
Evaluating sensor allocations using
equivalence classes of multi-target paths

Christian Mårtenson Pontus Svenson
Dept of Data and Information Fusion
Swedish Defence Research Agency

SE 164 90 Stockholm
Sweden

cmart,ponsve@foi.se
http://www.foi.se/fusion

Abstract— We present an algorithm for evaluating sensor
allocations using simulation of equivalence classes of possible
futures. Our method is meant to be used for pre-planning sensor
allocations, e.g., for choosing between several alternative flight-
paths for UAV’s, or deciding where to deploy ground sensor
networks. The method can be used to choose the best sensor
allocation with respect to any fusion method.

In addition to the list of sensor allocations to evaluate, the
algorithm requires knowledge of the terrain/road network of the
region of interest. Additional doctrinal knowledge on the enemy’s
possible goals and rules of engagement can increase the speed of
the method, but is not required.

Given a current situation picture, the method generates possi-
ble future paths for the objects of interest. For each considered
sensor allocation, these futures are partitioned into equivalence
classes. Two futures are considered equivalent with respect to
a given sensor allocation if they would give rise to the same
set of observations. For each such equivalence class, we run
a fusion algorithm; in this paper, an emulated multi-target
tracker. We use the output of this emulated filter to determine
a fitness for each sensor allocation under evaluation. For small
scenarios, we compare some different ways of calculating this
fitness, concluding that an approximation introduced by us gives
nearly the same result as an exact method.

We also introduce a formulation of the studied problem and
the method used to solve it using random sets, and give several
directions for future work.

I. INTRODUCTION

Sensor resource management (level 4 fusion in the JDL
model [1]) is an important part of future information fusion
systems [2], [3]. The need for good sensor management
systems is particularly evident in situations where we have
an inadequate number of sensor resources and lack detailed
background and doctrinal information on adversary forces
(e.g., in international operations other than war).

In this paper, we introduce a new approach to sensor
resource allocation by simulating equivalence classes of future
multi-target paths. (The approach can also be used for threat
prediction.) In this paper, we concentrate on the problem of
evaluating a set of proposed sensor allocation schemes to
determine which is the best to use in order to provide as good
as possible input to a given fusion system. Here, we emulate
a multi-target tracker as the fusion system; our formalism and

method is however general and allows any fusion system to
be used.

An equivalence class of future multi-target positions is
defined with respect to a given sensor allocation scheme; the
class consists of all those predicted paths that give rise to
the same set of observations. We use this when simulating
possible multi-target futures in order to cut down on the
number of future paths that we need to consider. For each such
equivalence class, we determine the fitness of each considered
sensor scheme. The total fitness of a scheme is then the average
over all equivalence classes of this fitness.

The method is based on a simpler version that was imple-
mented in the FOI IFD03 information fusion demonstrator [4],
[5]; that implementation did not make use of the equivalence
classes of futures.

This paper is outlined as follows. Section II introduces the
problem we want to solve, and formulates the method in terms
of random sets and equivalence classes of future paths. In
section III, we note the input requirements of the method,
while section IV gives more details on the specific implemen-
tation presented here. Section V presents results from several
different scenarios, while a discussion and suggestions for
future work are contained in section VI.

II. SIMULATING FUTURES USING EQUIVALENCE CLASSES

In order to determine the best of the sensor allocation
schemes, we simulate a possible future path of the units of
interest and apply all the sensor schemes to it. For each sensor
scheme, this gives us a list of simulated observations that we
can input to a fusion module. For each fusion output, we
calculate a fitness by comparing it to the “true” simulated
future. By averaging over many possible future paths, we can
determine a total fitness for each sensor allocation scheme. In
order to speed up this process, we introduce the concept of
equivalence classes of futures below, but first we describe the
algorithm without using these.

In figure 1, we show a conceptual view of that we are
doing. At the bottom, we see a simulated future path. This
is converted into a set of observations shown in the middle,
that are used to form the track shown at the top. To evaluate

Proc. FUSION 2005

 x

 z

 y

Fig. 1. Conceptual overview of how we use a simulated future x and a sensor
scheme s to generate observations z which are input into a filter giving a track
y which can be compared to x in order to evaluate s.

the sensor allocation scheme used to generate the fictitious
observations, we compare the track with the simulated future.

Mathematically, the algorithm works as follows. A density
vector x0 is given, which describes the positions of the units
of interest at time t = 0. A set S is defined, consisting of
sensor allocation schemes and information about the terrain.

Three different random sets [6], [7] are used:

1) X(t) denotes the positions of the units of interest at
time t, conditioned on them being at x0 at time 0.
It can be seen as representing a simulation of ground
truth: the instance x̂(t) of X(t) occurs with probability
P [X(t) = x̂(t)|X(0) = x0]. For simplicity of notation,
the conditioning on x0 is not explicitly shown in the
following.

2) For each sensor allocation scheme s(t) ∈ S and instance
x̂(t) of the future ground truth, a set of possible obser-
vations Z(x(t), s(t), t) is calculated at time t. Z is also a
random set; note that it depends on the simulated ground
truth as well as allocation scheme.

3) Finally, we determine what our view of ground truth
would be, given the set of observations Z. This gives
rise to the final random set, Y(t). Y(t) is our fusion
system’s approximation of the (simulated) ground truth
x̂(t) using the observations Z obtained by deploying
sensors according to sensor allocation scheme s(t).

Note that all of the random sets introduced are explicitly
time-dependent. Here, an expression like P [X(t)] denotes the
probability of the entire time-evolution of X(t), not just the
probability at a specified time. P [] can thus be seen as a
“probability density functional” in the space of all explicitly
time-dependent random sets.

Determining which sensor allocation scheme to use is now
done simply by comparing the assumed ground truth x̂(t) to
the fusion system’s simulated view ŷ(t). For each instance x̂(t)
of X(t), the best s(t) can easily be determined by averaging
over the ensembles of observations Z and simulated fusion
process output Y entailed by that simulated ground truth. An

allocation scheme is good if the simulated filter gives a good
approximation of the simulated ground truth.

The fit of a specific allocation scheme s for a certain
simulated ground truth x̂(t) can be written as

H(x̂(t), s) =
∫

P [Z(t) = ẑ(t)|X(t) = x̂(t), s]×
P [Y(t) = ŷ(t)|Z(t) = ẑ(t)]× h(x̂(t), ŷ(t))dẑ(t)dŷ(t)

(1)
where h is a functional that compares x̂(t) and ŷ(t) and
the integrals are functional integrals over all random sets
ŷ(t) and ẑ(t). We use two different h-functionals: one which
computes the entropy of ŷ and one which calculates the
L1 distance between x̂ and ŷ. The difference between the
entropy-like measure and the distance measure is that the
entropy measure rewards allocation schemes that give rise to
peaked distributions, but might miss some of the tracked units.
We also used the L2 distance for some scenarios and found
no significant difference in the results compared to the L1

distance.
The overall best sensor allocation scheme is then determined

by averaging also over the random set X(t), as

sbest = arg min
s(t)∈S

∫

P [X(t) = x̂(t)]H(x̂(t), s(t))dx(t) (2)

Implementing Equations (1) and (2) would thus entail av-
eraging over three different random sets, which is clearly
computationally infeasible in most cases.

(We could also use alternate h-functionals, where we cal-
culated h at a specific time. This would be useful if it is
important to know where the objects we are tracking are at a
certain time.)

There are several possible ways of approximating these
equations. One way is to use approximations of the proba-
bilities P appearing in them, perhaps employing some kind of
Monte Carlo sampling instead of the ensemble averages.

A. Equivalent futures

Here we use a different idea in order to reduce the number
of possible futures that need to be simulated. Consider two
alternative future paths x̂1(t) and x̂2(t). If x̂1(t) and x̂2(t) are
very similar, it might not be necessary to simulate them both.
Consider, for example, the two sets of paths shown in figure 2.
If the sensor is located as shown, it will not be possible for it
to distinguish between the two paths. (We are here assuming
that the sensors detection probablity pD = 1; see below.)

Generalizing this idea leads us to the concept of equiva-
lence classes of future paths. We define two possible future
ground truths x̂1(t) and x̂2(t) to be equivalent with respect
to the sensor allocation scheme s(t) if z(x̂1(t), s(t), t) =
z(x̂2(t), s(t), t) for all t, and write that x̂1(t) ∼s x̂2(t)

What this means is just that if there is no way for our
sensor and fusion system to differentiate between two different
predicted paths, there is no sense in simulating them both.
Instead of averaging over all possible futures in equation 2,
we average over all equivalence classes of futures:

Proc. FUSION 2005

Fig. 2. This figure illustrates the concept of equivalent paths. Given the
sensor location shown, it is impossible to distinguish between the two paths;
hence they belong to the same equivalence class.

sbest = arg min
s(t)∈S

∫

x̂(t)∈Xs

P [x̂(t)]H(x̂(t), s(t))dx̂(t) (3)

where Xs denotes the partition of X induced by the equiva-
lence relation ∼s defined above.

This idea can be extended further. We could for instance
relax the restriction that the observations must be equal for all
t, and generate equivalence classes for specific time-windows.
Another option would be to consider the threat posed by the a
future x̂ and define two futures to be equivalent if they entail
the same threat for us. This and other extensions of the ideas
presented here will be described in detail elsewhere.

Note that the definition of equivalence classes as given
above is only correct for sensors with pD = 1. In the algorithm
and experiments described below, where we use pD < 1, we
also condition on a specific sequence of random numbers used
in determining the fictitious observations; this will guarantee
that our equivalence classes are proper. Formally, we express
this by including the seed of the random number generator
used in the sensor allocation scheme s(t). Another way of
exploiting the ideas presented here would be to group x̂1(t)
and x̂2(t) together if their corresponding fictitious observations
Z(x̂1(t), s(t), t) and Z(x̂1(t), s(t), t) are “sufficiently simi-
lar”. This would, however, not give equivalence classes, since
transitivity would not hold in that case.

Kadar et al [8] have recently described a system that predicts
a future enemy path and uses this to determine figures-of-
merit for dynamic sensor planning. In addition to our use
of equivalence classes of multi-target paths, another major
difference between that work and the method presented here
is that we average over many predicted paths as well as over
many realizations of the observations and of the emulated
fusion module.

III. INPUTS

Our sensor allocation scheme evaluation method requires a
number of inputs. The following is a list of the different kinds
of parameters required by our method:

• Sensor allocation policies to evaluate. This is of course
the most crucial input. Sensor plans could be generated
automatically or by a user.

• Object positions at start time. In a real system, this input
could be a probability hypothesis density (PHD) [7] X0

from a particle filter or force aggregation system [4], [5].
• Terrain representation. In this paper, we have used a

road network for this. Such networks could be generated
automatically using GIS software. They can also be
generated using methods such as those proposed in [9]

• Transition probabilities in road network. In our current
implementation, this is based mostly on geographical
information. The road network is represented below in
terms of a transition matrix T , whose entries Tab gives
the probability to move from node b to node a in unit
time. A real system could augment this with knowl-
edge of possible enemy objectives, probably using input
from a user/analyst. It is straightforward to include also
more detailed information on enemy objectives in the
transition matrix T ; it could for instance be changed
so that movement towards known goals are enhanced
and movements away from these goals reduced. Doing
this, however, necessitates having a detailed knowledge
of enemy doctrine.

IV. ALGORITHMS

Below we describe in detail the two methods for evaluat-
ing sensor allocations, the Exhaustive and the Monte Carlo
method. The basic steps are the same:

1) Propagate the simulated enemy positions.
2) Generate one/all possible set(s) of fictitious observa-

tions, given the new enemy positions.
3) Generate equivalence classes of enemy positions with

respect to the set of observations.
4) Propagate and update the emulated multi-target filter

according to the set of observations.
5) Calculate the fitness of the updated filter.
6) Repeat from 1, unless the maximum number of propa-

gation steps has been reached.

The Exhaustive algorithm will perform steps 3 to 6 for
each observation set generated in step 2. In other words, it
considers every single equivalence class, a set that grows
exponentially with the number of observation opportunities.
The Monte Carlo algorithm, in contrast, considers only a single
set of observations for each propagation step. To compensate
for this, the entire process of generating a future is repeated
a number of times.

The steps (1-5) are further described in the paragraphs
below. Pseudo-code for the algorithms are shown in Algo-
rithm IV.1 and Algorithm IV.2.

A. Propagation of simulated ground truth

As described in section II, the enemy positions are defined
by a random set X(t). In our current implementation, we
choose to simplify this and instead work with a fixed number
of targets. X(t) is implemented as a matrix, where column i

Proc. FUSION 2005

Algorithm IV.1: EXHAUSTIVE(t, tmax, x, T, s)

for i← 1 to Ntargets

do x

{

xai(t + 1)←
∑

b Tab · xbi(t) ∀a ** Propagate equiv. class
zai ← sa(t + 1) · xai(t + 1) ∀a ** Determine observation probabilities

Z ← Set of all combinations with one non-zero zai for each i

for each ẑ ∈ Z ** Split equiv. class into many and evolve each separately

do























































for i← 1 to Ntargets

do







if target i is observed
then xai(t + 1)← ẑai ∀a
else xai(t + 1)← xai(t + 1) · (1− sa(t + 1)) ∀a

ya(t + 1)←
∑

b Tab · yb(t) ∀a ** Update emulated filter
ya(t + 1)← ya(t + 1) · (1− sa(t + 1)) + ẑa ∀a
Calculate and store fitness
if t < tmax

then EXHAUSTIVE(t + 1, tmax, x, T, s)

Algorithm IV.2: MONTECARLO(tmax, x, T, s, Nsamples)

for sample← 1 to Nsamples

do















































































for t← 1 to tmax

do







































































for i← 1 to Ntargets

do
{

xai(t + 1)←
∑

b Tab · xbi(t) ∀a ** Propagate equiv. class
zai ← sa(t + 1) · xai(t + 1) ∀a ** Determine observation probabilities

ẑ(t)← Random combination of one non-zero zi for each i

for i← 1 to Ntargets

do







if target i is observed
then xai(t + 1)← ẑai ∀a.

else xai(t + 1)← xai(t + 1) · (1− sa(t + 1)) ∀a.

ya(t + 1)←
∑

b Tab · yb(t) ∀a ** Update emulated filter
ya(t + 1)← ya(t + 1) · (1− sa(t + 1)) + ẑa ∀a
Calculate and store fitness

contains the probability density function over all nodes a for
the position of target i. The targets of an equivalence class are
propagated through the road network according to

xai(t + 1) =
∑

b

Tab · xbi(t) ∀a, i. (4)

Note that xai(t + 1) will be updated again in equations 6 and
7.

B. Generation of sensor observations

The sensor coverage for the entire network at time t is
described by the sensor allocation scheme s(t), which is a
probability distribution over the network nodes. The value
sa(t) gives the probability of detecting a target located at node
a. The probability of detecting target i at node a and time t

is thus given by

zai(t) = xai(t) · sa(t) ∀a, i. (5)

This equation together with the probability of not detecting
target i at any node, which we denote z0i(t) = 1−

∑

a zai(t),
can be used to generate the random set Z(t). An instance
of Z(t) is represented by a binary matrix, ẑ, where ẑai = 1
means that target i is observed at node a, and ẑai = 0 that
it is not. The corresponding probability is P (ẑ) = P (Z(t) =
ẑ|X(t), s(t)).

In the Exhaustive Algorithm we need to find all instances of
Z(t) with non-zero probability, i.e., all possible combinations
of observations and non-observations at a specific time t.
These can be generated by choosing one non-zero element
from each column (target) in z. (Recall that row 0 in the matrix
corresponds to a target not being observed.) Each chosen
element that corresponds to an actual observation (i.e., not
in row 0) yields a 1 in ẑ; P (ẑ) is determined by multiplying
the elements’ probabilities.

The Monte Carlo method uses only one set of observations
in each time step. This can either be drawn from the set of all
combinations with probability P (ẑ), or generated directly by

Proc. FUSION 2005

drawing one element from each column in z with probability
zai.

C. Generating equivalence classes

The propagation of the target density described in sec-
tion IV-A results in a description of all possible new enemy
positions at t + 1. These positions we now want to group
into equivalence classes depending on which observations we
are considering. Given one set of observations ẑ we update
x so that it only includes positions consistent with these
observations.

For a target i that is observed the probability distribution is
peaked,

xai(t + 1)← ẑai ∀a. (6)

The probability distribution of a target i that is not observed
is updated according to the chance for this to happen at the
node considered,

xai(t + 1)← xai(t + 1) · (1− sa(t + 1)) ∀a. (7)

The columns of the updated x are then normalized to preserve
identity.

D. Filter update

The steps described above deal with the simulation of alter-
native future physical realities. Now we turn to the updating
of the fusion system acting on these, in this case an emulated
multi-target tracker.

The state of the tracker, y, is propagated and updated in a
similar way as x. The main difference is that the fusion system
cannot distinguish which targets generate which observations,
which is why y is described by a PHD. In this case, to
represent an instance of Z(t) it is enough to consider ẑa :=
∑

i ẑai.
Given a set of observations ẑ we update the filter in three

steps. First we propagate y through the road network with the
propagation matrix T ,

ya(t + 1) =
∑

b

Tab · yb(t) ∀a. (8)

Secondly, in order to take negative information into account,
we decrease the PHD where there is a positive probability of
detection,

ya(t + 1)← ya(t + 1) · (1− sa(t + 1)) ∀a. (9)

Finally, we add the new observations to the PHD,

ya(t + 1)← ya(t + 1) + ẑa ∀a. (10)

These steps roughly correspond to the propagation and resam-
pling of a PHD particle filter [5]. If the number of targets,
Ntargets, is known , we require that

∑

y(t + 1) = Ntargets.
This can be accomplished by normalizing y before performing
equation 10, such that

∑

a ya(t + 1) = (Ntargets −
∑

a ẑa).

E. Fitness calculations

For comparing the sensor allocation schemes we use two
different measures, introduced in section II as alternative h-
functionals for calculating the fitness. Here the measures can
rather be viewed as a distance or inverse fitness, which we
would like to minimize.

Both measures are applicable in the Monte Carlo as well
as in the Exhaustive algorithm. In the Monte Carlo method
the fitness is calculated by averaging the measure over all
time steps and all runs. In the Exhaustive method we sum
the measure for each equivalence class at each time step,
weighting it with the probability for the equivalence class to
occur.

• XY-difference. The XY-difference, Dxy, measures the
mean L1 distance between y(t) and all instances x̂(t)
of X(t),

Dxy =
∑

x̂(t)∈X(t)

P (x̂) · ‖x̂− y‖1. (11)

• Entropy. The entropy measure, Hy, determines how
peaked y(t) is. Since y(t) is a PHD it does not have
to sum to 1, and therefore has to be normalized before it
can be inserted into the following formula for the entropy:

Hy = −
∑

a

ya · log ya. (12)

V. EXPERIMENTS

Here we present results of the algorithms presented in
sections II and IV for some different scenarios. All sensor
allocation schemes considered here are assumed to be time-
independent. For each scenario, we present a map giving an
overview of the area where it takes place. The objective is
to allocate a number of sensors in a way that minimizes the
uncertainty of the estimated enemy positions over time.

To generate the enemy behavior a number of start and goal
nodes are assumed to be known. The initial state, which is
meant to be derived from the output of a PHD tracker, is
determined by distributing the probability density functions
of the targets randomly over the start nodes. All targets are
assigned identical start distributions.

The motion model used to simulate the enemy behavior is
described by the propagation matrix T . In all scenarios, T is
constructed so that it is four times more likely to move to a
node that is closer to a goal compared to the current node,
than to a node that is more distant from the goals. A move
to a node with equal distance to a goal node as the current is
twice as likely as a move to a more distant node.

A. Härnösand scenario

Figure 3 shows the map for the first scenario. Three sensors
are to be allocated to minimize the uncertainty of the positions
over seven time steps when tracking three targets.

Results from the evaluation of 100 randomly generated
sensor allocations, using 100 Monte Carlo samples, are shown
in figure 4. The allocations are ordered after the results of the

Proc. FUSION 2005

1

2

3

4

5

6

7

8

9

10

11

12
13

14
15

16

1718

19

Fig. 3. The Härnösand scenario road network. Initial enemy positions are
distributed on nodes 4, 5 and 9 (at the top of the map), and goal nodes are
12, 13 and 19 (at the bottom). The sensor positions of the best allocation are
shown in red.

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

sensor allocation index

Exhaustive: XY−diff
Exhaustive: entropy
MC: XY−diff
MC: entropy

Fig. 4. Results from the evaluation of 100 sensor allocations for the
Härnösand scenario, ordered after the Exhaustive method with the XY-
difference measure. The ranking induced by the entropy measure is similar
to that induced by the XY-difference.

Exhaustive method run with the Dxy measure, which can be
regarded as an exact result. The Exhaustive method is also the
most compute intense, as can be seen in figure 5. In a worst
case scenario, the number of equivalence classes to consider
grows exponentially both with the number of sensors and with
the number of targets.

Two observations are therefore of crucial interest. The first is
that the entropy measure Hy approximates the relative values
of Dxy rather well. The second is that the Monte Carlo tech-
nique reduces the overall computation time without significant
loss in precision. In other words, the Monte Carlo method

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

sensor allocation index

cpu time (s)

Exhaustive: XY−diff
Exhaustive: entropy
MC: XY−diff
MC: entropy

Fig. 5. The computation time for the four approaches on the 100 allocations
for the Härnösand scenario. The allocations are ordered as in figure 4. Note
the logarithmic scale on the time-axis.

1

2

3

4

5

6

7

8
9

1011

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29 30

31

32 33

34

35

36

37

38 39
40

41

42

43

44

45

46

47

48

49

50
51 52

53
54

55
56

57 58

59

Fig. 6. The Betaland scenario road network. Initial enemy positions are
distributed on nodes 4, 7, 9 and 11 (to the left), and goal nodes are 30, 34
and 56 (to the right). The sensor positions of the best allocation are shown
in red.

using the Hy measure gives us an acceptable approximation in
the H ärn ösand scenario, with a large decrease in computation
time. The time complexity for this combination is linear in all
input parameters.

B. Betaland scenario

Figure 6 shows a map of the fictitious Betaland (in reality,
the western part of Sweden) used by the Swedish Armed
Forces to train and construct methodology for international
operations. The scenario setup is the same as in the H ärn ösand
scenario. Three sensors are to be allocated to track three
targets during 7 time steps, and 100 randomly generated sensor
allocation schemes are evaluated. The results are shown in

Proc. FUSION 2005

0 10 20 30 40 50 60 70 80 90 100
2

2.5

3

3.5

4

4.5

5

sensor allocation index

Exhaustive: XY−diff
Exhaustive: entropy
MC: XY−diff
MC: entropy

Fig. 7. Comparison of the fitness for the extensive and Monte Carlo approach
for the Betaland scenario. For both methods, the xy-diff measure as well as
the entropy are shown.

figure 7. As can be seen, the behavior is almost identical
to that of the H ärn ösand scenario, which gives us increased
confidence in exploiting the proposed approximations.

C. Priština scenario

Figure 8 shows the map of our last scenario, which takes
place in Priština in Kosovo. Here we choose to only explore
the capability of the fast Monte Carlo entropy approach, so
that a larger problem can be solved. 10 targets are tracked
during 15 time steps, using setups with 5, 10 and 15 sensors
respectively. For each setup we evaluate 1000 randomly gener-
ated allocations. The larger problem size calls for an increase
of the number of Monte Carlo samples, which here was set
to 1000. This choice is based on visual investigations of the
convergence of the mean entropy.

The sensor positions of the best evaluated sensor allocation
with 10 sensors are marked in figure 8. In figure 9 we plot the
evolution over time of the entropy measure Hy. The top curve
is a ’worst case’ evolution, where no sensor data is registered
at all. The other curves display the entropy of the best alloca-
tions from the setups with 5, 10 and 15 sensors respectively.
Obviously, the entropy decreases when we increase the number
of sensors. Our method found good sensor allocation schemes
when tried on this scenario; however, since we test randomly
generated schemes, we are not guaranteed to find the best.
We are currently investigating using genetic algorithms with
the method presented here used as fitness for evolving good
sensor allocation schemes.

VI. DISCUSSION AND FUTURE WORK

We have presented a method for evaluating different sensor
allocation schemes. The method works with respect to a given
fusion module, and ranks the given sensor schemes according
to their ability to improve the output of this module.

1

2

3
4

5
6

7

8
9

10
11

12 13

14

15 16

17
18 19

20
21

22
23

24
25

26
27

28

29

30

31
32

33
34

35

36
37

38

39

40

4142

43
44

45 46

47

48

49
50

51
52

5354

55
56

57
58

59
60

61

62

63

64

65

66

67
68

69
70

71

7273

74

Fig. 8. The Priština scenario road network. Initial enemy positions are
distributed on nodes 1, 2, 4, 63 and 64 (at the top of the map), and goal
nodes are 30, 33 and 47 (at the bottom). The sensor positions of the best
allocation with 10 sensors are shown in red.

0 5 10 15
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Time

entropy

no sensors
5 sensors
10 sensors
15 sensors

Fig. 9. The entropy evolution over time in the Priština scenario. The best
sensor allocations from the setups with 5, 10 and 15 sensors are compared to
the case with no sensor information at all.

The method is based on a random set formulation of
possible future multi-target paths and the concept of equivalent
futures. The use of these equivalence classes enable us to sim-
ulate more time-steps into the future using less computational
resources, as can be seen in the figures of section V.

The benefit of using equivalent futures increases when

• network size increases
• number of sensors decreases.

The most obvious example of this is when no sensors are used:
in this case, all the futures collapse into one equivalence class.
At the other extreme: if we have one sensor on each road,
equivalent futures are useless.

One way of thinking about the method for generating obser-

Proc. FUSION 2005

vations that we use to get the equivalence classes is to compare
it with the continuous-time Monte Carlo algorithm [10], where
the system is always updated and the time-step varies: system
time is updated with the time-step needed to do the selected
move. Continuous-time Monte Carlo could also be used to
speed up the computation of future paths significantly.

There are several directions of future work related to the
method described here.

More work needs to be done on automatically generat-
ing sensor allocation schemes. As mentioned before, we are
currently considering a genetic algorithm approach to this.
Another possibility would be to use a swarming or collective
intelligence algorithm for this [11]

The method could also be used interactively by a user, who
suggests partial or complete sensor schemes to the system.
Here work needs to be done both on how to generate a
complete plan from a partial one and on how to best interact
with the user. It would be interesting to combine the method
presented here with planning systems. Users can then input
alternative plans and have them automatically evaluated by
the computer system. This could be extended to be used for
other things than sensor allocation, such as threat or possibility
analysis, logistical planning, etc.

There are also many possible extensions of the algorithm
that could make it even more efficient. Using more advanced
Monte Carlo sampling of equivalence classes should enable
us to speed up the algorithm considerably.

It would also be interesting to try to determine a stopping
criterium for the simple Monte Carlo sampling performed in
algorithm IV.2.

Since the approximate fitness seems to be very good for
almost all sensor allocations, it should be possible to use the
approximate fitness to determine the best 10 or 20 sensor
allocation schemes and then run the exact method only on
these.

It would be interesting to combine the methodology pre-
sented here with the movement prediction from [12]. The
method given for determining reachable intervals there could
possibly be used as input to our system. This would enable
us to cut down on the number of x paths that we need to
consider.

It would also be interesting to implement the idea of
equivalence classes of futures in the rigorous FISST-based
approach to dynamic sensor management recently introduced
by Mahler and co-authors (e.g., [13] and references therein).

We are currently exploring how to extend the concept of
equivalence classes to take threat or impact into account. In
other work, we will investigate a unification of the method
here with that presented in [14], [15]

REFERENCES

[1] D. L. Hall and J. Llinas, editors. Handbook of Multisensor Data Fusion.
CRC Press, Boca Raton, FL, USA, 2001.

[2] N. Xiong and P. Svensson. Sensor management for information fusion
— issues and approaches. Information Fusion, 3(2):163–186, 2002.

[3] Ronnie Johansson and Ning Xiong. Perception management - an
emerging concept for information fusion. Information Fusion, 4(3):231–
234, 2003.

[4] S. Ahlberg, P. Hörling, K. Jöred, C. Mårtenson, G. Neider, J. Schubert,
H. Sidenbladh, P. Svenson, P. Svensson, K. Undén, and J. Walter. The
IFD03 information fusion demonstrator. In Proceedings of the Seventh
International Conference on Information Fusion, Stockholm, Sweden,
pages 936–943, Mountain View, CA, USA, 2004. International Society
of Information Fusion.

[5] J. Schubert, C. Mårtenson, H. Sidenbladh, P. Svenson, and J. Walter.
Methods and system design of the IFD03 information fusion demon-
strator. In CD Proceedings of the Ninth International Command and
Control Research and Technology Symposium, Copenhagen, Denmark,
pages 1–29, Washington, DC, USA, Track 7.2, Paper 061, 2004. US
Dept. of Defense CCRP.

[6] I. R. Goodman, R. P. S. Mahler, and H. T. Nguyen. Mathematics of Data
Fusion. Kluwer Academic Publishers, Dordrecht, Netherlands, 1997.

[7] R. Mahler. An Introduction to Multisource-Multitarget Statistics and its
Applications. Lockheed Martin Technical Monograph, 2000.

[8] Ivan Kadar, Kuo Chu Chang, Kristin O’Connor, and Martin Liggins.
Figures-of-merit to bridge fusion, long term prediction and dynamic
sensor management. In Signal Processing, Sensor Fusion, and Target
Recognition XIII, volume 5429 of SPIE, page 343, 2004.

[9] R. Richbourg and W. K. Olson. A hybrid expert system that combines
technologies to address the problem of military terrain analysis. Expert
Systems with Applications, 11(2):207–225, 1996.

[10] A B Bortz, M H Kalos, and J L Lebowitz. A new algorithm for
Monte Carlo simulation of Ising spin systems. Journal of Computational
Physics, 17:10, 1975.

[11] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, Oxford, UK,
1999.

[12] Mark J Carlotto, Mark A Nebrich, and Kristin O’Connor. Battlespace
movement prediction for time critical targeting. In Ivan Kadar, editor,
Signal Processing, Sensor Fusion, and Target Recognition XIII, volume
5429 of Proceedings of SPIE, page 326, 2004.

[13] Ronald P. Mahler. Sensor management with non-ideal sensor dynamics.
In Proceedings of the Seventh International Conference on Information
Fusion, volume II, pages 783–790, Mountain View, CA, Jun 2004.
International Society of Information Fusion.

[14] Ronnie Johansson and Robert Suzić. Bridging the gap between in-
formation need and information acquisition. In Proceedings of the 7th
International Conference on Information Fusion, volume 2, pages 1202–
1209. International Society of Information Fusion, 2004.

[15] Robert Suzić and Ronnie Johansson. Realization of a bridge between
high-level information need and sensor management using a common
dbn. In The 2004 IEEE International Conference on Information Reuse
and Integration (IEEE IRI-2004). IEEE, November 2004.

Proc. FUSION 2005

