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Abstract - In this paper we demonstrate that it is possible
to manage intelligence in constant time as a pre-process
to information fusion through a series of processes deal-
ing with issues such as clustering reports, ranking reports
with respect to importance, extraction of prototypes from
clusters and immediate classification of newly arriving
intelligence reports. These methods are used when intelli-
gence reports arrive which concerns different events
which should be handled independently, when it is not
known a priori to which event each intelligence report is
related. We use clustering that runs as a back-end process
to partition the intelligence into subsets representing the
events, and in parallel, a fast classification that runs as a
front-end process in order to put the newly arriving intel-
ligence into its correct information fusion process.

Keywords: Decision support, intelligence, classification,
clustering, neural networks, evidential reasoning.

1 Introduction

In this paper we develop a method based on a series of
processes for managing inconsistent intelligence informa-
tion as a pre-process to information fusion. These pro-
cesses taken together will classify any new incoming
intelligence as belonging to a certain subproblem. In a
series of back-end processes the intelligence is organized
according to subproblem by a new very fast neural clus-
tering method [1] capable of handling intelligence in large
scale problems. This method combines the theory of Potts
spin [2] with evidential reasoning [3−10].

In an earlier article [11] we developed a method using
a neural network structure similar to the Hopfield and
Tank model [12] for partitioning intelligence into clusters
for relatively large scale problems. This clustering
approach represented a great improvement in computa-
tional complexity compared to a previous method based
on iterative optimization [13−17], although its clustering
performance was not equally good. In order to improve
clustering performance a hybrid of the two methods was
also developed [18]. The neural clustering method was
further extended [19] for simultaneous clustering and
determination of number of clusters during iteration in the
neural structure.

For very large problems we need a method with still
lower computational complexity than achieved so far.

This method is described in Section 4.3 and further
explained in detail in a forthcoming article [1].

Based on the result of the clustering process a limited
set of prototypes may be selected for future classification
[20], in order to speed up computation in the time critical
classification of incoming intelligence.

In Section 2 we describe how the conflict in Demp-
ster’s rule is used as an indicator of inconsistent informa-
tion among two or more intelligence reports. In Section 3
we give an overview of the combined process. The indi-
vidual processes are more completely described in Sec-
tion 4.

2 The internal conflict of
intelligence

When we fuse several intelligence reports we might
notice that some of the information is not entirely consis-
tent. Such inconsistencies can have several sources, but
regardless of the reason for the inconsistency it is always
an alarm bell.

We use evidential reasoning to handle the uncertainty
of intelligence reports. In evidential reasoning mass is
assigned by a basic probability assignment m to a subset A
of an exhaustive set of mutually exclusive possibilities, a
frame of discernment Θ.

The internal conflict is a measure of the inconsistency
among intelligence reports reporting different things that
are deemed to be conflicting. Between a pair of intelli-
gence reports the conflict is the sum of all products of sup-
port of logically inconsistent statements, e.g., if our first
intelligence report says A, B or C, while our second report
concerning the same issue says D or E, where A and D, as
well as B and E, are deemed to be inconsistent statements,
i.e., , then the conflict between these
two reports is . This number is
between zero and one. The higher this value is, the more
conflict there is between the two intelligence reports.
When the conflict is one the two reports are completely
inconsistent, while a conflict of zero is no indication that
the two reports belong together in some way, it is merely a
lack of inconsistent information. Thus, the conflict is
always a form of negative indication and the lack of a neg-
ative indication is no positive information, it is just not
negative. This realization will turn out to be important
when developing methods to handle the inconsistency
among several intelligence reports.

A D∩ B E∩ ∅= =
m A( )m D( ) m B( )m E( )+
TuB4 - 10ISIF©2000
in Proc. Third Int. Conf. Information Fusion (FUSION 2000), pp.
TuB4/10−16, Paris, July 2000, Int. Soc. Inf. Fusion, Sunnyvale, CA, 2000.



Intelligence

DB1
DB2

Ranking
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3 Process overview

In order to achieve fast classification of incoming intelli-
gence the intelligence will be handled by two parallel
lines of reasoning, Figure 1.

The first line of reasoning is based on obtaining a fast
classification that immediately puts the intelligence into
the correct information fusion process. Before that, how-
ever, a summarization filter is passed where focal ele-
ments with very little support are eliminated. This puts a
restriction on the maximal size of one intelligence report,
assuring that the classification may execute in constant
time for any intelligence report.

The second line of reasoning is performed in parallel
with the first. Here, new intelligence is clustered with old
in order to find a best partitioning of all intelligence into
subsets representing different events that can be handled
independently. Determining the number of subsets can be
a difficult task. As the process runs continuously we will
do one clustering with the same number of subsets as last
time (PDSC1), and a second clustering (PDSC2) in paral-
lel with one subset less. After each clustering process is
finished we compare the conflict in each subset with a pre-
determined threshold.

Such a threshold can be found by careful experimenta-
tion when it is known that only one event is taking place.
The received conflict in such an experiment is considered
acceptable and can serve as the needed threshold. This
approach was used by a European industrial defence com-
pany [21].

We will use the result of the first clustering (PDSC1)
unless the largest conflict among all subsets of the second
clustering (PDSC2) is less than the threshold. If it is, we
will instead use the result of the second clustering. The
same number of subsets used in PDSC2 this time will
then be used in PDSC1 the next. If on the other hand the
largest conflict among all subsets of PDSC1 is larger than
the threshold, we will still use that result now, but for next
time we increase the number of subsets for PDSC1 by
one. While waiting for the next run of the clustering pro-

cesses all intelligence is stored in a database (DB1).
In order for the two clustering processes to run in con-

stant time a limited number of intelligence reports are
allowed to take place in the process. This limit is typically
domain dependent. By using a ranking method to evaluate
reports based on information content we may find the
most informative set of intelligence reports. These are put
into DB2 where they are found by the clustering process.

Finally, a limited number of representative prototypes
are extracted from the result of one clustering process in
order to speed up the fast classification (FC) further.

After classification of incoming intelligence, the intel-
ligence can be fused in the information fusion process
(IF1, ...) where it belongs.

4 The Processes

4.1 The filtering pre-process

The filtering pre-process is a summarization filter that
limits the number of focal elements in a piece of evidence,
i.e., intelligence report. The idea is simple: any focal ele-
ment other than the frame itself, Θ, with a basic probabil-
ity assignment below a certain threshold p0 is eliminated,
and its mass is reassigned to the entire frame.

For example, if m1 is a piece of evidence with three
focal elements A, B, and Θ coming in to the filter, where
m1(B) < p0 ≤ m1(A), then m1 is exchanged for , where

(A) = m1(A), (Θ) = m1(Θ) + m1(B).
As output from the filter, is directly sent on to the

classifier for immediate classification, as well as to the
database DB1 from where it might later be selected to
influence the clustering process and the classifier itself.
The incoming piece of evidence m1 is eliminated.

By using this simple filter we limit the number of focal
elements per piece of evidence and assure ourselves that
an orthogonal combination of two pieces of evidence can
always by performed in constant time.

For instance, if p0 = 0.01 there are a maximum of 100

m1
*

m1
* m1

*

m1
*
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focal elements in every piece of evidence that has passed
through the filter. Thus the combination of any two pieces
of evidence has a maximum number of operations and can
be performed in constant time.

4.2 The ranking process

In order for the clustering process in the next step to be
able to run in constant time we must limit the total num-
ber of pieces of evidence taking part in the upcoming
clustering process.

The number taking part in the clustering must be
decided by the actual application and its time constraints.
At this time before any clustering has taken place, it is not
possible to rank pieces of evidence based on their real
usefulness, or some other similar criteria. Instead, we will
rank the evidence based on their potential usefulness as
measured by their average total uncertainty [22, 23]
within each body of evidence. This is measured as the
sum of Shannon entropy and Hartley information for each
piece of evidence m, which measures both scattering and
nonspecificity:

(1)

We choose the decided number of pieces of evidence
ranked according to minimal average total uncertainty
H(m). Obviously, using too small a number of chosen
pieces of evidence creates the risk of having a nonrepre-
sentative clustering result and thus in the end an errone-
ous, albeit fast classification.

If A is made time dependent such that as
the measure H(m) can take into account the

decreasing value of old intelligence over time.

4.3 The clustering process

We consider the case when evidence come from multiple
events which should be handled independently, and it is
not known to which event a piece of evidence is related.
We use the clustering process to separate the evidence into
subsets for each event, so that each subset may be handled
separately.

We combine Dempster-Shafer theory with the antifer-
romagnetic Potts model [2] into a powerful solver for very
large Dempster-Shafer clustering problems [1]. We
believe this method can serve as a general solution for
preprocessing of intelligence data in information fusion.

The Hopfield model [24], based on the physics of
Ising spins [25], was the first model to bridging the gap
between spin systems and computer science that gained a
wider interest. The Potts model [2] is a generalization of
the Ising model where each spin may have an arbitrary
(but finite) degree of freedom instead of just two. It has
proven useful in many complex optimization problems
[26].

If the Potts spin at a site i is denoted σi =1, 2, …, q,
where q is a positive integer, the energy function that
defines the model is written in terms of spin-spin interac-
tions,

(2)

Another useful notation is to treat each Potts spin as a

discrete vector in a hypercube: Sia = 0, 1 with the con-
straint ∀i, where a is a vector index. Then
the energy function becomes

(3)

The spins merely encode which class a data (point)
belongs to; Sia = 1 means that the site i belongs to class a.

This model can serve as a data clustering algorithm
with a spin on each data point (site), if Jij is used as a pen-
alty factor of site i and j being in the same class; sites in
different classes get no penalty.

The problem consists of minimizing an energy func-
tion by flipping the spins into different states. This spin
flipping process takes place via simulated annealing. At a
high temperature, the spins flip more or less at random,
and are only marginally biased by their interactions (Jij).
As the temperature is lowered parts of the system become
constrained in one way or the other, they freeze. Finally,
when the complete system is frozen, the spins are com-
pletely biased by the interactions (Jij) so that, hopefully,
the minimum of the energy function is reached. For com-
putational reasons we will use a mean field model, where
spins are deterministic [26].

We want to partition the set of all pieces of evidence χ
into subsets where each subset refers to a particular
event. These subsets are denoted by χi. The conflict when
all pieces of evidence in χi are combined by Dempster’s
rule is denoted by ci . We can use the conflict in Demp-
ster’s rule when all pieces of evidence within a subset are
combined as an indication of whether these pieces of evi-
dence belong together. The higher this conflict is, the less
credible that they belong together.

In [13] a criterion function of overall conflict called
the metaconflict function for reasoning with multiple
events was established. The metaconflict is derived as
the plausibility that the partitioning is correct when
the conflict in each subset is viewed as a piece of
metalevel evidence against the partitioning of the set
of evidence, χ, into the subsets, χi.

DEFINITION. Let the metaconflict function,

(4)

be the conflict against a partitioning of n pieces of evi-
dence of the set χ into q disjoint subsets χ

i. Here, ci is the
conflict in subset i.

We will use the minimizing of the metaconflict func-
tion as the method of partitioning the evidence into sub-
sets corresponding to the events. After this, each subset
refers to a different event and the reasoning can take place
with each event treated separately.

The metaconflict function is easier to treat if it is
rewritten as a sum instead of a product, by taking the log-
arithm. Let us rewrite the minimization as follows

(5)

where is a weight [5] of evidence, i.e.,
in this context a weight of conflict.

Since the minimum of Mcf (= 0) is obtained when the
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INITIALIZE
K (the problem size); N = 2K − 1;
Jij = −log (1 − sisj) δ|Ai∩Aj| ;

s = 0; t = 0; ε = 0.001; τ = 0.9; α (for K ≤ 7: α =
0, K = 8: α = 10−6, K = 9: α = 0, K = 10: α = 3 .

10−7, K = 11: α = 3 . 10−8); γ = 0.5;
T0 = Tc (a critical temperature) ,
where  and  are the extreme eigenvalues of
M, where ;

;

REPEAT
• REPEAT−2

∀i Do:

• ;

• ;

• ;

• ;

UNTIL−2

;

• ;
• ;

UNTIL

;

RETURN
;

Figure 2: the clustering algorithm.
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final sum is minimal (= 0), the minimization of the final
sum yields the same result as a minimization of Mcf would
have done.

In Dempster-Shafer theory one defines a simple sup-
port function, where the evidence points precisely and
unambiguously to a single nonempty subset A of Θ. If S is
a simple support function focused on A, then the basic
probability numbers are denoted m(A) = s, and m(Θ) = 1 −
s. If two simple support functions, S1 and S2, focused on A1
and A2 respectively, are combined, the weight of conflict
between them is [5]

(6)

which may be written as

(7)

with being defined so that it is unity for
 and zero otherwise.

Using the vector notation for the Potts Spin, the com-
plete energy function we are considering is

(8)

where the first term is the standard clustering cost.
The Potts mean field equations are [26]:

(9)

where

(10)

with Via = 〈Sia〉, and are used recursively until a stationary
equilibrium state has been reached for each temperature.
To apply it to Dempster-Shafer clustering we use interac-
tions Jij = −log (1 − sisj) δ|Ai∩Aj|.

The algorithm for simulating these spins works roughly
as follows. Use a precomputed highest critical tempera-
ture, Tc, as the starting temperature. Choose the mean field
spins to be in their symmetric high temperature state; Via =
1/K ∀i, a. At each temperature, iterate eqs. (9), (10) until a
fix point has been reached. The temperature is lowered by
a constant factor until every spin has frozen, i.e., Via = 0, 1,
Figure 2.

On a test problem we clustered 2K − 1 pieces of evi-
dence into K subsets. The evidence supports all subsets of
the frame Θ = {1, 2, 3, …, K}. Thus, there always exists a
global minimum to the metaconflict function equal to
zero.

The reason we choose a problem where the minimum
metaconflict is zero is that it makes a good test example for
evaluating performance.

We notice an exponential computation time in the num-
ber of items of clusters. This is solely due to the exponen-
tial growth in the number of items of evidence via N =
2K − 1. Although K (= |Θ|; the number of clusters) and N
(= |2Θ| − 1; the number of items of evidence) are not
changed independently in these test examples, evidence is
rather striking that the Potts Spin computation time scales

Con S1 S2,( )
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The Potts Spin method is able to find a global optimum

for problem sizes up to nine clusters. However, for the ten-
and eleven-cluster problems the metaconflict increases rap-
idly.

A large part of the increase in metaconflict is due to the
increase in problem size. Each cluster contributes to the
total metaconflict, and as the number of cluster increases,
the total metaconflict increases as well. In order to elimi-
nate this effect we must calculate the average metaconflict
per cluster.

In the eleven-cluster problem fluctuation of the results
is large. While the method is still able to find some near
optimal partitioning the average partition yields a higher
metaconflict per cluster. This is a clear indication that the
Potts method has reached its limit to produce perfect solu-
tions, but still produces near optimal solutions.

The best measure of clustering performance is the met-
aconflict per evidence. Simply divide the average metacon-
flict per cluster already found with the average number of
pieces of evidence in each cluster. This way we also take
into account the exponential growth in the number of items
of evidence as the number of clusters grow. The remark-
able result is that the Potts model does not give any signifi-
cant rise of the mean metaconflict per evidence. This is
 - 13 correction inserted: figure 2



true for almost three orders of magnitude.
For the eleven-cluster problem the Potts method

achieves mean and median metaconflicts per evidence of
just 0.8‰ and 2.4‰, respectively.

The results show that on average the metaconflict per
evidence obtained corresponds to much less than one con-
flicting pair of pieces of evidence per cluster. This must be
considered to be a very good result.

4.4 The prototype extraction process

Although every piece of evidence was placed in the best
subset for that piece of evidence by the clustering process,
some pieces of evidence might belong to one of several
different subsets. Such an item of evidence is not so useful
and should not be used as a prototype.

We must find a measure of the credibility that it
belongs to the subset in question. A piece of evidence that
cannot possibly belong to a subset has a credibility of zero
for that subset, while a piece of evidence which cannot
possibly belong to any other subset and is without any sup-
port whatsoever against this subset has a credibility of one.
That is, the degree to which some piece of evidence can
belong to a certain subset and no other, corresponds to the
importance it wields in that subset.

The credibility αj of eq when eq is used in χj is calcu-
lated as

. (11)

Each piece of evidence is a potential prototype for its
most credible subset.

We see that maximizing the credibility αj for eq is
equal to minimizing  for all j.

A simple decision rule is then:
For every piece of evidence eq and all j find the min-
imum . Now, we have eq as a potential
prototype for χj.

The value of is found by observing changes
in cluster conflicts when a piece of evidence is moved from
one subset to another, Figure 3.

If a piece of evidence eq in χj is taken out from the sub-
set, the conflict cj in χj decreases to This decrease

is interpreted as evidence indicating that eq does not
belong to χj. After some calculations we find

(12)

However, we must use the credibility itself when deter-
mining which pieces of evidence among the potential pro-
totypes for a certain subset will actually by chosen as one
of N prototypes for that subset. While the above approach
chooses the best subset χj for each piece of evidence by
minimizing , it is still possible that the evidence

α j
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Figure 3: Moving a piece of evidence changes
the conflicts in χi and χj.

TuB4
might be quite useless as a prototype since it could almost
have been a potential prototype for some other subset. By
ranking the potential prototypes within each subset accord-
ing to credibility, we are able to find the most appropriate
ones.

We choose the N prototypes with the highest credibility
for the subset. They are judged to be the best representa-
tives of the characteristics of the subset. Our future classifi-
cation will be based on a comparison between them and
the new incoming piece of evidence.

A second decision rule can then be formulated as:
For every subset:
1. Of the potential prototypes allocated for a subset,

choose the N prototypes with highest credibility for
that subsets as the actual prototypes.

2. Disregard the other potential prototypes for that
subset.

By first applying the first decision rule for all pieces of
evidence and then the second decision rule for every subset
we are able to find N different prototypes for each subset
provided, of course, that there are at least N potential pro-
totypes for each subset.

Finally, we combine all prototypes within each subset
into one new basic probability assignment. This way, each
subset will now contain only one piece of evidence. While
doing that, we also make a note of the conflict cj received
in that combination. We will need it in the fast classifica-
tion process.

4.5 The fast classification process

Now, given that we have all the prototypes for each subset,
we can make a fast classification of future incoming pieces
of evidence. We will use the derived items of metalevel
evidence .

If the evidence for eq against every subset is very high
we will not classify eq as belonging to any of the subsets
χj. We will use a rejection rule if the best subset for eq
brings a conflict higher than the threshold (see Section 3).

Our rejection rule is:
Reject eq if the minimum for all j of is
larger than the threshold, where

. (13)

If eq is not rejected by this rule, then eq is classified as
belonging to the subset χj for which is minimal
for all j.

All it takes to find is one combination of Dempster’s
rule for each cluster between the incoming piece of evi-
dence and the already made combination of the prototypes
of that cluster.

If a fixed maximum number of prototypes are used for
each cluster then the classification can always be done in a
constant time. That is, independent of the total number of
pieces of evidence in the previous clustering process.

4.6 The information fusion process

Having been classified by the pre-process and put into the
best subset the new intelligence can now be fused with old
intelligence that are already in that subset. Since the intelli-
gence in any subset is independent of all intelligence out-
side of the subset, each subset can now be handled
independently in a separate information fusion process.

m eq χi∉( )

m eq χ j∉( )

m eq χ j∉( )
c j

* c j–

1 c j–
----------------=

m eq χ j∉( )

c j
*
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These fusion processes run in parallel.
As intelligence grows older we may find some unnec-

essarily large conflict building up over time in some of the
information fusion processes. At such time, it may be
important to take a second look on the partitioning and
reclassify the already existing intelligence inside the dif-
ferent fusion processes. This is done at the time when that
clustering process terminates by using the result as a
reclassification of those intelligence reports inside the
fusion processes that took part in the clustering. For those
newly arrived intelligence reports that arrived to the
fusion processes after the last clustering process was
started another approach is needed. They may now be
reclassified in the same way as any new arriving intelli-
gence.

5 Conclusions

Through a series of moderate to small approximations we
have shown that it is possible to manage inconsistent
intelligence in constant time and have a very fast classifi-
cation of all incoming intelligence in a pre-process before
information fusion takes place.
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