranded as tasks—
do not express different levels in a realisation hierarchy; instead, the task concept
is fused into the capability concept by being seen as its qualitative component.

5.4 Semantic evolution (H4)

Both SK TS and FMUFS projects kept developing their meta-models—and more
generally their semantics—in parallel with architecture modelling. While the SK
TS meta-model only underwent minor modifications to its original version, the
FM UFS meta-model changed frequently, and at one point, radically.

A notable change to the SK TS meta-model was in the handling of system life-
cycle phases. Originally, a system use phase could include, within its time span, a
number of maintenance phases. This was changed such that a maintenance phase
would end its preceding use phase and then engender a new use phase after its
completion. In addition to this modification, and as noted in section 5.2, several
semantic decisions where made along the way, triggered by rule development.

The redefinition of the relationship between capabilities and tasks in FM
UFS (described in the previuos section), which was done way into the architec-
ture modelling process, was the most radical semantic shift of the the FM UFS

9 Ministry of Defence Architecture Framework
10 MODAF Meta-Model



EA with executable modelling rules: Case study at FMV 11

project. In addition, a number of more specific semantic modifications where
made along the way. An example is the relation combat unit has capability, whose
interpretation was changed from “the combat unit is required by its specification
to have the capability” to “the combat unit will realise the capabaility accord-
ing to the plan”. Another example is the rule-of-thumb “Each combat unit type

is realised by at most one combat unit”, which was enacted a few months into
modelling, when it was discovered that this was the pattern of the data being
used to populate the model (thus deviations from the pattern could be flagged
as possible errors).

5.5 Natural language rules (H5)

Because of the evolving and project-specific nature of the semantics of the ar-
chitecture modelling projects we observed (as described in sections 5.3 and 5.4),
and because, as described in section 5.2, the activity itself of developing and
executing rules contributed in a significant and positive way to the semantic
evolution, we found it fruitful to have regular discussions, centered around rules,
with the modelling teams at FMV. During the 2013 SK TS project, before natu-
ral language rules were introduced, resolving ambiguities uncovered through rule
authoring was an active initiative on our part—alternating between designing
rules, executing them and directing questions at the SK TS modellers. With
rules in natural language, however, we found that simply handing over the rule
book to the modellers triggered discussions that propelled semantic specifica-
tion forward with much less active effort required from our part—the modellers
became a part of the rule formulation process, rather than just being passive
receivers of its output.

Natural language rules also facilitated the participation of business stake-
holders outside the modelling teams in the rule authoring process.

6 Conclusions

Formal modelling rules are rarely used in industrial EA-projects, despite their
apparent utility and despite mature tool support. In this paper we have reported
on their use in two large scale EA-projects at the Swedish Defence Materiel
Administration. Both case studies confirmed the utility, by showing that formal
modelling rules effectively capture errors missed by manual auditing, and that
the rule authoring process uncovers vagueness, imprecision and ambiguity in the
meta-model. Moreover, the case studies confirmed a claim often made in the
business rules community: that it is easy to engage business architects and other
stakeholders in the rule authoring process if rules are formulated in a (controlled)
natural language.

It might be argued that engaging business architects and other stakeholders
in the rule authoring is unnecessary—why not simply let the formal modelling
rules be built in as part of a generic architecture framework or EA-tool that



12 Mika Cohen et al.

the business architects can use out of the box? However, and perhaps somewhat
surprisingly, the case studies showed that meta-models are project specific—even
when the organisation has agreed upon a common architecture framework—and
the project specific meta-model evolves along with the architecture model itself.
Consequently, modelling rules need to be formulated by the EA-project itself
and the rules need to be continually updated during the project, which suggests
a need for a natural and accessible rule format.

References

1. Aier, S., Buckl, S., Franke, U., Gleichauf, B., Johnson, P., Närman, P., Schweda,
C.M., Ullberg, J.: A survival analysis of application life spans based on enterprise
architecture models. In: EMISA. pp. 141–154 (2009)

2. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (Jun 1970)

3. Cohen, M., Minock, M.J., Oskarsson, D., Pelzer, B.: Natural language specifica-
tion and violation reporting of business rules over er-modeled databases. Accepted
and to appear in Proceedings of the 18th International Conference on Extending
Database Technology (2015)

4. Dam, H.K., Lê, L.S., Ghose, A.: Managing changes in the enterprise architecture
modelling context. Enterprise Information Systems (ahead-of-print), 1–31 (2015)

5. Date, C.J.: What not how: the business rules approach to application development.
Addison-Wesley Professional (2000)

6. Fischer, R., Aier, S., Winter, R.: A federated approach to enterprise architecture
model maintenance. Enterprise Modelling and Information Systems Architectures
2(2), 14–22 (2007)

7. Johnson, P., Ekstedt, M.: Enterprise architecture: models and analyses for infor-
mation systems decision making (2007)

8. Johnson, P., Ullberg, J., Buschle, M., Franke, U., Shahzad, K.: P2amf: Predictive,
probabilistic architecture modeling framework. In: van Sinderen, M., Oude Lut-
tighuis, P., Folmer, E., Bosems, S. (eds.) Enterprise Interoperability, Lecture Notes
in Business Information Processing, vol. 144, pp. 104–117. Springer Berlin Heidel-
berg (2013), http://dx.doi.org/10.1007/978-3-642-36796-0_10

9. Kelly, S., Tolvanen, J.P.: Domain-specific modeling: enabling full code generation.
John Wiley & Sons (2008)

10. Lankhorst, M.M.: Enterprise architecture modelling—the issue of integration. Ad-
vanced Engineering Informatics 18(4), 205–216 (2004)

11. Minock, M.J.: A step towards realizing codd’s vision of rendezvous with the casual
user. In: Proceedings of the 33rd international conference on Very large data bases.
pp. 1358–1361. VLDB Endowment (2007)

12. Semantics of business vocabulary and rules (sbvr), version 1.2. OMG (2013)
13. Sousa, P., Caetano, A., Vasconcelos, A., Pereira, C., Tribolet, J.: Enterprise ar-

chitecture modeling with the unified modeling language. Enterprise Modeling and
Computing with UML. IGI Global pp. 69–97 (2006)

14. Steen, M.W., Akehurst, D.H., ter Doest, H.W., Lankhorst, M.M.: Supporting
viewpoint-oriented enterprise architecture. In: Enterprise Distributed Object Com-
puting Conference, 2004. EDOC 2004. Proceedings. Eighth IEEE International. pp.
201–211. IEEE (2004)


