
Fairness Verification of BOM-based composed
models using Petri Nets

Imran Mahmood, Rassul Ayani, Vladimir Vlassov
KTH Royal Institute of Technology

Stockholm, Sweden
{imahmood, ayani, vladv}@kth.se

Farshad Moradi
Swedish Defense Research Agency (FOI)

Stockholm, Sweden
farshad@foi.se

Abstract—Model reuse is a promising and appealing convention
for effective development of simulation systems. However it poses
daunting challenges to various issues in research such as
Reusability and Composability in model integration. Various
methodological advances in this area have given rise to the
development of different component reusability frameworks such
as BOM (Base Object Model). However, lack of component
matching and support for composability verification and
validation makes it difficult to achieve effective and meaningful
reuse. For this reason there is a need for adequate methods to
verify and validate composability of a BOM based composed
model. A verified composed model ensures the satisfaction of
desired system properties. Fairness, as defined in section II, is an
important system property which ensures that no component in a
composition is delayed indefinitely. Fairness in a composed model
guarantees the participation of all components in order to
achieve the desired objectives.

In this paper we focus on verification and propose to
transform a composed BOM into a Petri Nets model and use
different analysis techniques to perform its verification. We
propose an algorithm to verify fairness property and provide a
case study of a manufacturing system to explain our approach.

Keywords—Model Verification;Composability;BOM framework;

Petri Nets Analysis; Fairness; Manufacturing System.

I. INTRODUCTION
In the last two decades, the defense industry has invested

significant resources in technologies and methods for making
independently developed simulations work together [1]. The
defense industry gained substantial experiences in
interconnecting various simulation systems and the simulation
research community has developed some supportive theories
under the rubric of simulation composability [1]. The main
driving factors behind composability are to enable reuse of
existing solutions, cost reductions and cross-domain solutions
[2].

The recent discussion on concepts of composability was
reignited by Petty's and Weisel's publications on theory of
composability [3] according to which, “Composability is the
capability to select and assemble simulation components in
various combinations into simulation systems to satisfy
specific user requirements”. Component-based software
engineering has been identified as a key enabler in the
construction of composable simulations [4]. At the level of an
abstract model, composability is the creation of a complex
model from a collection of basic reusable model components
[5]. Composability is an effective way to achieve reusability
therefore at the model level reuse relies on a composition
framework that provides features for both composability and
the mapping of composite models into executable form.

Base Object Model (BOM) is a component architecture
based on these specifications. It contributes to conceptual
modeling by providing the needed formalism and influence the
ability to develop and compose model components [6] [7].

BOM is a Simulation Interoperability Standards Organization
(SISO) standard. BOM encapsulates information needed to
describe a simulation model using XML notation. BOM was
introduced as a conceptual modeling framework for HLA
(High Level Architecture) which is an IEEE standard for
distributed simulations. In BOM different elements such as
entities, events, actions and state-machines of the components
are defined. Entities, events and actions represent the structural
information about the real world objects that are being
modeled, whereas State-machine is an essential part of BOM
that provides means to formalize the component behavior and
is our focus in this paper. Without the loss of generality we
assume in this paper that a BOM component represents one
entity. For details interested readers should refer to [8] [9].

The BOM framework poses an adequate potential for
effective model composability and reuse; however it lacks
means to express necessary elements of semantic accordance
(agreement on the understanding of mutual communication)
and behavioral coherency (having an interaction consistent
with the common goals) between the composed components,
which are essential for reasoning about the validity of the
composition [10]. This fact leads us to the investigation of
external methods for the matching and verification of BOM
composability.

In modeling and simulation, verification is typically
defined as the process of determining whether the model has
been implemented correctly [11]. Actually, verification is
concerned with the accuracy of transforming the model’s
requirements into a conceptual model and the conceptual
model into an executable model [12]. We focus on the former
part and assume that the behavioral correctness is a part of the
model’s requirements. In our case the conceptual model is
represented by a composed BOM. Our task is to verify that the
BOM based composed model satisfies the behavioral
requirements such as avoiding deadlock and live-lock or
guaranteeing fairness. These requirements are defined in form
of system properties and may also include specific reachability
properties representing certain desirable or undesirable
incidences in the system. All these properties can generally be
grouped as Safety or Liveness requirements. In Composability
Verification we assess that the model components are
correctly assembled such that they satisfy the given
requirement specification and their combined behavior is
suitable to reach given objectives.

Fairness property as defined in the next section, has a
significant place in requirement specifications, and the
motivation behind the notion of verifying fairness in a
composed model is to disallow infinite executions of some
components due to which others are unable to proceed or
make progress [13]. It is possible that a deadlock-free
composed model makes progress but it cannot guarantee the
fulfillment of desired objectives because one of the

components, whose participation is essential, may not get a
chance to involve in the interaction. However if a composed
model satisfies fairness property, we can guarantee that all
components will get a chance to interact and thus their
combined behavior influences in a positive way the ability to
reach the desired objectives.

In order to achieve suitable composability, the correctness
of a composed model is evaluated in various levels of
consistencies namely syntactic, semantics and pragmatics
[14]. Syntactic consistency means that two models can fit
together, i.e., the output of one can be read as an input to the
other, whereas Semantic consistency is concerned with the
meaningful interaction of the components. It is further divided
into Static-Semantic and Dynamic-Semantic sublevels. The
former involves in having a concise and mutual understanding
of the data exchanged by the components participating in the
composition, while the latter deals with having a conforming
behavior towards their collective objectives [10]. Pragmatic
consistency on the other hand refers to a context based
meaningful interaction of the models [14].

Based on different consistencies involved in the process of
model composition and the fact that the BOM framework
lacks built-in verification techniques to evaluate them,
different approaches have been suggested for the external
composability verification. A rule-based approach proposes to
match a set of BOMs and verify their syntactic, static-
semantic and dynamic-semantic consistencies [10]. Another
approach covers different aspects of validation of semantic
consistency in composability of components [15]. A similar
work [16] suggests an instrumentation technique to specify
verification criteria as a Model Tester and check dynamic
semantic composability. Using the model tester, various
system properties can be modeled as a state-machine
component and attached to the composition like a device
tester. Another method [17] explores the possibility of using
Petri Nets (PN) formalism for the dynamic-semantic
composability verification. In this approach a BOM based
composed model is transformed into a single PN model and
PN Reachability analysis are applied to verify the model
behavior [17]. In another similar work presented in [18], an
automatic conversion of an architecture created using UML to
a Colored Petri Nets based executable model is suggested for
determining the potential behavior and performance of the
system.

In this paper, we revisit the verification of BOM
composability using Petri Nets formalism [17], and utilize
certain PN properties analysis methods to verify fairness in the
composed model. Here we only consider classical Petri Nets
leaving consideration of Timed, Hierarchical and Colored PN
extensions to our future work. We present theorems and PN
properties required in the fairness verification, and provide a
fairness verification algorithm. We also include a case study to
explain our approach. The approach to fairness verification
presented in this paper can be generalized and applied to
verify various other system properties in the given model. It
should be noted that the focus of this paper is not to introduce
new techniques in Petri Nets; instead we suggest the
utilization of existing techniques from Petri Nets community
for the purpose of Composability verification. We however
propose minor refinements to suit our needs. In our
observation, using PN for verification proves to be more
fruitful as compared to other similar formalisms, due to the
broader range of verification methods and tools and

techniques and due to their greater suitability in formal
representation of concurrent behaviors.

The rest of the paper is organized as follows: Section II
briefly provides basic concepts and definitions of Petri Net
formalism that are used in this paper. Section III formulates
our Verification approach and presents our algorithm for
fairness verification. Section IV provides details on the
implementation of our verification process and framework.
Section V covers a manufacturing system case study and its
counterexample; whereas section VI concludes the paper.

II. PRELIMINARILY CONCEPTS AND NOTATIONS
In this section we briefly discuss basic concepts of Petri

Nets theory used in our work. Readers should refer to [18],
[19] and [20] for details. We also define and discuss the
essentials of fairness property in this section.

A. Petri Nets
Petri Nets (PN) is a graphical and mathematical tool for

the formal description of the flow of activities in complex
systems. It is particularly suited to represent typical situations
like synchronization, sequentiality (producer-consumer
problem), concurrency and conflict (mutual exclusion) in a
system.

Mathematically a PN is a 5 tuple: PN = 〈P, T, F, W, M0〉
where:

• P is a finite set of places P = { p1, p2, . . . , pn}

• T is a finite set of transitions T = { t1, t2, . . . , tn}

• F is a set of arcs F ⊆ (P ×T) ∪ (T×P) | P∩T = φ and P ∪ T ≠ φ
(In words: an arc can be connected from place to transition or vice versa
but not from place to place or transition to transition).

• W: F → {1, 2, 3…} is an arc weight function.

• M0 is the initial marking.

Graphically, a PN is a bipartite graph that has two types of
nodes: Circular (or oval) nodes represent places whereas box
(or rectangular) nodes represent transitions. These nodes are
connected through arcs. A dot in a place represents token.
Following are some selected terms and definitions from PN
literature that we use in this paper. (It is assumed throughout
the paper that a PN has m-places and n-transitions).

1) Marking
A marking M: P → N is the state of a PN that represents the
number of tokens in each place. M is a non-negative m×1
integer-valued vector M ∈ Nm where ith component Mi
represents the token load M(pi) of the ith place.

2) Arc Weight

Arc weight w(p,t) denotes the number of required tokens to
be consumed from the input places whereas w(t,p) denotes
the number of tokens produced to the output place.

3) Enabled Transistion

For a given marking M a transition t∈T is said to be
enabled if ∀p∈•t, m(p) ≥ w(p,t) i.e, all the input places of
transistion t have number of tokens greater or equal to the
input arc weight.

(Note that ∀p∈•t is the dot notation, which represents all
input places that are connected to the transition t. Similarly

∀p∈t• represents all the output places that are connected to
transition t)

4) Firing Count Vector
An n×1 column vector X of nonnegative integers is called

firing count vector, where the ith entry of X denotes the
number of times transistion t must be fired to transform M0 to
M.

B. Matrix Definitional Form (MDF)
The Matrix Definitional Form (MDF) of a PN consists of

the matrices: A+, A-, A

• A+ = [a+
ij]nxm is the output matrix, where a+

ij = w(ti, pj); if
pj∈ti

•, and i∈n; j∈m i.e., if pj is connected to the output of ti
then a+

ij is equal to the weight of output arc; 0 otherwise.

• A- = [a-
ij]nxm is the input matrix, where a-

ij= w(pj , ti); if pj∈•ti,
i.e., if pj is connected as input to ti then a-

ij is equal to the
weight of input arc; 0 otherwise.

• A = [A+ - A-]nxm is the incidence matrix. The ith row in A
denotes the change of the marking as a result of firing
transition ti.

C. State Equation
The incidence matrix A is used to compute any reachable

marking M using the following State Equation:

M = M0 + A.X

Where:
• M0 is the initial Marking
• A is incidence matrix
• X is the firing count vector

D. Bounded Petri Nets
Boundedness in Petri Nets is a safety property. A place is

bounded with k, if the token count does not exceed k in any
marking of a PN. A PN is k-bounded if each place is k-
bounded.

E. Invariants
Occurrences of transitions transform the token distribution

of a net, but often respect some global properties of markings,
regarded as Linear Invariant Laws. Invariants are useful for
analyzing structural and behavioral properties of Petri Nets.
Two most important invariants are the following.

a) P-Invariants
Place Invariants formalize invariant properties regarding

places in PN, e.g., if in a set of places the sum of tokens
remains unchanged after firing, then this set can define a place
invariant. They are useful to evaluate structural properties of
PN. P-Invariant of a PN can be formed if there exists an m×1
vector Y, such that for any reachable marking M

M.Y = M0.Y and A.Y = 0

If there exist a P-Invariant such that Y(p)>0, for all p∈P, then
PN is guaranteed to be structurally bounded [20].

b) T-Invariants
Transition Invariants on the other hand formalize

properties regarding transition firing sequences applicable to a
PN. They are useful to evaluate behavioral properties such as

liveliness and fairness. A firing count vector X, is called a T-
Invariant if: AT.X ≥ 0

I.e., firing each transition the number of times specified in

X, brings the PN back to its initial marking M0 [20]. There can
be multiple T-invariants for a PN, though a minimal T-
Invariant is called the Reproduction vector of the net [21].

F. Fairness Property
Informally a system is said to be fair if: “No component of

the system that becomes enabled sufficiently often should be
delayed indefinitely” [13]. On the basis of the extent of
sufficiency, fairness is generally categorized in the following
three types in literature:

a) Unconditional (or Impartial) Fairness
Every component in a system proceeds infinitely
often. (Unconditionally)

b) Weak (or Just) fairness
Every component in a system that is enabled
continuously from some point onwards eventually
proceeds.

c) Strong fairness
Every component in a system that is enabled
infinitely often proceeds infinitely often.

Unconditional fairness is also known as non-deterministic
choice and is usually present among the components that are
independent of each other. A noticeable difference in weak
and strong fairness is that weak fairness involves persistent
enabling of a component that wants to proceed, whereas
strong fairness is not persistently enabled [13].

Some important generalizations of fairness exist in
literature:

a) Equi-fairness: To give each component an equal
chance to proceed. This type of fairness does not always apply
in real world scenarios because of priority policies or some
other reasons.

b) Bounded fairness: To give each component an equal
number of chances, such that no component proceeds for more
then “k-times” without letting the others to take their turn.

In Petri Nets, fairness can be viewed in two perspectives

namely: Transition fairness and Marking fairness. The former
corresponds to fairness of choice of transitions, and the latter
deals with the fair reachability of states [13]. In this paper we
focus on Transition fairness.

III. VERIFICATION APPROACH
In this section, we discuss our approach for the verification

of a BOM based composed model that concentrates on the
“Dynamic-Semantic” consistency and tests that the
composition posses correct behavior that satisfies given
specifications and objectives. In this paper, we consider
“Fairness” as a specification criterion for composability
verification. We divide our approach in two main phases: (1)
Transformation, (2) PN Analysis, explained below.

A. Transformation
BOM framework uses XML notation for representation.

An essential part of BOM is State-machine, which provides
means to model the abstract behavior of each component

participating in the composition and is our main concern in the
composability verification.

In this phase we transform the state-machines of all
members of the composed BOM in to a single PN model. This
is an n→1 automatic transformation. In this transformation,
we consider each state (of state-machines) as Place in PN and
each event (send or receive event) as a Transition in PN such
that the sender state s and the receiver state r (of two different
state-machines in BOM) have two places p and q as input
places in PN and connect to a single transition t in PN
representing the event they exchange. The next states s´ and
r´(after sending or receiving event) have two places p´ and q´
in PN as output places such that they have output arcs coming
from the transition t. We assume that the instances of each
component are represented by the tokens (in the initial
marking of PN) assigned to the places corresponding to the
initial states in the state-machines. The number of tokens
(instances) is given as an input parameter.

The transformation process is complete, when all the states
and events of every state-machine in BOM are plotted in the
PN model such that no element is duplicated, and each place
or transition is connected so that there are no broken links.
Figure 1 depicts an example of the transformation.

Figure 1. Transformation of BOM state-machines to PN

B. PN Analysis
System properties are explored in this phase depending on

the requirements specifications. In Petri Nets, system
properties are divided into two groups, namely, structural
properties and behavioral properties. Structural properties
focus on the structure of the net and are independent of the
initial marking; whereas behavioral properties concentrate on
the model behavior and depend on the initial marking [18].
Some of the important behavioral properties are Reachability,
Boundedness, Liveness (Deadlock freeness, Livelock freeness)
and Fairness. Depending on the nature of the property, various
methods have been proposed for verification. These methods
include Algebraic techniques, Reachability graph analysis,
Model Checking etc. For example, in [17] we have already
presented an approach to deadlock detection in a composed
model using Reachability graph analysis. In this approach we
transformed a composed BOM into PN and explored the
Reachability graph for any dead marking. If there exist a dead
marking from where no further transition is possible then a
deadlock is detected [17].

In this section, we discuss the technique for the verification
of fairness property and provide the necessary and sufficient
conditions for a PN model to be fair. The evaluation of these
conditions in a PN model involves linear algebraic
computations; therefore we classify this approach as an

Algebraic technique. Based on the theorems below, we
propose an algorithm for automatic fairness verification.

In Petri Nets, fairness is mainly perceived in terms of
occurrences (or proceedings) of transitions. Two transitions t1
and t2 are said to be in a fair relation if there exists a positive
integer k such that for any reachable marking M and any
firing sequence σ:

(t1/σ) = 0 ⇒ #(t2/σ) ≤ k
and

#(t2/σ) = 0 ⇒ #(t1/σ) ≤ k
Where #(t/σ) denotes the number of occurrences of transition t
in a firing sequence σ. In words, neither of the transitions
should occur more than a finite number of times (k) without
letting the other to do so for at least once. This is known as
bounded fairness (or B-Fairness). If every pair of transition is
in a bounded fair relation, then the entire net is said to be fair
[21]. For the algebraic verification of fairness in a PN model
we rely on the following theorems. Details and proofs of these
theorems are discussed in [21].

Theorem I:
Given a PN, if there exists a firing-count vector X, such

that: AT.X ≥ 0 and X≠0 then a necessary condition for the PN
to be fair is that each entry of X is positive.

Theorem II:
If a Petri Net N is bounded for any initial marking M0 then

the condition in Theorem I is necessary and sufficient for N to
be fair.

Corollary: If there exist a P-Invariant Y with Y(p) > 0 for
all p∈P and A.Y=0, then the PN is guaranteed to be
structurally bounded.

Theorem III:
A fair Petri Net PN has only one reproduction vector (i.e.,

a minimal T-Invariant) at the most.

Based on the above definition of fairness and theorems I, II

and III, it can be inferred that if there exists a single T-
Invariant X for a given PN model, i.e., a firing count vector
where each entry is non-zero and AT.X ≥ 0, and if at least one
P-Invariant exists, then we can say that the net is fair.

Based on the above discussion, we propose the fairness
verification algorithm presented in Figure 2.

Algorithm 1: Fairness Verification
Input: M0, A
Result: True/False
1 begin
2 ListXT= Call GetTInvairants()
3 if |ListXT|=1and A.XT≥ 0and each x in XT>0 then
4 ListYP= Call GetPInvairants()
5 if |ListYP|> 0 then
7 return true
8 else
9 return false
10 end if
11 else
12 return false
13 end if
14end

Figure 2. Fairness Verification algorithm

t↑ S S´

t↓ R R´

t

P

P´ Q´

Q

In the beginning of the procedure, a sub routine “GetT-
Invariants” is called (2) that returns a list of all possible T-
invariants of the given PN. If only one T-invariant exists (3)
and the multiplication of the T-Invariant with the incidence
matrix gives a non-negative result and each entry in the T-
invariant XT is non-zero then we say that conditions in
Theorems I and III are fulfilled. Then we call GetP-Invariant
(4). If a non-zero list is returned then it satisfies Theorem II
providing that the given PN is structurally bounded thus the
given PN is fair. If either or both of tests in (3) and (5) fail, we
conclude that the net is not fair.

The methods for calculating P-Invariants (GetPInvariant)
and T-Invariants (GetTInvariant) of a PN model have been
extensively studied. The details of these procedures are outside
the scope of this paper, however we briefly describe the basic
principle to compute the fundamental set of P-invariants and T-
Invariants. The principle of finding P-Invariance is presented in
Figure 3.

The input of the procedure is the Incidence Matrix A and
an Identity matrix B of size m×n. The output is a matrix B´
whose rows are the fundamental set of P-Invariants. The same
procedure is used to find T-invariants but the Incidence Matrix
is transposed.

Algorithm 2: P-Invariance (Farkas Method)
Input: A, B /* For T-Invariance AT*/
Result: B´
1 begin
2 B´ := A|B /* Augmentation of A with n×n identity matrix B */
3 for i=1 to n /* n = |T| */
4 for each pair of rows b1, b2 in B´i-1 where b1(i) and
5 b2(i) have opposite signs (i.e., annul the ith column)
6 b := |b2(i)|.b1 +|b1(i)|.b2

7 b´ := b/gcd of each element of b
8 augment B´i-1with b´
9 end for
10 Delete all rows of B´i-1whose ith component is
11 different from 0, the result is B´
12 end For
13 Delete the first N columns of B´
14 return B´ /*Matrix whose rows contains fundamental P-Invariants*/
15end

Figure 3. P-Invariants calculation algorithm (see [22] and [23] for details)
(gcd = Greatest common divisor)

This is the basic principle of calculating Invariance

proposed by Julius Farkas in 1902. This method was
introduced in the context of PN by J.M. Toudic and later
refined by H. Alaiwan and G. Memmi. In this paper we derive
the method of Invariance calculations from the much
optimized algorithm discussed in [23].

IV. VERIFICATION FRAMEWORK
In this section, we present a composability verification

framework as our main contribution. Our proposed framework
automates the verification of BOM based composed models
and focuses on the dynamic semantic (behavioral)
consistency.

Our Java based framework relies on PIPE library [24] as an
underlying layer for basic PN operations such as graphical
preview and simulation of the PN model (which is not
required in the verification process, but it helps to view and
study the model). It also utilizes the functions for general
matrix operations, constructing A+, A- and A matrices, finding

P-Invariants and T-invariants etc. We have utilized these
functions to implement our suggested verification algorithm.
Figure 4 represents our proposed verification framework.

Our framework performs the following steps to verify the
BOM composition as marked in Figure 4.

A. Input
A composed BOM XML document is given as an input

which is parsed and the components are fetched. Verification
requirements (RS) are also provided by the modeler at this
step. In this paper, we propose a method for checking only
fairness; however similar methods for other properties can be
added in the framework as add-on modules in order to provide
a wide range of automated tests, allowing the modeler to
choose tests according to the verification requirements.

Figure 4. Composability verification framework

B. BOM to PNML Transformation
In this step we transform the composed BOM in to PNML

(Petri Net Markup Language) format using our algorithm
presented in [17]. PNML is a standard XML-based
interchange format for Petri Nets and in our case it is used to
represent the transformed composed model in a single
place/transition PN model.

In this step, PNML code for Places, Transitions and Arcs is
generated. Once the transformation is complete, a consistency
check is performed to ensure that there are no broken paths.
The output code is written to an XML file representing our
composed model in PN format. This file is retaken as input in
the framework as PN Data-Layer.

C. Fairness Verification
An automated routine initiates the step mentioned in

Algorithm 1 (Figure 2). First, the PN Data layer is accessed
and the PN model is populated in a DOM document object
making it easy to navigate and access arbitrary data from the
PN. Then, A+, A- and A matrices are constructed and the
initial marking vector M0 is initialized. Next, we calculate T-
invariants of the given PN using functions from the PIPE
library. We check that there is only one T-invariant XT and all
the entries in XT are non-zero. Then we check whether the
multiplication of A and XT returns a null matrix. If all these
conditions are fulfilled then we calculate P-invariants. If there
exists at least one P-invariant then we are sure that the net is
structurally bounded and that the given PN is fair.

A

A

B

C

B

BOM

BOM-PNML
Transformer

Parser

RS

Fairness
Verification

Module

PN
DataLayer

PIPE
Lib

V. CASE STUDY
In this section, in order to explain our approach, we discuss

a case study of the model of a manufacturing system. This
model is composed of three BOM components namely;
Machine-A, Machine-B and a Robot. Both machines share
Robot as a resource that loads raw material on them. Either of
the machines can take Robot one at a time. Once the Robot is
acquired, it loads raw material on the machine. After the
material has been loaded, the machine releases the Robot,
proceeds with the production process, and, finally, outputs a
finished product. Once the Robot is released, it can be taken by
the other machine. Figure 5 shows the components and the
workflow of manufacturing system.

Figure 5. Manufacturing system

All components are built and composed using the BOM

framework. We assume for simplicity that the send events are
not lost and will eventually be received by the receivers. We
also assume that a next send-event is issued only after the
previous send-event has been consumed. Figures 6, 7 and 8
depict simplified state-machines of each component involved
in the composition. Note that the robot (Figure 8) can send
either of the send-events with a random choice.

Given the BOM components of the manufacturing system
our objective is to verify that the composed model of the
system is fair, i.e., neither of the machines takes the robot
more than a certain number of times without letting other to
take it at least once.

WaitingA

LoadingA

ProducingA

AReleasesRobot↑

AFinishes↑

ATakesRobot↓

Figure 6. FSM of Machine A

WaitingB

LoadingB

ProducingB

BReleasesRobot↑

BFinishes↑

BTakesRobot↓

Figure 7. FSM of Machine B

Idle

Busy

BReleasesRobot↓

AReleasesRobot↓

ATakesRobot↑

BTakesRobot↑

Figure 8. FSM of Robot

[↑=SendEvent] [↓=Receive Event]

The fairness verification is performed as follows.

A. Fairness Verification
In the first step, the BOM xml document is parsed and the

state-machine components are fetched. Then, using the BOM-
to-PNML transformation algorithm [17], a PNML file is
generated. This file is parsed and a DOM object is initialized
that acts as a Petri Net Data layer. The required number of
tokens is initialized for each place during this transformation
step. Figure 9 demonstrates the generated PN model.

Figure 9. PN Model of the Manufacturing System

In the initialization phase, the initial marking M0 and the

Incidence Matrix A are calculated as shown below.

M 0 P1 P2 P3 P4 P5 P6 P7 P8
 1 0 0 1 0 0 1 0

A P1 P2 P3 P4 P5 P6 P7 P8
T1 -1 1 0 0 0 0 -1 1
T2 0 -1 1 0 0 0 1 -1
T3 1 0 -1 0 0 0 0 0
T4 0 0 0 -1 1 0 -1 1
T5 0 0 0 0 -1 1 1 -1
T6 0 0 0 1 0 -1 0 0

R
aw

 M
aterial

Machine A

Robot

A

Allocate Robot

Load Raw Material

Release Robot

Machine B

B

Allocate Robot

Release Robot

Load Raw Material

Finished
Product A

Finished
Product B

Note that the labels of rows and columns in A and
elements in M0 correspond to places and transitions in Figure
9. The matrix A is given as input to the Invariant calculation
module that detects the following T-Invariants in the PN
model of the Manufacturing System:

T1 1
T2 1
T3 1
T4 0
T5 0
T6 0

 T1 0
T2 0
T3 0
T4 1
T5 1
T6 1

As there are zero entries in the T-Invariants, so the net is

unfair even if there exists any P-Invariant. As the PN is unfair,
we cannot guarantee that neither of the machines will over
performs by acquiring robot all the time without letting the
other to get the robot for at least once. Therefore either of the
machines may face a situation in which it is unable to produce
enough number of products to meet the required objectives;
consequently the composed model may fail to satisfy given
specifications.

B. Counterexample
In order to understand the fairness verification process, we

provide a counterexample. In this example we introduce
another component called Controller in the composition that
can supervise fairness. The job of Controller is to enforce
fairness in the system. Figure 10 shows the BOM state
machine of Controller.

AssignToA

AssignToB

ATakesRobot↑

BTakesRobot↑
Figure 10. FSM of Controller

Idle

Busy

BReleasesRobot↓

AReleasesRobot↓

BTakesRobot↓

ATakesRobot↓

Figure 11. FSM of Modified Robot

Figure 12.

This component regulates the assignment of Robot to
machines switching between them. We modify Robot to be a
reactive component, which recieves ATakesRobot or
BTakesRobot events from the controller, as shown in Figure
11. The PN model of the manufacturing system with added
controller, obtained by BOM-to-PNML transformation, is
shown in Figure 12.

If we look at the model from the concurrency point of

view, we can notice that the Controller is acting as a
semaphore, which allows both Machine-A and Machine-B to
execute only one at a time.

Figure 13. PN Model of the Manufacturing System with a controller

In order to verify fairness property we repeat our

verification process for the PN model of counterexample. In
the initialization phase, the initial marking M0 and Incidences
Matrix A were calculated as follows.

M 0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

 1 0 0 1 0 0 1 0 1 0

A P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
T1 -1 1 0 0 0 0 -1 1 -1 1
T2 0 -1 1 0 0 0 1 -1 0 0
T3 1 0 -1 0 0 0 0 0 0 0
T4 0 0 0 -1 1 0 -1 1 1 -1
T5 0 0 0 0 -1 1 1 -1 0 0
T6 0 0 0 1 0 -1 0 0 0 0

After executing the verification process, we get the

following T-Invariant and P-Invariant:

T1 1
T2 1
T3 1
T4 1
T5 1
T6 1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
1 1 1 0 0 0 0 0 0 0

Having only one T-Invariant with non-zero entries and

having a P-Invariant, satisfies the conditions required for the
model to be 1-bounded fair. Note that the existence of P-
Invariant asserts that the net is structurally bounded. Also note
that if we assign k tokens to the place P9 (Figure12) in the
initial marking, the net will become k-Bounded fair.

Fairness property becomes significant in the composability
verification of a composed model because it ensures the due
participation of all components in order to achieve the given
objectives. As illustrated by the case study of the
manufacturing system, fairness of Robot allocation can ensure
that both machines will perform to produce a required number
of products. If there is no fairness we cannot guarantee that
this objective will be reached.

VI. SUMMARY AND CONCLUSION
In this paper we discuss verification of BOM based

composed models. We advocate that transforming a composed
BOM into a Petri Nets model and applying existing Petri Nets
analysis techniques is a very useful approach for accurate and

efficient verification. We also propose a verification
framework that performs the automatic transformation of BOM
to Petri nets and based on the requirement specifications
executes the verification task. We suggest an approach for
verifying fairness property in a PN model and provide an
algorithm for it. Subsequently we provide a case study of a
manufacturing process to explain and illustrate our approach.
This framework can further be extended to accommodate
methods to verify other system properties. This approach can
be generalized and can be applied for verification of system
properties in other component frameworks.

The usage of Petri Nets in the Composability analysis
proves to be very useful and promising technique, especially
with a focus on the dynamic behavior of the system, as Petri
Nets is one of the competitive formalisms in concurrent
behavioral representation. Furthermore, the analysis techniques
contributed by the Petri Net community over a couple of
decades provide a significant improvement on efficient and
accurate reasoning regarding the model correctness.

We are further interested to explore methods for the
verification of other properties, such as live-lock freeness,
starvation freeness, reachability of desirable states. Currently
we lack formalism for behavioral verification specification to
specify requirements in a formal way. We intend to seek a
suitable solution for it and extend our framework in this
capacity.

REFERENCES

[1] E. H. Page, "Theory and Practice for Simulation
Interconnection: Interoperability and Composability in
Defense Simulation," in Handbook of Dynamic System
Modeling.: Chapman & Hall, 2007, ch. 16.

[2] A. Tolk, "Interoperability and Composability," in
Modeling and Simulation Fundamentals Theoretical
Underpinnings and Practical Domains.: John Wiley,
2010, ch. 12.

[3] M. D. Petty and E. W. Weisel, "A theory of simulation
composability," Virginia Modeling Analysis &
Simulation Center, Old Dominion University, Norfolk,
Virginia, 2004.

[4] R. G. Bartholet, D. C. Brogan, J. . P. F. Reynolds, and J.
C. Carnahan, "In Search of the Philosopher’s Stone:
Simulation Composability Versus Component-Based
Software Design," in Simulation Interoperability
Workshop, Orlando, 2004.

[5] P. K. Davis and R. H. Anderson, Improving the
composability of department of defense models and
simulations.: RAND National Defense Research Institute,
2003.

[6] P. Gustavson and T. Chase, "Using XML and BOMS to
rapidly compose simulations and simulation
environments," in Winter Simulation Conference,
Washington, DC, 2004.

[7] P. Gustavson and T. Chase, "Building Composable
bridges between the conceptual space and the
implementation space," in Proceedings of the winter
simulation conference, Washington, DC, USA, 2007.

[8] P. Gustavson, "Guide for Base Object Model. Use and
Implemenration," Simulation Interoperability Standard
Organization (SISO), 2006.

[9] SISO's Base Object Model (BOM) Specification.
http://www.boms.info/standards.htm (Last visited Dec,
2010)

[10] F. Moradi, R. Ayani, S. Mokarizadeh, G. H. A.
Shahmirzadi, and G. Tan, "A Rule-based Approach to
Syntactic and Semantic Composition of BOMs," in 11th
IEEE Symposium on Distributed Simulation and Real-
Time Applications, Chania, 2007.

[11] O. Balci, "Verification, Validation and Accreditation of
simulation models," in Proceedings of the Winter
Simulation Conference, Atlanta, GA, 1997.

[12] M. D. Petty, "Verification and Validation," in Principles
of Modeling and Simulation.: John Wiley & Sons, 2009,
ch. 6.

[13] M. Kwiatkowska, "Survey of fairness notions,"
Information and Software Technology, vol. 31, no. 7,
September 1989.

[14] P. Davis, "Composability," in Defense Modeling,
Simulation, and Analysis: Meeting the Challenge.
Washington, D.C.: The National Academies Press, 2006.

[15] C. Szabo and Y. M. Teo, "An Approach for Validation of
Semantic Composability in Simulation Models," in
Principles of Advanced and Distributed Simulation, 2009.
PADS '09, New York, 2009.

[16] I. Mahmood, R. Ayani, V. Vlassov, and F. Moradi,
"Behavioral Verification of BOM based composed
models," in 22nd European Modeling & Simulation
Symposium, Fes, Morocco, Oct, 2010.

[17] I. Mahmood, R. Ayani, V. Vlassov, and F. Moradi,
"Composability Test of BOM based models using Petri
Nets," in 22nd IFIP International Conference on Testing
Software and Systems, Natal, Brazil, Nov, 2010.

[18] L. W. Wagenhals, S. Haider, and A. H. Levis,
"Synthesizing Executable Models of Object Oriented
Architectures," in Proceedings of the conference on
Application and theory of petri nets: formal methods in
software engineering and defence systems, Adelaide,
Australia, 2002.

[19] T. Murata, "Petri nets: Properties, analysis and
applications 77(4), 541–580 (1989)," in Proceedings of
the IEEE, 1989.

[20] M. Silva, Introducing petri nets.: Chapman and Hall,
1993.

[21] H.-C. Yen, "Introduction to Petri Net Theory," in Recent
Advances in Formal Languages and Applications.:
Springer Berlin, 2006, ch. 25.

[22] T. Murata and Z. Wu, "Fair relation and modified
synchronic distances in a petri net," Journal of the
Franklin Institute, vol. 320, no. 2, August 1985.

[23] J. Farkas, "Theory of simple inequalities," Journal of Pure
and Applied Mathematics , vol. 1902, no. 124, 1902.

[24] M. D'Anna, "Concurrent system analysis using Petri nets:
an optimized algorithm for finding net invariants,"
Computer Communications, vol. 11, no. 4, August 1988.

[25] J. Bloom et al., "Platform independent petri net editor,"
Imperial College, London, 2007.

http://www.boms.info/standards.htm%20(Last%20visited%20Dec,%202010)�
http://www.boms.info/standards.htm%20(Last%20visited%20Dec,%202010)�

	Introduction
	Preliminarily Concepts and Notations
	Petri Nets
	Marking
	A marking M: P (N is the state of a PN that represents the number of tokens in each place. M is a non-negative m(1 integer-valued vector M (Nm where ith component Mi represents the token load M(pi) of the ith place.
	Arc Weight
	Arc weight w(p,t) denotes the number of required tokens to be consumed from the input places whereas w(t,p) denotes the number of tokens produced to the output place.
	Enabled Transistion
	For a given marking M a transition t(T is said to be enabled if (p((t, m(p) (w(p,t) i.e, all the input places of transistion t have number of tokens greater or equal to the input arc weight.
	(Note that (p((t is the dot notation, which represents all input places that are connected to the transition t. Similarly (p(t(represents all the output places that are connected to transition t)
	Firing Count Vector
	An n(1 column vector X of nonnegative integers is called firing count vector, where the ith entry of X denotes the number of times transistion t must be fired to transform M0 to M.

	Matrix Definitional Form (MDF)
	State Equation
	Bounded Petri Nets
	Invariants
	P-Invariants
	T-Invariants

	Fairness Property
	Unconditional (or Impartial) Fairness
	Weak (or Just) fairness
	Strong fairness
	Equi-fairness: To give each component an equal chance to proceed. This type of fairness does not always apply in real world scenarios because of priority policies or some other reasons.
	Bounded fairness: To give each component an equal number of chances, such that no component proceeds for more then “k-times” without letting the others to take their turn.

	Verification Approach
	Transformation
	PN Analysis

	Verification Framework
	Input
	BOM to PNML Transformation
	Fairness Verification

	Case Study
	Fairness Verification
	Counterexample

	Summary and Conclusion
	References

