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Abstract—Model reuse is a promising and appealing convention 
for effective development of simulation systems. However it poses 
daunting challenges to various issues in research such as 
Reusability and Composability in model integration. Various 
methodological advances in this area have given rise to the 
development of different component reusability frameworks such 
as BOM (Base Object Model). However, lack of component 
matching and support for composability verification and 
validation makes it difficult to achieve effective and meaningful 
reuse. For this reason there is a need for adequate methods to 
verify and validate composability of a BOM based composed 
model. A verified composed model ensures the satisfaction of 
desired system properties. Fairness, as defined in section II, is an 
important system property which ensures that no component in a 
composition is delayed indefinitely. Fairness in a composed model 
guarantees the participation of all components in order to 
achieve the desired objectives.   

In this paper we focus on verification and propose to 
transform a composed BOM into a Petri Nets model and use 
different analysis techniques to perform its verification. We 
propose an algorithm to verify fairness property and provide a 
case study of a manufacturing system to explain our approach. 

 
Keywords—Model Verification;Composability;BOM framework; 

Petri Nets Analysis; Fairness; Manufacturing System. 

I. INTRODUCTION 
In the last two decades, the defense industry has invested 

significant resources in technologies and methods for making 
independently developed simulations work together [1]. The 
defense industry gained substantial experiences in 
interconnecting various simulation systems and the simulation 
research community has developed some supportive theories 
under the rubric of simulation composability [1]. The main 
driving factors behind composability are to enable reuse of 
existing solutions, cost reductions and cross-domain solutions 
[2]. 

The recent discussion on concepts of composability was 
reignited by Petty's and Weisel's publications on theory of 
composability [3] according to which, “Composability is the 
capability to select and assemble simulation components in 
various combinations into simulation systems to satisfy 
specific user requirements”. Component-based software 
engineering has been identified as a key enabler in the 
construction of composable simulations [4]. At the level of an 
abstract model, composability is the creation of a complex 
model from a collection of basic reusable model components 
[5]. Composability is an effective way to achieve reusability 
therefore at the model level reuse relies on a composition 
framework that provides features for both composability and 
the mapping of composite models into executable form. 

Base Object Model (BOM) is a component architecture 
based on these specifications. It contributes to conceptual 
modeling by providing the needed formalism and influence the 
ability to develop and compose model components [6] [7]. 

BOM is a Simulation Interoperability Standards Organization 
(SISO) standard. BOM encapsulates information needed to 
describe a simulation model using XML notation. BOM was 
introduced as a conceptual modeling framework for HLA 
(High Level Architecture) which is an IEEE standard for 
distributed simulations. In BOM different elements such as 
entities, events, actions and state-machines of the components 
are defined. Entities, events and actions represent the structural 
information about the real world objects that are being 
modeled, whereas State-machine is an essential part of BOM 
that provides means to formalize the component behavior and 
is our focus in this paper. Without the loss of generality we 
assume in this paper that a BOM component represents one 
entity. For details interested readers should refer to [8] [9].  

The BOM framework poses an adequate potential for 
effective model composability and reuse; however it lacks 
means to express necessary elements of semantic accordance 
(agreement on the understanding of mutual communication) 
and behavioral coherency (having an interaction consistent 
with the common goals) between the composed components, 
which are essential for reasoning about the validity of the 
composition [10]. This fact leads us to the investigation of 
external methods for the matching and verification of BOM 
composability. 

In modeling and simulation, verification is typically 
defined as the process of determining whether the model has 
been implemented correctly [11]. Actually, verification is 
concerned with the accuracy of transforming the model’s 
requirements into a conceptual model and the conceptual 
model into an executable model [12]. We focus on the former 
part and assume that the behavioral correctness is a part of the 
model’s requirements. In our case the conceptual model is 
represented by a composed BOM. Our task is to verify that the 
BOM based composed model satisfies the behavioral 
requirements such as avoiding deadlock and live-lock or 
guaranteeing fairness. These requirements are defined in form 
of system properties and may also include specific reachability 
properties representing certain desirable or undesirable 
incidences in the system. All these properties can generally be 
grouped as Safety or Liveness requirements. In Composability 
Verification we assess that the model components are 
correctly assembled such that they satisfy the given 
requirement specification and their combined behavior is 
suitable to reach given objectives.  

Fairness property as defined in the next section, has a 
significant place in requirement specifications, and the 
motivation behind the notion of verifying fairness in a 
composed model is to disallow infinite executions of some 
components due to which others are unable to proceed or 
make progress [13]. It is possible that a deadlock-free 
composed model makes progress but it cannot guarantee the 
fulfillment of desired objectives because one of the 



components, whose participation is essential, may not get a 
chance to involve in the interaction. However if a composed 
model satisfies fairness property, we can guarantee that all 
components will get a chance to interact and thus their 
combined behavior influences in a positive way the ability to 
reach the desired objectives.  

In order to achieve suitable composability, the correctness 
of a composed model is evaluated in various levels of 
consistencies namely syntactic, semantics and pragmatics 
[14]. Syntactic consistency means that two models can fit 
together, i.e., the output of one can be read as an input to the 
other, whereas Semantic consistency is concerned with the 
meaningful interaction of the components. It is further divided 
into Static-Semantic and Dynamic-Semantic sublevels. The 
former involves in having a concise and mutual understanding 
of the data exchanged by the components participating in the 
composition, while the latter deals with having a conforming 
behavior towards their collective objectives [10].  Pragmatic 
consistency on the other hand refers to a context based 
meaningful interaction of the models [14]. 

Based on different consistencies involved in the process of 
model composition and the fact that the BOM framework 
lacks built-in verification techniques to evaluate them, 
different approaches have been suggested for the external 
composability verification. A rule-based approach proposes to 
match a set of BOMs and verify their syntactic, static-
semantic and dynamic-semantic consistencies [10]. Another 
approach covers different aspects of validation of semantic 
consistency in composability of components [15]. A similar 
work [16] suggests an instrumentation technique to specify 
verification criteria as a Model Tester and check dynamic 
semantic composability. Using the model tester, various 
system properties can be modeled as a state-machine 
component and attached to the composition like a device 
tester.  Another method [17] explores the possibility of using 
Petri Nets (PN) formalism for the dynamic-semantic 
composability verification. In this approach a BOM based 
composed model is transformed into a single PN model and 
PN Reachability analysis are applied to verify the model 
behavior [17]. In another similar work presented in [18], an 
automatic conversion of an architecture created using UML to 
a Colored Petri Nets based executable model is suggested for 
determining the potential behavior and performance of the 
system. 

In this paper, we revisit the verification of BOM 
composability using Petri Nets formalism [17], and utilize 
certain PN properties analysis methods to verify fairness in the 
composed model. Here we only consider classical Petri Nets 
leaving consideration of Timed, Hierarchical and Colored PN 
extensions to our future work. We present theorems and PN 
properties required in the fairness verification, and provide a 
fairness verification algorithm. We also include a case study to 
explain our approach. The approach to fairness verification 
presented in this paper can be generalized and applied to 
verify various other system properties in the given model. It 
should be noted that the focus of this paper is not to introduce 
new techniques in Petri Nets; instead we suggest the 
utilization of existing techniques from Petri Nets community 
for the purpose of Composability verification. We however 
propose minor refinements to suit our needs. In our 
observation, using PN for verification proves to be more 
fruitful as compared to other similar formalisms, due to the 
broader range of verification methods and tools and 

techniques and due to their greater suitability in formal 
representation of concurrent behaviors.  

The rest of the paper is organized as follows:  Section II 
briefly provides basic concepts and definitions of Petri Net 
formalism that are used in this paper. Section III formulates 
our Verification approach and presents our algorithm for 
fairness verification. Section IV provides details on the 
implementation of our verification process and framework. 
Section V covers a manufacturing system case study and its 
counterexample; whereas section VI concludes the paper. 

II. PRELIMINARILY CONCEPTS AND NOTATIONS 
In this section we briefly discuss basic concepts of Petri 

Nets theory used in our work. Readers should refer to [18], 
[19] and [20] for details. We also define and discuss the 
essentials of fairness property in this section. 

A. Petri Nets 
Petri Nets (PN) is a graphical and mathematical tool for 

the formal description of the flow of activities in complex 
systems. It is particularly suited to represent typical situations 
like synchronization, sequentiality (producer-consumer 
problem), concurrency and conflict (mutual exclusion) in a 
system. 

Mathematically a PN is a 5 tuple: PN = 〈P, T, F, W, M0〉 
where: 

• P is a finite set of places P = { p1, p2, . . . , pn} 

• T is a finite set of transitions T = { t1, t2, . . . , tn} 

• F is a set of arcs F ⊆  (P ×T) ∪ (T×P) | P∩T = φ and P ∪ T ≠ φ 
(In words: an arc can be connected from place to transition or vice versa 
but not from place to place or transition to transition). 

 
• W: F → {1, 2, 3…} is an arc weight function.  

• M0 is the initial marking. 

Graphically, a PN is a bipartite graph that has two types of 
nodes: Circular (or oval) nodes represent places whereas box 
(or rectangular) nodes represent transitions. These nodes are 
connected through arcs. A dot in a place represents token. 
Following are some selected terms and definitions from PN 
literature that we use in this paper. (It is assumed throughout 
the paper that a PN has m-places and n-transitions). 

1) Marking 
A marking M: P → N is the state of a PN that represents the 
number of tokens in each place. M is a non-negative m×1 
integer-valued vector M ∈ Nm where ith component Mi 
represents the token load M(pi) of the ith place. 

 
2) Arc Weight 

Arc weight w(p,t) denotes the number of required tokens to 
be consumed from the input places whereas w(t,p) denotes 
the number of tokens produced to the output place.  

 
3) Enabled Transistion 

For a given marking M a transition t∈T is said to be 
enabled if ∀p∈•t, m(p) ≥ w(p,t) i.e, all the input places of 
transistion t have number of tokens greater or equal to the 
input arc weight. 

 
(Note that ∀p∈•t is the dot notation, which represents all 
input places that are connected to the transition t. Similarly 



∀p∈t• represents all the output places that are connected to 
transition t) 

 
4) Firing Count Vector 
An n×1 column vector X of nonnegative integers is called 

firing count vector, where the ith entry of X denotes the 
number of times transistion t must be fired to transform M0 to 
M. 

B. Matrix Definitional Form (MDF) 
The Matrix Definitional Form (MDF) of a PN consists of 

the matrices: A+, A-, A 
 

• A+ = [a+
ij]nxm is the output matrix, where a+

ij = w(ti, pj); if 
pj∈ti

•, and i∈n; j∈m i.e., if  pj is connected to the output of ti 
then a+

ij is equal to the weight of output arc; 0 otherwise.  

• A- = [a-
ij]nxm is the input matrix, where a-

ij= w(pj , ti); if pj∈•ti,  
i.e., if pj is connected as input to ti then a-

ij is equal to the 
weight of input arc; 0 otherwise.  

• A = [A+ - A-]nxm is the incidence matrix. The ith row in A 
denotes the change of the marking as a result of firing 
transition ti.  

C. State Equation 
The incidence matrix A is used to compute any reachable 

marking M using the following State Equation: 

M = M0 + A.X 

Where:  
• M0 is the initial Marking  
• A is incidence matrix  
• X is the firing count vector 

D. Bounded Petri Nets 
Boundedness in Petri Nets is a safety property. A place is 

bounded with k, if the token count does not exceed k in any 
marking of a PN. A PN is k-bounded if each place is k-
bounded.  

E. Invariants 
Occurrences of transitions transform the token distribution 

of a net, but often respect some global properties of markings, 
regarded as Linear Invariant Laws. Invariants are useful for 
analyzing structural and behavioral properties of Petri Nets.  
Two most important invariants are the following. 

a) P-Invariants 
Place Invariants formalize invariant properties regarding 

places in PN, e.g., if in a set of places the sum of tokens 
remains unchanged after firing, then this set can define a place 
invariant. They are useful to evaluate structural properties of 
PN. P-Invariant of a PN can be formed if there exists an m×1 
vector Y, such that for any reachable marking M 

 
M.Y = M0.Y and A.Y = 0 

 
If there exist a P-Invariant such that Y(p)>0, for all p∈P, then 
PN is guaranteed to be structurally bounded [20]. 
 

b) T-Invariants 
Transition Invariants on the other hand formalize 

properties regarding transition firing sequences applicable to a 
PN. They are useful to evaluate behavioral properties such as 

liveliness and fairness. A firing count vector X, is called a T-
Invariant if:   AT.X ≥ 0 

 
I.e., firing each transition the number of times specified in 

X, brings the PN back to its initial marking M0 [20]. There can 
be multiple T-invariants for a PN, though a minimal T-
Invariant is called the Reproduction vector of the net [21]. 

F. Fairness Property 
Informally a system is said to be fair if: “No component of 

the system that becomes enabled sufficiently often should be 
delayed indefinitely” [13]. On the basis of the extent of 
sufficiency, fairness is generally categorized in the following 
three types in literature:   

a) Unconditional (or Impartial) Fairness 
Every component in a system proceeds infinitely 
often. (Unconditionally) 

b) Weak (or Just) fairness 
Every component in a system that is enabled 
continuously from some point onwards eventually 
proceeds. 

c) Strong fairness 
Every component in a system that is enabled 
infinitely often proceeds infinitely often. 
 

Unconditional fairness is also known as non-deterministic 
choice and is usually present among the components that are 
independent of each other. A noticeable difference in weak 
and strong fairness is that weak fairness involves persistent 
enabling of a component that wants to proceed, whereas 
strong fairness is not persistently enabled [13]. 

Some important generalizations of fairness exist in 
literature: 

a) Equi-fairness: To give each component an equal 
chance to proceed. This type of fairness does not always apply 
in real world scenarios because of priority policies or some 
other reasons.  

b) Bounded fairness: To give each component an equal 
number of chances, such that no component proceeds for more 
then “k-times” without letting the others to take their turn. 

 
In Petri Nets, fairness can be viewed in two perspectives 

namely: Transition fairness and Marking fairness. The former 
corresponds to fairness of choice of transitions, and the latter 
deals with the fair reachability of states [13]. In this paper we 
focus on Transition fairness. 

III. VERIFICATION APPROACH 
In this section, we discuss our approach for the verification 

of a BOM based composed model that concentrates on the 
“Dynamic-Semantic” consistency and tests that the 
composition posses correct behavior that satisfies given 
specifications and objectives. In this paper, we consider 
“Fairness” as a specification criterion for composability 
verification. We divide our approach in two main phases: (1) 
Transformation, (2) PN Analysis, explained below. 

A. Transformation 
BOM framework uses XML notation for representation. 

An essential part of BOM is State-machine, which provides 
means to model the abstract behavior of each component 



participating in the composition and is our main concern in the 
composability verification. 

In this phase we transform the state-machines of all 
members of the composed BOM in to a single PN model. This 
is an n→1 automatic transformation. In this transformation, 
we consider each state (of state-machines) as Place in PN and 
each event (send or receive event) as a Transition in PN such 
that the sender state s and the receiver state r (of two different 
state-machines in BOM) have two places p and q as input 
places in PN and connect to a single transition t in PN 
representing the event they exchange. The next states s´ and 
r´(after sending or receiving event) have two places p´ and q´ 
in PN as output places such that they have output arcs coming 
from the transition t. We assume that the instances of each 
component are represented by the tokens (in the initial 
marking of PN) assigned to the places corresponding to the 
initial states in the state-machines. The number of tokens 
(instances) is given as an input parameter.  

The transformation process is complete, when all the states 
and events of every state-machine in BOM are plotted in the 
PN model such that no element is duplicated, and each place 
or transition is connected so that there are no broken links. 
Figure 1 depicts an example of the transformation.  

 

 
Figure 1.  Transformation  of BOM state-machines to PN  

B. PN Analysis 
System properties are explored in this phase depending on 

the requirements specifications. In Petri Nets, system 
properties are divided into two groups, namely, structural 
properties and behavioral properties. Structural properties 
focus on the structure of the net and are independent of the 
initial marking; whereas behavioral properties concentrate on 
the model behavior and depend on the initial marking [18]. 
Some of the important behavioral properties are Reachability, 
Boundedness, Liveness (Deadlock freeness, Livelock freeness) 
and Fairness. Depending on the nature of the property, various 
methods have been proposed for verification. These methods 
include Algebraic techniques, Reachability graph analysis, 
Model Checking etc. For example, in [17] we have already 
presented an approach to deadlock detection in a composed 
model using Reachability graph analysis. In this approach we 
transformed a composed BOM into PN and explored the 
Reachability graph for any dead marking. If there exist a dead 
marking from where no further transition is possible then a 
deadlock is detected [17].  

In this section, we discuss the technique for the verification 
of fairness property and provide the necessary and sufficient 
conditions for a PN model to be fair. The evaluation of these 
conditions in a PN model involves linear algebraic 
computations; therefore we classify this approach as an 

Algebraic technique. Based on the theorems below, we 
propose an algorithm for automatic fairness verification. 

In Petri Nets, fairness is mainly perceived in terms of 
occurrences (or proceedings) of transitions.  Two transitions t1 
and t2 are said to be in a fair relation if there exists a positive 
integer k such that for any reachable marking M and any 
firing sequence σ: 

# (t1/σ) = 0 ⇒ #(t2/σ) ≤ k 
and 

#(t2/σ) = 0 ⇒ #(t1/σ) ≤ k 
Where #(t/σ) denotes the number of occurrences of transition t 
in a firing sequence σ. In words, neither of the transitions 
should occur more than a finite number of times (k) without 
letting the other to do so for at least once. This is known as 
bounded fairness (or B-Fairness). If every pair of transition is 
in a bounded fair relation, then the entire net is said to be fair 
[21].  For the algebraic verification of fairness in a PN model 
we rely on the following theorems. Details and proofs of these 
theorems are discussed in [21]. 
 

Theorem I: 
Given a PN, if there exists a firing-count vector X, such 

that: AT.X ≥ 0 and X≠0 then a necessary condition for the PN 
to be fair is that each entry of X is positive. 

 
Theorem II: 
If a Petri Net N is bounded for any initial marking M0 then 

the condition in Theorem I is necessary and sufficient for N to 
be fair. 

Corollary: If there exist a P-Invariant Y with Y(p) > 0 for 
all p∈P and A.Y=0, then the PN is guaranteed to be 
structurally bounded.  

 
Theorem III: 
A fair Petri Net PN has only one reproduction vector (i.e., 

a minimal T-Invariant) at the most.  
 
Based on the above definition of fairness and theorems I, II 

and III, it can be inferred that if there exists a single T-
Invariant X for a given PN model, i.e., a firing count vector 
where each entry is non-zero and AT.X ≥ 0, and if at least one 
P-Invariant exists, then we can say that the net is fair.  

Based on the above discussion, we propose the fairness 
verification algorithm presented in Figure 2.  

 
Algorithm 1: Fairness Verification 
Input: M0, A 
Result: True/False 
1 begin 
2 ListXT= Call GetTInvairants() 
3 if |ListXT|=1and A.XT≥ 0and each x in XT>0 then 
4  ListYP= Call GetPInvairants() 
5  if |ListYP|> 0 then 
7    return true 
8   else 
9    return false 
10   end if 
11 else 
12  return false 
13 end if 
14end 

Figure 2.  Fairness Verification algorithm 

t↑ S S´ 

t↓ R R´ 

 

 

 

 

t 

P 

P´ Q´ 

Q   



In the beginning of the procedure, a sub routine “GetT-
Invariants” is called (2) that returns a list of all possible T-
invariants of the given PN. If only one T-invariant exists (3) 
and the multiplication of the T-Invariant with the incidence 
matrix gives a non-negative result and each entry in the T-
invariant XT is non-zero then we say that conditions in 
Theorems I and III are fulfilled. Then we call GetP-Invariant 
(4). If a non-zero list is returned then it satisfies Theorem II 
providing that the given PN is structurally bounded thus the 
given PN is fair. If either or both of tests in (3) and (5) fail, we 
conclude that the net is not fair. 

The methods for calculating P-Invariants (GetPInvariant) 
and T-Invariants (GetTInvariant) of a PN model have been 
extensively studied. The details of these procedures are outside 
the scope of this paper, however we briefly describe the basic 
principle to compute the fundamental set of P-invariants and T-
Invariants. The principle of finding P-Invariance is presented in 
Figure 3. 

The input of the procedure is the Incidence Matrix A and 
an Identity matrix B of size m×n. The output is a matrix B´ 
whose rows are the fundamental set of P-Invariants. The same 
procedure is used to find T-invariants but the Incidence Matrix 
is transposed. 

 
Algorithm 2: P-Invariance (Farkas Method) 
Input: A, B            /* For T-Invariance AT*/ 
Result: B´  
1 begin 
2 B´ := A|B     /* Augmentation  of A with n×n identity matrix B */ 
3 for i=1 to n    /* n = |T| */ 
4  for each pair of rows b1, b2 in B´i-1 where b1(i) and  
5  b2(i) have opposite signs (i.e., annul the ith column) 
6   b := |b2(i)|.b1  +|b1(i)|.b2 

7   b´ := b/gcd of each element of b 
8   augment B´i-1with b´ 
9  end for 
10  Delete all rows of B´i-1whose ith component is  
11  different from 0, the result is B´ 
12 end For 
13 Delete the first N columns of B´ 
14 return B´  /*Matrix whose rows contains fundamental P-Invariants*/ 
15end 

Figure 3.  P-Invariants calculation algorithm (see [22] and [23] for details) 
(gcd = Greatest common divisor) 

 
This is the basic principle of calculating Invariance 

proposed by Julius Farkas in 1902. This method was 
introduced in the context of PN by J.M. Toudic and later 
refined by H. Alaiwan and G. Memmi. In this paper we derive 
the method of Invariance calculations from the much 
optimized algorithm discussed in [23]. 

IV. VERIFICATION FRAMEWORK 
In this section, we present a composability verification 

framework as our main contribution. Our proposed framework 
automates the verification of BOM based composed models 
and focuses on the dynamic semantic (behavioral) 
consistency.  

Our Java based framework relies on PIPE library [24] as an 
underlying layer for basic PN operations such as graphical 
preview and simulation of the PN model (which is not 
required in the verification process, but it helps to view and 
study the model). It also utilizes the functions for general 
matrix operations, constructing A+, A- and A matrices, finding 

P-Invariants and T-invariants etc. We have utilized these 
functions to implement our suggested verification algorithm. 
Figure 4 represents our proposed verification framework. 

Our framework performs the following steps to verify the 
BOM composition as marked in Figure 4. 

 

A. Input 
A composed BOM XML document is given as an input 

which is parsed and the components are fetched. Verification 
requirements (RS) are also provided by the modeler at this 
step. In this paper, we propose a method for checking only 
fairness; however similar methods for other properties can be 
added in the framework as add-on modules in order to provide 
a wide range of automated tests, allowing the modeler to 
choose tests according to the verification requirements.  

 

 
Figure 4.  Composability verification framework 

 

B. BOM to PNML Transformation 
In this step we transform the composed BOM in to PNML 

(Petri Net Markup Language) format using our algorithm 
presented in [17]. PNML is a standard XML-based 
interchange format for Petri Nets and in our case it is used to 
represent the transformed composed model in a single 
place/transition PN model.  

In this step, PNML code for Places, Transitions and Arcs is 
generated. Once the transformation is complete, a consistency 
check is performed to ensure that there are no broken paths. 
The output code is written to an XML file representing our 
composed model in PN format. This file is retaken as input in 
the framework as PN Data-Layer. 

C. Fairness Verification 
An automated routine initiates the step mentioned in 

Algorithm 1 (Figure 2). First, the PN Data layer is accessed 
and the PN model is populated in a DOM document object 
making it easy to navigate and access arbitrary data from the 
PN. Then, A+, A- and A matrices are constructed and the 
initial marking vector M0 is initialized. Next, we calculate T-
invariants of the given PN using functions from the PIPE 
library. We check that there is only one T-invariant XT and all 
the entries in XT are non-zero. Then we check whether the 
multiplication of A and XT returns a null matrix. If all these 
conditions are fulfilled then we calculate P-invariants. If there 
exists at least one P-invariant then we are sure that the net is 
structurally bounded and that the given PN is fair. 
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V. CASE STUDY 
In this section, in order to explain our approach, we discuss 

a case study of the model of a manufacturing system. This 
model is composed of three BOM components namely; 
Machine-A, Machine-B and a Robot. Both machines share 
Robot as a resource that loads raw material on them. Either of 
the machines can take Robot one at a time. Once the Robot is 
acquired, it loads raw material on the machine. After the 
material has been loaded, the machine releases the Robot, 
proceeds with the production process, and, finally, outputs a 
finished product. Once the Robot is released, it can be taken by 
the other machine. Figure 5 shows the components and the 
workflow of manufacturing system. 

 

 
Figure 5.  Manufacturing system 

 
All components are built and composed using the BOM 

framework. We assume for simplicity that the send events are 
not lost and will eventually be received by the receivers. We 
also assume that a next send-event is issued only after the 
previous send-event has been consumed. Figures 6, 7 and 8 
depict simplified state-machines of each component involved 
in the composition. Note that the robot (Figure 8) can send 
either of the send-events with a random choice.  

Given the BOM components of the manufacturing system 
our objective is to verify that the composed model of the 
system is fair, i.e., neither of the machines takes the robot 
more than a certain number of times without letting other to 
take it at least once.  

 
 
 

WaitingA

LoadingA

ProducingA

AReleasesRobot↑ 

AFinishes↑  

ATakesRobot↓

 
Figure 6.  FSM of Machine A 

 
 
 
 
 

WaitingB

LoadingB

ProducingB

BReleasesRobot↑ 

BFinishes↑  

BTakesRobot↓

 
Figure 7.  FSM of Machine B 

 

Idle

Busy

 
BReleasesRobot↓
 
AReleasesRobot↓

ATakesRobot↑

BTakesRobot↑

 
Figure 8.  FSM of Robot 

[↑=SendEvent]  [↓=Receive Event] 
 

The fairness verification is performed as follows. 

A. Fairness Verification 
In the first step, the BOM xml document is parsed and the 

state-machine components are fetched. Then, using the BOM-
to-PNML transformation algorithm [17], a PNML file is 
generated. This file is parsed and a DOM object is initialized 
that acts as a Petri Net Data layer. The required number of 
tokens is initialized for each place during this transformation 
step. Figure 9 demonstrates the generated PN model. 

 

 
Figure 9.  PN Model of the Manufacturing System 

 
In the initialization phase, the initial marking M0 and the 

Incidence Matrix A are calculated as shown below. 
 
 

M 0  P1 P2 P3 P4 P5 P6 P7 P8 
 1 0 0 1 0 0 1 0 

 
A P1 P2 P3 P4 P5 P6 P7 P8 
T1 -1 1 0 0 0 0 -1 1 
T2 0 -1 1 0 0 0 1 -1 
T3 1 0 -1 0 0 0 0 0 
T4 0 0 0 -1 1 0 -1 1 
T5 0 0 0 0 -1 1 1 -1 
T6 0 0 0 1 0 -1 0 0 
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Note that the labels of rows and columns in A and 
elements in M0 correspond to places and transitions in Figure 
9. The matrix A is given as input to the Invariant calculation 
module that detects the following T-Invariants in the PN 
model of the Manufacturing System: 

 
T1 1  
T2 1 
T3 1 
T4 0 
T5 0 
T6 0 

 

 T1 0  
T2 0 
T3 0 
T4 1 
T5 1 
T6 1 

 

   
As there are zero entries in the T-Invariants, so the net is 

unfair even if there exists any P-Invariant. As the PN is unfair, 
we cannot guarantee that neither of the machines will over 
performs by acquiring robot all the time without letting the 
other to get the robot for at least once.  Therefore either of the 
machines may face a situation in which it is unable to produce 
enough number of products to meet the required objectives; 
consequently the composed model may fail to satisfy given 
specifications.   

 

B. Counterexample 
In order to understand the fairness verification process, we 

provide a counterexample. In this example we introduce 
another component called Controller in the composition that 
can supervise fairness. The job of Controller is to enforce 
fairness in the system. Figure 10 shows the BOM state 
machine of Controller. 

AssignToA

AssignToB

ATakesRobot↑

BTakesRobot↑  
Figure 10.  FSM of Controller 
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Busy

 
BReleasesRobot↓
 
AReleasesRobot↓

BTakesRobot↓

ATakesRobot↓

 
Figure 11.  FSM of Modified Robot 

Figure 12.   
 

This component regulates the assignment of Robot to 
machines switching between them. We modify Robot to be a 
reactive component, which recieves ATakesRobot or 
BTakesRobot events from the controller, as shown in Figure 
11. The PN model of the manufacturing system with added 
controller, obtained by BOM-to-PNML transformation, is 
shown in Figure 12.  

 
If we look at the model from the concurrency point of 

view, we can notice that the Controller is acting as a 
semaphore, which allows both Machine-A and Machine-B to 
execute only one at a time.  

 

 
Figure 13.  PN Model of the Manufacturing System with a controller 

 
In order to verify fairness property we repeat our 

verification process for the PN model of counterexample. In 
the initialization phase, the initial marking M0 and Incidences 
Matrix A were calculated as follows.  

 
M 0  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

 1 0 0 1 0 0 1 0 1 0 
 

A P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
T1 -1 1 0 0 0 0 -1 1 -1 1 
T2 0 -1 1 0 0 0 1 -1 0 0 
T3 1 0 -1 0 0 0 0 0 0 0 
T4 0 0 0 -1 1 0 -1 1 1 -1 
T5 0 0 0 0 -1 1 1 -1 0 0 
T6 0 0 0 1 0 -1 0 0 0 0 

 
After executing the verification process, we get the 

following T-Invariant and P-Invariant: 
 

T1 1  
T2 1 
T3 1 
T4 1 
T5 1 
T6 1 

 
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
1 1 1 0 0 0 0 0 0 0 

 
Having only one T-Invariant with non-zero entries and 

having a P-Invariant, satisfies the conditions required for the 
model to be 1-bounded fair. Note that the existence of P-
Invariant asserts that the net is structurally bounded. Also note 
that if we assign k tokens to the place P9 (Figure12) in the 
initial marking, the net will become k-Bounded fair. 

Fairness property becomes significant in the composability 
verification of a composed model because it ensures the due 
participation of all components in order to achieve the given 
objectives. As illustrated by the case study of the 
manufacturing system, fairness of Robot allocation can ensure 
that both machines will perform to produce a required number 
of products. If there is no fairness we cannot guarantee that 
this objective will be reached. 

 

VI. SUMMARY AND CONCLUSION 
In this paper we discuss verification of BOM based 

composed models. We advocate that transforming a composed 
BOM into a Petri Nets model and applying existing Petri Nets 
analysis techniques is a very useful approach for accurate and 

 



efficient verification. We also propose a verification 
framework that performs the automatic transformation of BOM 
to Petri nets and based on the requirement specifications 
executes the verification task. We suggest an approach for 
verifying fairness property in a PN model and provide an 
algorithm for it. Subsequently we provide a case study of a 
manufacturing process to explain and illustrate our approach.  
This framework can further be extended to accommodate 
methods to verify other system properties. This approach can 
be generalized and can be applied for verification of system 
properties in other component frameworks. 

The usage of Petri Nets in the Composability analysis 
proves to be very useful and promising technique, especially 
with a focus on the dynamic behavior of the system, as Petri 
Nets is one of the competitive formalisms in concurrent 
behavioral representation. Furthermore, the analysis techniques 
contributed by the Petri Net community over a couple of 
decades provide a significant improvement on efficient and 
accurate reasoning regarding the model correctness. 

We are further interested to explore methods for the 
verification of other properties, such as live-lock freeness, 
starvation freeness, reachability of desirable states. Currently 
we lack formalism for behavioral verification specification to 
specify requirements in a formal way. We intend to seek a 
suitable solution for it and extend our framework in this 
capacity. 
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