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Abstract A neural implementation of a support vector machine is described and ap-
plied to one-shot trainable pattern recognition. The model is compared to anatomi-
cal and dynamical properties of the olfactory system. In the olfactory model, inputs
from the olfactory bulb are captured and stabilized in the anterior olfactory cortex
and the kernel is computed in the posterior piriform cortex. The anterior piriform
cortex contains associative memory populated by support vectors. The associative
memory oscillates incessantly between support vector states. Misclassified odours
are imprinted as new support vector candidates and the machinery is tuned in sleep.
It is demonstrated that there is a plausible evolutionary path from a simple hard-
wired pattern recognizer to a full implementation of a biological kernel machine.
Simple and individually beneficial modifications are accumulated in each step along
this path.

1 One-shot Trainable Pattern Recognition

While an increasing mass of data on brain systems is compiled there is still need
for integrative theories of overall function. Learning to recognize new patterns in
sensory inputs and to act on such classifications is a key cognitive skill. One single
exposure can be sufficient for learning a lesson of high survival interest. Even sim-
ple animals such as snails learn food aversion from one exposure [1]. Such one-shot
learning is difficult to implement in feed-forward artificial neural networks since
vigorous repetition typically is required to build useful skills. Associative memories
can, however, learn new patterns instantly [2]. We describe therefore an architecture
[3] where significant and surprising experiences are captured to an oscillating asso-
ciative memory. Memories are tuned and pruned in slow-wave sleep and used for
feed-forward pattern recognition in the waking state. It turns out that the system im-
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plements a support vector machine. This Bio-SVM model is mapped to the anatomy
and phenomenology of the olfactory system and it is suggested that many such ma-
chines, each tuned to a different context, contribute to odour pattern recognition.

While speculating on intricate mathematical algorithms in living neural systems
it is important to remember that complex organisms must have evolved from simpler
life forms. A credible model must demonstrate an evolutionary path that starts with
a very basic function and gradually builds the complex model in simple steps where
each step independently provides add-on survival or reproductive value. A hypothet-
ical evolutionary path to neural support vector machines is therefore presented and
discussed in section four. Section two provides the bare-bone mathematical frame-
work of biologically feasible support vector machines. Section three reviews how
the model maps to the olfactory system.

2 Kernel Machine Model

Kernel machines or support vector machines (SVM) [4] are efficient pattern recog-
nition algorithms that work by implicitly projecting inputs to a large-dimensional
feature space where linear classifiers are applied. The solution is a hyperplane in
feature space that separates training example classes with a maximal margin. For
simplicity we shall only allow for binary classifications. Consider at set of m training
examples (xi,yi) where xi is an input vector with binary or real-valued components
and yi ∈ {1,−1} is the correct binary classification of the example. A (zero-bias)
SVM classifies a test input vector x as positive if and only if f(x)≥ 0 where

f (x) =
m

∑
i=1

yiαiK(xi,x). (1)

We shall focus on zero-bias ν-SVM - a special support vector machine that is
uniquely apt for biological implementation [3]. Zero-bias means that there is no
constant factor in Eq. (1) as for most support vector machines. The classification
function f(x) depends of the training examples, the weights αi and the non-linear
symmetric kernel function K. The weights define the solution to the optimization
problem where the dual objective function,

W (α) =−1
2

m

∑
i, j=1

yiy jαiα jK(xi,x j), (2)

is maximized subject to,

0≤ αi ≤ 1
m

, (3)

and
m

∑
i=1

αi = ν . (4)
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The parameter 0 < ν < 1 controls the trade-off between accuracy and generalization.
This model is a zero-bias specialization of ν-SVM [5]. The constraint Eq. (4) is
applied as suggested by [6]. There are no local optima so the solution to Eqs. (2)-(4)
is readily found by gradient ascent in the hyperplane defined by Eq. (4). A simple
gradient ascent scheme [3], [7] updates incrementally each weight αi (subject to Eq.
(3)) according to,

∆αi ∼ 1
m

m

∑
s=1

Cs−Ci, (5)

where ∆αi is the increment of αi and Ci is the classification margin of the i:th ex-
ample,

Ci = yi

m

∑
j=1

y jα jK(xi,x j). (6)

The learning rule (Eq. (5)) drives the weights of easily classified examples to zero.
The increment ∆αi is always negative if the example is correctly classified with a
margin larger than the average margin. Such trivial examples have hence asymptot-
ically vanishing weights αi = 0. The remaining training examples with αi > 0 are
called support vectors. Support vectors are borderline events and trivial examples are
commonplace events. Only support vectors contribute to classifications. Memory-
saving algorithms where trivial examples are discarded from the training set have
been shown to be efficient [8].

3 Olfactory Support Vector Machines

Trainable olfactory pattern recognition according to Bio-SVM kernel machine prin-
ciples is described in [3]. This section reviews the core of the hypothesis. Many
different support vector machines classify odours in a wide range of contexts. Each
olfactory kernel machine includes memory for support vectors in the anterior piri-
form cortex (APC), sensory memory for stabilizing inputs in the anterior olfactory
cortex (AOC) and classification apparatus in the posterior piriform cortex (PPC).
Inputs are provided by the olfactory bulb (OB) and classifications are forwarded to
higher-order brain systems (HOBS). HOBS is a place holder for brain systems such
as amygdale, the prefrontal cortex, the perirhinal cortex and the entorhinal cortex
that are bidirectionally connected to the piriform cortex (PC).

See Fig. 1 for details and the notation that is used in the following subsections.
Section 3.1 describes the Classification process — how a trained system classifies
inputs. The Surprise learning process in section 3.2 performs one-shot learning of
crucial incidents. Section 3.3 covers the Importance learning process where support
vector weights are optimized and trivial examples are purged from memory.
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Fig. 1 Outline of an olfactory kernel machine. Solid ovals stand for known brain parts. Higher-
order brain systems (HOBS) are management functions in the cortex and the limbic system. OB
is the olfactory bulb. AOC is the anterior olfactory cortex. APC and PPC are the anterior and pos-
terior piriform cortex respectively. Dashed boxes indicate hypothetical components of the kernel
machine. The Trap is a register for input data in the AOC. OM is oscillating associative memory
in the APC and CL is the classification logic in the PPC. Solid lines are known neural projections.
Dot-dashed lines are hypothetical connections. Broad connections carrying current or recalled sen-
sory data are D1, D2, D3, D4 and D5. Narrow modulatory projections are M1, M2 and M3. Af-
ferents (D1) carries odour data from the OB to the Trap. Trapped inputs are forwarded to the CL
(D2) and to the OM (D3). The OM projects support vectors to the CL (D4) and backwards to the
Trap (D5). The CL sends results (M1) to HOBS and learning feedback (M3) to OM. HOBS trigger
learning of misclassified examples (M2). The architecture is anatomically feasible but the detailed
function is speculative. Note that the figure is highly simplified. Many features that are irrelevant
for the present discussion are ignored. See [9] for an overview of the olfactory system.

3.1 The Classification Process

Consider first how a fully trained olfactory support vector machine classifies inputs
(D1) from the olfactory bulb. The Trap captures and holds a stable copy x of the
input for the duration of a sniff cycle of 125 – 250 ms. The OM is an associative
memory for support vectors. It oscillates rapidly between support vector states with
a frequency much faster than the sniff cycle. See [10], [11] and [12] for simula-
tions showing the feasibility of such oscillating memories and [3] for an in-depth
discussion of the OM.
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The OM displays a memory state for a short time before it oscillates to the next
state. The endurance time Ti is the average duration of memory state xi in the per-
petual oscillation of the OM. The endurance time is the physical parameter that
encodes the support vector weight of the memory state. In the following we use αi
as a shorthand for a dimensionless parameter that is proportional to Ti and plays the
part of the SVM weight of the training example that is engraved as memory state xi
.

The SVM kernel function K(xi,x) is computed in the CL where projections car-
rying support vectors xi (D4) join afferents (D2) conveying the input vector x. The
classification function Eq. (1) is computed by temporal summation,

f (x)∼
∫ t0+Ttrap

t0
yi(t)K(xi(t),x)dt, (7)

where t0 is the starting time of the integration, Ttrap is the holding time of the sen-
sory memory and i(t) is the index of the prevailing OM memory pattern at time
t. As usual, yi is the valence of the memory pattern xi. The resulting classification
is transmitted to HOBS (M1). Note that neural temporal summation produces an
approximation of Eq. (1) where the non-linear summation of physical neurons and
the stochastic nature of the presentation of the support vectors contribute to pattern
recognition errors. Further details of the classification process will be discussed in
section 4.

3.2 Surprise Learning

In this paper, we define a surprise as a stimulus that causes a neural classifier to
make an error. New stimuli may be correctly classified but a surprise is by defini-
tion misclassified. Misclassifications cause strong emotional responses with positive
or negative valence and trigger a surge of neuromodulators (M2) causing the OM
to engrave the misclassified pattern as a new a support vector candidate. The Trap
holds a stable copy of the surprising input that projects (D3) to the OM. The emo-
tional valence of the surprise provides the label yi of the new memory pattern xi.
Note that the new training example is learned from one single exposure. Mecha-
nisms for such one-shot learning in artificial associative memories are described by
Hopfield [2]. The SVM weights αi are sub-optimal following the addition of a new
training example so the animal may not classify scents correctly immediately after
misclassification events.
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3.3 Importance Learning

From ancient times it has been surmised that memory is trimmed and consolidated in
sleep [13]. We suggest a specific application of this idea - support vector weights are
optimized and trivial examples are pruned from memory while the animal sleeps. As
external inputs are suppressed in sleep, the Trap locks on inputs (D5) from the OM.
Real-world data are replaced with support vectors. The OM keeps oscillating inces-
santly in the sleeping brain so that support vectors are presented stochastically. The
Trap holds each such training example (x j,y j) for the duration of a sniff cycle and
will then capture the next support vector that is presented by the OM. The OM oscil-
lates much faster than the sniff cycle. The probability of trapping any given example
i is hence proportional to the corresponding endurance time Ti. The CL computes
the kernel K(xi,x j). Note that (x j,y j) is the example that is trapped and (xi,yi) is
the example that currently is offered by the OM. A feedback signal Bi j = y jK(xi,x j)
is projected (M3) from the CL to the OM. Note that the kernel computation in the
CL thus has dual use.

Once during each OM oscillation the learning rules,

∆Ti ∼−yiBi j and ∀s : ∆Ts ∼ 1
m

yiBi j, (8)

are applied. In Eq. (8), ∆Ts is the increment of the endurance time Ts. The current
memory pattern i is hence depressed in proportion to yiBi j and all memory patterns
are potentiated in proportion to 1

m yiBi j. The sum of endurance times is conserved.
Averaging Eq. (8), for any given memory pattern i, over the probability distribution
of the trapped examples j gives the effective learning rules,

∆̃T i ∼−Ci and ∀s : ∆̃T s ∼ 1
m

Ci, (9)

where ∆̃T s is the average increment of Ts and Ci is given by Eq. (6). Note that the
support vector weight αs is proportional to Ts. The OM implements hence zero-bias
ν-SVM gradient ascent according to Eq. (5). This means that the biological support
vector machine eventually acquires optimal weights. Trivial examples are erased
from the OM as the corresponding weights fall to zero.

4 Evolutionary Path

This section describes a hypothetical evolutionary path from primitive pattern recog-
nition to a full implementation of kernel machines in low-level perception. The path
consists of a sequence of simple modifications where each step brings some advan-
tage to the life form. As an ongoing example we shall consider an organism living in
a world with many different food stuffs and many different toxic substances. Using
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odours for distinguishing food from poison is crucial. As organisms evolve they will
be equipped with increasingly sophisticated chemical pattern recognition systems.

The primordial pattern recognition system consists of a sensor system SS and
a pattern recognizer PR (Fig. 2a). The sensor system includes receptor cells and
back-end layers for stabilizing and filtering the external input. A prototypical sen-
sor system is the primary receptor cells combined with the glomerular layer of the
olfactory bulb. The output of the pattern recognizer is a function f (x′′(t)) where x′′
is the sensory input vector and t is time. A positive value of f could e.g. mean safe
to eat while a negative value indicates not safe to eat.

Turbulence in the odour carrying medium causes discontinuous and highly vari-
able exposure of odour signals at the chemoreceptor neurons [14]. Adding sensory
memory SM enables more sophisticated analysis (Fig. 2b). SM captures a snapshot
x of the sensor signal and holds it stable for a time Ttrap until the next snapshot is
trapped. More time is now available for computing a complex classification func-
tion f (x) of a significant input x. Sensory memory expands the range of features
and phenomena that the system can recognize.

The organism can learn to recognize new scents by adapting neural networks in
the PR thus modifying f (x). Learning new pattern recognition skills by tweaking
f (x) means, however, that new memories overwrites old unless all relevant training
examples are repeated continuously.

One-shot learning is an essential skill in a world where organisms can not afford
to repeat mistakes. As a starting point for evolving one-shot learning, we assume
that associative memory (AM) is available in the brain (Fig. 2c). This facility has
developed for some other purpose and is initially disconnected from the pattern
recognition system.

The next evolutionary step is to connect SM to the AM (Fig. 2d). Frightening,
painful, pleasurable or otherwise emotional events cause a burst of neuromodula-
tors that imprints the present sensory input x as a new memory pattern in the AM.
Hopfield demonstrated the feasibility of such one-shot learning in a model of asso-
ciative memory [2]. The emotional valence y of the input is a part of the memory
trace. In the food search example y = 1 indicates food and y = −1 means poison.
Significance events are hence represented in persistent memory by the associated
input pattern and the emotional valence. Sensory memory is essential for temporary
saving the input that caused the surprise.

As the organism explores its environment, the input x falls within the basin of
attraction of memory pattern x′ and cues the AM to settle into the state (x′,y′). The
emotional valence y′ of the triggered memory is produced (see Fig. 2d). Remem-
bering the emotional valence of a training example that is similar to the presently
encountered substance helps to select food and avoid poisons. The system can use
y′ directly to drive actions or more likely fuse it with other evidence in high-level
decision modules.

The system of Fig. 2d would work rather well in a world where all substances are
known and have unambiguous sensory signatures. In a less clear-cut environment,
food scents that are only remotely similar to a known poison could fall into the
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Fig. 2 Speculative evolutionary path leading to a biological kernel machine according to the Bio-
SVM concept. The key adaptation is indicated for each step.

a) Base-line pattern recognition system consisting of a sensor system (SS) and a pattern recognizer
(PR). The signal from SS to PR is the sensory vector x′′.

b) The system is extended with sensory memory (SM) providing a stable duplicate x of the sensory
vector.

c) Associative memory (AM) is available in the brain.
d) Surprising signals from SM are stored in AM. The emotional valence y is recalled for suffi-

ciently similar inputs.
e) The PR modulates the recalled valence with a similarity measure comparing x with the stored

pattern x′.
f) Oscillating memory (OM) and temporal summation in the PR enable pattern recognition based

on a weighted average over many training examples.
g) Learning feedback from the PR to the OM tunes memory weights in real-world experiments.
h) Feedback from the OM to the SM enables virtual experiments in sleep thus completing a bio-

logical support vector machine.
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basin of attraction of the corresponding memory state and thus trigger unwarranted
avoidance behaviour.

A successful mutation could build a connection from the associative memory
to the pattern recognition module (Fig. 2e). The input x falls within the basin of
attraction of some memory pattern x′ and causes the AM to settle in the state x′.
The PR receives x, x′ and y′. The classification function would now be of the form
f (x) = y′K(x′,x) where the function K measures the similarity of x′ and x. The
PR outputs the recalled valence y tempered by a measure of similarity between the
present sensory signal and the recalled example. An activation threshold could en-
sure that only sufficient similar x and x′ trigger actions suggested by y′. The resulting
behaviour would be more appropriate e.g. with feeding triggered only by substances
that are quite similar to known foods. A disadvantage of this system is that the or-
ganism gets little guidance if the selected pattern x′ is too dissimilar to x since the
system compares the input with just one of the training examples.

The next evolutionary step is to compare the sensory input to many stored pat-
terns. To achieve this, the associative memory transforms so that it will not settle into
a stable attractor but rather perpetually oscillate between memory states. The asso-
ciative memory becomes an oscillating memory OM (Fig. 2f). The wide-ranging
phenomenon of chaotic itinerancy ([15], [16], [17] see [18] for a review) lends cred-
ibility to the existence of such oscillating memories in brains and shows that a minor
change in the dynamics of biological associative memory can cause a transition to
the oscillating phase.

The pattern recognizer employs temporal summation to compute

f (x)∼
∫ t0+Ttrap

t0
yi(t)K(xi(t),x)dt, (10)

where t0 is the starting time of the integration, Ttrap is the holding time of the sensory
memory, i(t) is the index of the present memory pattern of the OM and yi is the
valence of the memory pattern xi. Temporal summation is a naturally occurring
property of neurons [19] and may already be available in the PR although it served
no computational function in preceding systems. No change to the PR may hence
be required in the transition to the system of Fig. 2f.

If Ttrap is much larger than the OM oscillation time, Eq. (10) averages to,

f (x)≈ c
m

∑
i=1

yiαiK(xi,x), (11)

where c is a positive constant and αi are weights proportional to the endurance times
Ti of the corresponding memory patterns. The endurance time could depend on the
emotional intensity of the event that imprinted the corresponding memory trace.

Our organism can now perform pattern recognition based on weighted averages
of similarity measures for many stored memories. It has in fact implemented the
classification process of a support vector machine as described in sections 2 and 3.
Eq. (11) is identical to Eq. (1) provided that K is understood as the kernel function
of the support vector machine, αi are the SVM weights and the signum function is
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applied for binary classifications. The Surprise learning process of section 3 is also
identical to one-shot learning as described in this section. Further evolution could
explore that the same oscillating memory can serve multiple pattern recognition
units, each tailored for a different purpose.

Temporal integration according to Eq. (10) will, however, converge within rea-
sonable time only for a limited number of memory patterns. The capacity of the
oscillating memory is also finite. Too handle rich and variable environments the or-
ganism needs means for trimming the content of the OM to a small and dynamically
updated population of vital training examples.

The next evolutionary invention is to carry a feedback signal Bi j = y jK(xi,x j)
from the PR to the OM (Fig. 2g). Note that (xi,yi) indicates the state of the OM
while x j is the sensory vector held by the SM. The feedback signal Bi j includes the
valence y j as evaluated by higher-order brain systems in interaction with the world.
Tasting the substance with scent x j gives e.g. the classification y j (edible or toxic).
The OM uses Bi j to regulate endurance times according to Eq. 8.

Consider a world with m̂ substances that the organism encounters with proba-
bility p̂ j. Each substance is either edible or toxic. Averaging Bi j for a given OM
state i over world states j and multiplying with the valence yi of the OM state gives
Ĉi = yi ∑m̂

j=1 y j p̂ jK(xi,x j). Note that Ĉi is the classification margin of xi for the
classifier f̂ (x) = ∑m̂

j=1 y j p̂ jK(x j,x) that averages over valences of real-world sub-
stances weighted with real-world probability p̂ j and the similarity measure K(x j,x).
We also define Ĉ averaged over all m memory patterns in the OM, ĈOM = 1

m ∑m
s=1 Ĉs.

Applying the learning rules in Eq. 8 means that the endurance time Ti of all mem-
ory states with Ĉi > ĈOM are driven to zero. Such states are hence pruned from the
OM. The endurance time of states with Ĉi < ĈOM are pushed to the maximum value
Ti = Tmax.

The effect of adding the feedback Bi j = y jK(xi,x j) (Fig. 2g) and applying the
OM learning rules is that training examples that are correctly classified with a good
margin are purged from the OM. The system retains training examples with a nar-
row margin that are hard to classify correctly. Such examples mark the borderline
between categories and provide hence useful information for classification purposes.
Dropping the high-margin trivial examples subtracts little from pattern recognition
performance but makes the system much faster and reduces the need for memory
capacity. The selection of training examples and the associated endurance times
(weights) is, however, not optimal. The classifier f̂ (x) is different from f (x) so the
learning process will drive the OM population and weights to a suboptimal state
from a support vector machine point of view.

Evolution completes the implementation of a biological support vector machine
by adding a backward projection carrying memory patterns from the OM to SM
(Fig. 2h). Input from the sensors SS dominates, however, in the waking state. As
sensors are turned off in sleep, the SM will trap the otherwise suppressed input
from the backward projection. Randomly selected training examples masquerade
for actual sensory data. The optimization of the SVM weights is performed using
the same learning rules as in the system of Fig. 2g but replacing real-world inputs
with recalled training examples as described in section 3.3. This final step provides
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two major advantages. Firstly, pattern recognition performance is improved since
the selection of OM training examples and their weights is optimal. Secondly, the
optimization process proceeds swiftly by virtual experimentation in sleep rather than
by slow and dangerous trial-and-error in the real world.

4.1 Conclusions and Discussion

It should be understood that early rungs of the evolutionary ladder could coexist with
modern structures. The direct connection from the olfactory bulb to the piriform
cortex might e.g. be a part of a legacy discrimination system (at the level of Fig. 2a)
that is hard-wired for detecting scents of high survival significance [HAB]. Later
evolutionary steps employ, according to section 3, the rewired route through the
anterior olfactory cortex. The lobster olfactory system includes also labelled lines
where dedicated subsystems handle specific odorants of particular survival value
[20].

The locus for short-term sensory memory could also be in the olfactory bulb. Pe-
riodic signalling of the memory state to a secondary sensory memory in the anterior
olfactory cortex would be consistent with the present model. The procerebral lobe,
that has a similar function as the olfactory bulb in invertebrate species, seems to be
the site of odour sensory memory [21]. It is also conceivable that several types of
sensory memory with different time scales operate in different contexts.

Section 3 reviews a new model for olfactory pattern recognition. Note, how-
ever, that there is a wealth of computational approaches to olfaction (see [22] for
a review). Odour recognition models based on cortical dynamics include [23]. As-
sociative memory in the piriform cortex is described by [24]. Models with central
information processing in the olfactory bulb include [25], [26].

The Bio-SVM model of trainable pattern recognition matches the architecture
of both the thalamic [7] and the olfactory system [3]. It appears that there is an
evolutionary path from simple hard-wired pattern recognition to the full Bio-SVM
architecture. Each step along the path includes one single modification in compo-
nents or connections that provides some crucial advantage in pattern recognition
performance. If evolution actually has travelled along this path is an open issue.
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