
Methods and System Design of the
IFD03 Information Fusion Demonstrator

Johan Schubert∗, Christian Mårtenson, Hedvig Sidenbladh,
Pontus Svenson, and Johan Walter

Department of Data and Information Fusion
Division of Command and Control Systems

Swedish Defence Research Agency
SE 172 90 Stockholm, Sweden

{schubert, cmart, hedvig, ponsve, johanw}@foi.se
http://www.foi.se/fusion/

Abstract

The Swedish Defence Research Agency has developed a concept demonstrator for demon-
strating information fusion methodology focused on intelligence processing at the division
level for a future Network Based Defence (NBF) / Network Centric Warfare (NCW) C4ISR
system. The demonstrator integrates force aggregation, particle filtering and sensor allocation
methods to construct, dynamically update and maintain a situation picture.

1 Introduction

The Swedish Defence Research Agency (FOI) has developed a concept demonstrator called the
Information Fusion Demonstrator 2003 (IFD03) for demonstrating information fusion methodo-
logy for a future Network Based Defence (NBF) / Network Centric Warfare (NCW) C4ISR system.
The demonstrator’s focus is on the intelligence processing at the division level in an ground warfare
scenario.

The demonstrator consists of two main parts, an analysis module and a simulation module. In
this paper we give a description of the system design and fusion methods of the IFD03 analysis
module. This paper is a companion paper to one published at The Sixth International Confer-
ence on Information Fusion (Svensson and Hörling, 2003) describing the scenario, sensors and
simulation of the simulation module. Together they fully describe the IFD03.

In a recent work, Ahlberg et al. (2004) describe the essential experience from the use and
development of IFD03.

∗Corresponding author.

in Cd Proc. Ninth Int. Command and Control Research and Technology Symp.,
Track 7.2, Paper 061, pp. 1-29, Copenhagen, September 2004, US Dept. of
Defence CCRP, Washington, DC, 2004

1

In Section 2 we describe the fusion methods of the IFD03 analysis module. Section 2.1 focuses
on force aggregation to construct a situation picture. Following this we describe particle filter
tracking to dynamically update the situation picture (Section 2.2). In Section 2.3 we discuss sensor
management for maintaining the situation picture. In Section 3 we give a description of the general
design of IFD03. Finally, the IFD03 visualizer is described in Section 4.

2 Methods

The analysis module has three main tasks and uses four different methods. The tasks are force
aggregation, ground vehicle tracking and sensor allocation. They are performed using Dempster-
Shafer clustering and Dempster-Shafer template matching for force aggregation, probability hy-
pothesis density (PHD) particle filtering for ground vehicle tracking, and random set simulation
for sensor allocation.

2.1 Force Aggregation

In the force aggregation we use intelligence reports with given position, time, and type information.
We define force aggregation as a combination of two processes. First, an association of intelligence
reports, objects or units (depending on hierarchical level) by a clustering process. Secondly, a
classification of cluster content through a comparison with templates.

We start by evaluating all pairs of intelligence reports, to find whatever is against that two
reports are referring to the same object: Wrong type of vehicle? Is distance too long or too short?
Wrong direction? Wrong relative positions? etc. This yields a potential conflict between each pair
of intelligence reports. A conflict matrix is constructed and supplied to the clustering algorithm.
We use the Dempster-Shafer clustering algorithm (Schubert, 1993; Bengtsson and Schubert, 2001;
Schubert, 2003a) to partition the set of reports into subsets, each subset corresponding to one
object, and classify the objects by fusing all intelligence using Dempster’s rule. This method
continues upwards level by level. At the vehicle to platoon level, vehicles are clustered and groups
of vehicles are classified using Dempster-Shafer matching against templates (Schubert, 2003b). At
all levels in clustering and template matching we use the full descriptive power of Dempster-Shafer
theory, carrying several alternative hypotheses represented by a belief function that is the result of
fusing all intelligence in the cluster. Each alternative hypothesis is matched and evaluated against
all templates and a weighted average is calculated for each potential template.

A screen picture from the demonstrator showing the result of automated force aggregation at the
platoon level is shown in Figure 1. This method is currently developed up to the battalion level. A
few other approaches to force aggregation than the one described here are (Biermann, 1998; Lorenz
and Biermann, 2002; Johnson and Chaney, 1999).

2.1.1 Conflict Matrix

There is one conflict matrix for each aggregation level. The conflict matrix Cij contains the conflict
between the entities i and j. The matrix is symmetric and contains zeros on the diagonal.

2

Figure 1: Force aggregation of vehicles into platoons.

There are two different ways of computing the conflict matrix. When computing the conflict
matrix for the reports, the conflict between two reports is based on their type, on how fast a vehicle
must travel in order to cause the two reports and on how much their directions differ.

When computing the conflict matrix for vehicles and units, the conflicts are based on doctrine
data that specify how far apart the objects appear within their unit.

All entities – reports, vehicles and units – contain a classification of types, T. However, the
classification is uncertain, so we can only give probabilities for sets of types. The basic belief mass
supporting that an entity is of type A ∈ T is denoted m(A). The believed type of an entity is
defined by all m(·) associated with the entity.

The conflict matrix for the reports. The conflict C is computed from the type conflict Ct, the
speed conflict Cs and the direction conflict Cd.

C = 1− (1−Ct)(1−Cs)(1−Cd) (1)

The type conflict between the entities Ei and Ej is given by Dempster’s rule of combination:

Ct
EiEj

=
∑

A∈Ei,B∈Ej

A∩B=∅

m(A) ·m(B) (2)

The speed conflict, Cs, is obtained by calculating the speed at which a vehicle must travel, in
order to have caused the reports. The speed is then normalized, as shown in Figure 2, to get the
conflict.

The direction conflict, Cd, is obtained in a similar way by computing the difference between
the two directions in the reports. For details see (Cantwell et al., 2001).

3

�

�

���������
�
�
�
�
�
�
�

x1 x2 x

p

1

Figure 2: The normalization function.

The conflict matrix for the vehicles and units. If the believed types of two entities do not
appear in any common unit template, there should be a large conflict. Otherwise the conflict is
based on their relative distance and the maximum allowed distance for all units, according to the
doctrine data.

For each level – vehicles, platoons, companies. . . – a destination matrix, DM is defined. The
allowed distance between Ta and Tb is DMab.

For types Ta and Tb that do not appear in any common unit template, DMab = −1 The
conflict between entity Ei and Ej is given by:

CEiEj
=

∑
A∈Ei,B∈Ej

CAB ·m(A) ·m(B) (3)

where A and B are focal elements, and

CAB = min
a∈A,b∈B

cab (4)

where a and b are types, and

cab =

{
1 d > DMab

0 otherwise
(5)

where d is the distance between entities Ei and Ej .

2.1.2 Clustering

We have developed a method for managing intelligence reports that concern different objects. This
is the situation when it is not known a priori to which object each intelligence report is related. The
intelligence reports are clustered into groups that should be handled independently.

In (Bengtsson and Schubert, 2001) a method for clustering intelligence reports based on their
pairwise conflict was developed. This method was extended into a method capable of also handling
pairwise attractions (Schubert, 2003a).

Such evidence is not generated intrinsically in the same way as conflicts. Instead, we assume
that it is given from some external source.

As an example let us look at a real-world problem from intelligence analysis that we are study-
ing (Cantwell et al., 2001). In intelligence analysis we may have conflicts between two different

4

intelligence reports about sighted objects, indicating that two objects probably do not belong to
the same unit (cluster). Such conflicts arise when reports about objects are compared under the
hypothesis that they refer to the same unit, e.g., report object types, times, positions and directions
may be incompatible given constraints about unit structure. At the same time we may have in-
formation from communication intelligence as an external source, indicating that the two objects
probably do belong to the same unit (cluster) as they are in communication. Such information
is made available from studying communication patterns obtained through COMINT, e.g., if two
objects are transmitting in sequence we may calculate a probability that they are in communication
and thus belong to the same unit structure.

As conflicts push reports apart (into different clusters) and attractions pull them together (into
the same cluster), using both leads to an improved clustering result and faster computation.

We use Dempster-Shafer theory (Dempster, 1968; Shafer, 1976) and can then use the conflict
of Dempster’s rule when the two intelligence reports are combined as an indication of whether they
belong together. Combining two mass functions is done by calculating their orthogonal combina-
tion using Dempster’s rule.

Combining m1 and m2 of the two pieces of evidence may result in a conflict defined as

cij =
∑

Ai∩Bj=∅
m1(Ai)B2(Bj) (6)

whenever there are at least one focal element from {Ai} and one focal element from {Bj} such
that Ai ∩Bj = ∅. This number is between zero and one. The higher this value is, the more conflict
there is between the two intelligence reports.

This conflict is the basis for separating intelligence reports into clusters. A high conflict be-
tween the two intelligence reports is an indication of repellency that they do not belong to the same
cluster. The higher the conflict is, the less credible that they belong to the same cluster.

Consider all pairwise conflicts between the intelligence reports in a cluster χa, where cij is the
conflict of Dempster’s rule when combining ei and ej .

In addition to the conflicting metalevel evidence induced by the internal conflict between in-
telligence reports belonging to the same cluster, in many applications it is important to be able
to handle attracting metalevel evidence from some external source stating that two intelligence
reports concern the same object.

Such an external metalevel evidence is represented as a pairwise piece of evidence, where pij

is a degree of attraction.
The best partitioning of all intelligence reports is found by a cluster process (Schubert, 2004)

that minimizes a function m{χa} ⊕
χ(¬AdP) with a proposition that this is not an ”adequate parti-

tion” AdP.
Approximately this function can be written as

m{χa} ⊕
χ(¬AdP) ≈ [1−

∏
(ij)|∀a.ei∧ej /∈χa

(1− pij)×
∏

a

∏
(ij)|ei∧ej∈χa

(1− cij)] (7)

The clustering process of the intelligence reports is done by neural clustering using Potts spin
theory (Potts, 1952; Chaikin and Lubensky, 1995). The Potts spin problem consists of minimizing

5

an energy function

E =
1

2

N∑
i,j=1

q∑
a=1

(J−
ij − J+

ij)SiaSja (8)

by changing the states of the spins Sia’s, where Sia ∈ {0, 1} and Sia = 1 means that report i is in
cluster a. N is the number of intelligence reports and q the number of clusters. This model serves
as a clustering method if J−

ij is used as a penalty factor when report i and j are in the same cluster,
and J+

ij when they are in different clusters.
The minimization is carried out by simulated annealing. For computational reasons we use a

mean field model, where Via =< Sia >, Via ∈ [0, 1], in order to find the minimum of the energy
function. The Potts mean field equations are formulated (Peterson and Söderberg, 1989) as

Via =
e−Hia[V]/T∑q
b=1 e−Hib[V]/T

(9)

where

Hia[V] =
N∑

j=1

JijVja − γVia (10)

V , T , Hib and γ are parameters of the annealing process.
In order to map the function m{χa} ⊕

χ(¬AdP) onto a Potts spin neural network we must
rewrite the function as a sum of terms that is to be minimized.

Minimizing this function is equivalent to

min
∑

(ij)|∀a.ei∧ej /∈χa

−log(1− pij) +
∑

a

∑
(ij)|ei∧ej∈χa

−log(1− cij) (11)

In order to apply the Potts model to Dempster-Shafer clustering we use interactions J −
ij =

−log(1−cij)δ|Ai∩Aj | and J+
ij = −log(1−pij)δ|Ai∩Aj | in the energy function (Equation (8)), where

δ is the Kronecker delta with

δ|Ai∩Aj | ≡
{

1 Ai ∩ Aj = ∅
0 otherwise

(12)

where Ai and Aj are two focal elements and

δij ≡
{

1 i = j

0 i �= j
(13)

in Figure 3.
By minimizing the energy function we also minimize m{χa} ⊕

χ(¬AdP). In Figure 3 an algo-
rithm for minimizing the energy function through iteration of Equations (9) and (10) is shown.

2.1.3 Number of Clusters

In order to find the correct number of clusters we run the clustering process for different number
of clusters and observe the remaining conflict after convergence of the process. If the number of

6

INITIALIZE
K (number of clusters); N (number of intelligence reports)
J−

ij = −log(1− cij)δ|Ai∩Aj |∀i, j;
J+

ij = −log(1− pij)(1− δ|Ai∩Aj |)∀i, j;
s = 0; t = 0; ε = 0.001; τ = 0.9; γ = 0.5;
T 0 = Tc (a critical temperature) = 1

K ·max(−λmin, λmax),
where λmin and λmax are the extreme eigenvalues of M,
where Mij = J−

ij − J+
ij − γδij ;

V 0
ia = 1

K + ε · rand[0, 1]∀i, a;
REPEAT

REPEAT-2
∀i Do:

Hs
ia =

∑N
j=1(J

−
ij − J+

ij)V

{
s+1 j<i
s j≥i

ja − γV s
ia∀a;

F s
i =

∑K
a=1 e−Hs

ia/T t
;

V s+1
ia = e−Hs

ia/Tt

F s
i

+ ε · rand[0, 1]∀a;
s = s + 1;

UNTIL-2
1
N

∑
i,a |V s

ia − V s−1
ia | ≤ 0.01;

T t+1 = τ · T t;
t = t + 1;

UNTIL
1
N

∑
i,a(V

s
ia)

2 ≥ 0.99;
RETURN
{χa|∀Si ∈ χa,∀b �= aV s

ia > V s
ib};

Figure 3: Pseudo code for clustering algorithm.

clusters was too small we will have a high conflict since we are trying to squeeze a large problem
into a too small number of clusters. On the other hand if the number of clusters is too large we
will have a very small conflict from measurement errors. Thus, when the logarithm of the total
weight of conflict is plotted in a graph it is often easy to find the inflexion point corresponding to
the correct number of clusters, Figure 4.

2.1.4 Classification

We allow for any number of nonspecific and uncertain propositions in each intelligence report.
With this we may handle any general intelligence report.

The classification process deals with intelligence reports on a cluster-by-cluster basis. Looking
at intelligence in one of the clusters, the classification from intelligence using templates takes
place in two phases. First, we combine all intelligence reports within the cluster, and secondly, we
compare the combined intelligence with all available templates.

7

10 15 20 25 30 35 40 45 50 55 60
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

number of clusters

co
nf

lic
t

Figure 4: Logarithm of the total weight of conflict.

In the combination of intelligence a special concern is the representation used. As the reports
in general are not reports about the same object or group of objects, we can not use a simple repre-
sentation dealing only with object type. Instead, we must use a more advanced representation that
allows us to keep track of different objects and their possible types. Intelligence reports that actu-
ally are referring to the same object or group of objects are precombined, and henceforth viewed
as one intelligence report. When this is done, all intelligence reports in the cluster under investi-
gation can be combined, giving us the possibility to investigate the different resulting hypotheses
regarding force composition.

When selecting a template for the current cluster we search for a maximum matching between
template and fused intelligence. Since intelligence consists of multiple alternative hypotheses
with an accompanying uncertainty, we must take every hypothesis into account, to its degree of
uncertainty, when evaluating a template. As these hypotheses are also nonspecific regarding object
type, i.e., they refer to a subset of all possible types instead of to a single type, we cannot expect
a perfect matching for each type of object in the template. Instead, we look for a possibility
of matching between intelligence and template, i.e., the absence of conflicts in number of items
between what the intelligence propose and what each available template requests for all subsets of
types. With this measure we can select a template for intelligence with nonspecific propositions.

Here, we will investigate the representation and combination of all intelligence referring to
the same unit. We assume that a number of intelligence reports about different sets of objects are
available. These reports have already been partitioned into subsets where each subset corresponds
to a unit on one higher hierarchical level (Bengtsson and Schubert, 2001; Schubert, 2000). Let us
hereafter focus on one such subset χa and the aggregation of the intelligence in this subset.

8

Let TY be a set of all possible types of objects {TYx} where TYx is a type of vehicle or a type
of unit depending on which hierarchical level we are at.

The frame of discernment when fusing reports regarding different sets of objects that should
be combined as fragments of a larger unit structure becomes

ΘIa = {〈x1, x2, . . . , x|Ia|〉} (14)

where xi = (xi•n, xi•pt) is information regarding the ith set of objects with xi•n ⊆ {1, . . . , NCa}
and xi•pt ⊆ TY .

Comparing templates having specific propositions that are certain in what they are requesting
with intelligence propositions that are not only uncertain but may also be nonspecific in what they
are supporting can be a difficult task. The idea we use to handle this problem is to compare a
candidate template with intelligence from the perspective of each and every subset of all possible
types of objects TY .

In doing this we investigate how much support a subset of TY receives both directly and
indirectly from intelligence and template, respectively. The support for a subset of TY is summed
up from all propositions that are equal to or itself a subset of this subset of TY . This is similar
to the calculation of belief from basic probability numbers in Dempster-Shafer theory, except that
we are not summing up basic probability numbers but natural numbers representing the number of
objects of the proposed types.

Let T be a set of all available templates {Ti}. Each template is represented by any number of
slots Sj

i where Sj
i•pt ⊆ TY is a possible type from the set TY and S j

i•n is the number of that type
in Ti.

Based on the combination of all intelligence reports we evaluate all templates of {Ti}.
As we have several different alternative propositions in the intelligence regarding the type of

objects and their corresponding number of objects, we need to compare each potential template
with these alternatives and let each proposition influence the evaluation. For each template we find
a measure of fitness between the template and each proposition in the intelligence, separately.

We then make a linear combination where each measure of fitness is weighted by the basic
probability number of that proposition,

m⊕
Ja(〈x1, x2, . . . , x|Ia|〉) (15)

We get

π⊕
Ja(Ti) =

1

2

∑
〈x1,x2,...,x|Ia|〉

m⊕
Ja(〈x1, x2, . . . , x|Ia|〉)

[
max

n∈SCa(TY)

{
min

[
n

STi(TY)
,
STi(TY)

n

]}

+ min
j

[{
maxn∈SCa(Sj

a•pt)

{
min

[
n

STi(S
j
a•pt)

, STi(S
j
a•pt)

n

]}
, STi(S

j
a•pt) > 0

1, STi(S
j
a•pt) = 0

]]
(16)

where Sj
a•pt ⊆ TY .

For each potential template Ti we calculate the number of objects requested by the template
from the perspective of subset X ⊆ TY in Equation (16) as

9

Figure 5: The intelligence is fused into several alternative hypotheses. Each hypotheses is evalu-
ated against all templates to give an overall fitness for each template.

STi(X) =
∑

j|Sj
i•pt⊆X•pt

Sj
i•n, ∀X ⊆ TY (17)

and the number of objects supported by proposition 〈x1, x2, . . . , x|Ia|〉 of the intelligence from the
perspective of subset X ⊆ TY as

SCa(X|〈x1, x2, . . . , x|Ia|〉) =
∑

i xi∈〈x1,x2,...,x|Ia|〉
xi•pt⊆X•pt

xi•n, ∀X ⊆ TY (18)

The best template is selected if its matching value is above some threshold, figure 5.
While the fitness measure π⊕

Ja(·) is used for aggregation from the current hierarchical level,
we also need the basic probability of the highest ranked template for any further aggregation from
the next hierarchical level. Through a fitness weighted transformation, these templates will share
this support in relation to their fitness towards the corresponding focal element in the intelligence.

We find the basic probability number of a template Ti as

m⊕
Ja(Ti) =

∑
〈x1,x2,...,x|Ia|〉⊇Ti

[
m⊕

Ja(〈x1, x2, . . . , x|Ia|〉)
π〈x1, x2, . . . , x|Ia|〉(Ti)∑

〈x1,x2,...,x|Ia|〉⊇Tj
π〈x1, x2, . . . , x|Ia|〉(Tj)

]

(19)

10

The evidential force aggregation method makes it possible to aggregate uncertain intelligence
reports with multiple uncertain and nonspecific propositions into recognized forces using tem-
plates.

All templates used in IFD03 are completely specific. This allows us to optimize the implemen-
tation of Equations (16) and (17).

2.2 Tracking

In the tracking module, the states of an unknown number of ground vehicles moving in terrain are
maintained. The tracking is based on observations in the form of intelligence reports of ground
position y, ground speed v, and direction of motion θ.

When tracking multiple targets in general, the size of the state-space for the joint distribution
over target states grows exponentially with the number of targets. When the number of targets
is large, this makes it impossible in practice to maintain the joint distribution over target states.
However, if the targets can be assumed to move independently, the joint distribution does not have
to be maintained.

A mathematically principled approach is to propagate only the first moment of the joint distri-
bution, the probability hypothesis density (PHD) (Mahler and Zajic, 2001). This entity is briefly
described in Section 2.2.1. It has the property that for each sub-area S in the state-space, the inte-
gral of the PHD over S is the expected number of targets within this area. Thus, peaks in the PHD
can be regarded as estimated target states. Since the identities of objects are not maintained, there
is no model-data association problem.

This paper makes three contributions to applied research on PHD filtering.

1. In Section 2.2.2, a particle filter (Gordon et al., 1993; Isard and Blake, 1998) implementation
of PHD tracking, the PHD particle filter, is briefly described. For a thorough description,
see (Sidenbladh, 2003).

2. Particle filtering is suited for tracking with non-linear and non-Gaussian motion models, and
is thus suitable for ground target tracking. The non-linear terrain-dependent motion model
is described in Section 2.2.3.

3. In its original formulation, the sensor visibility is assumed constant with respect to position
and time. We incorporate knowledge of sensor quality and field of view into the filter. This
is described in Section 2.2.4.

2.2.1 PHD filtering

The number of vehicles (called targets below) to track is unknown and varies over time. This
means that the targets at time t is a random set (Goodman et al., 1997; Mahler, 2000) Γt =
{X1

t , . . . ,X
Nt
t }, where Xi

t is the state vector of target i and Nt is the number of targets in the set. A
certain outcome of the random set Γt is denoted Xt = {x1

t , . . . ,x
nt
t }. Similarly, the set of observa-

tions received at time t is a random set Σt = {Z1
t , . . . ,Z

Mt
t }, where Mt can be larger than, the same

as, or smaller than Nt. A certain outcome of the random set Σt is denoted Zt = {z1
t , . . . , z

mt
t }.

For a large number of targets, it will be computationally intractable to keep track of every single
target. However, if the signal to noise ratio (SNR) is high and the targets move independently

11

of each other, the full joint distribution fΓt |Σ1:t(Xt |Z1:t) over all targets can in each time step
be approximately recovered from the first moment of this distribution, the probability hypothesis
density (PHD) DXt | Σ1:t

(xt |Z1:t) (Mahler and Zajic, 2001; Sidenbladh, 2003), which is defined
over the state-space Θ of one target instead of the much larger joint target space ΘNt . Thus, the
computational cost of propagating the PHD over time is much lower than propagating the full
distribution.

The PHD has the properties that, for any subset S ⊆ Θ, the integral of the PHD over S is the
expected number of targets in S at time t:

E[|Γt ∩ S|] =

∫
S

DXt | Σ1:t(xt |Z1:t) dxt . (20)

In other words, it will have local maxima approximately at the locations of the targets. The integral
of the PHD over Θ is the expected number of targets, nt.

We now describe one time-step in the PHD filter, which is propagated using Bayes’ rule
(Mahler and Zajic, 2001; Sidenbladh, 2003). First, a prior PHD is predicted from the PHD and
observations at the previous time-step. Then, new observations are used to compute the likelihood
of this prior PHD. This results in a new posterior PHD. The steps are described below.

Prediction. The temporal model of the targets include birth (appearance of a target in the field
of view), death (disappearance of a target from the field of view) and temporal propagation. Prob-
ability of target death is pD and of target birth pB .

Target hypotheses are propagated from earlier hypotheses according to the dynamical model

Xt = φ(Xt−1,Wt) (21)

where Wt is a noise term independent of Xt−1 (Section 2.2.3). This gives

fXt |Xt−1,Z1:t−1
(xt |xt−1, z1:t−1) ≡ fXt | Xt−1

(xt |xt−1)

with no dependence on the history of observations z1:t−1.
Other target hypotheses are born from observations at the previous time instant (Sidenbladh,

2003) according to the model

Xt = φ(h−1
Xt

(Zt−1,Vt−1),Wt) (22)

where Vt is a noise term (Section 2.2.3). This model defines the birth pdf fXt |Zt−1
(xt | zt−1). To

take all observations Σt = {Z1
t , . . . ,Z

Mt
t } into account for target birth, a birth PHD is defined from

the set of birth pdf:s as

DXt |Σt−1
(xt |Zt−1) =

∑
zi

t−1∈Zt−1

fXt | Zt−1
(xt | zi

t−1) . (23)

Given the models of motion, death and birth, the prior PHD (Mahler and Zajic, 2001) is esti-
mated from the posterior PHD at the previous time instant as

DXt | Σ1:t−1
(xt |Z1:t−1) =

pBDXt | Σt−1
(xt |Zt−1) +

∫
(1− pD)fXt | Xt−1

(xt |xt−1)DXt−1 | Σ1:t−1
(xt−1 |Z1:t−1) dxt−1 . (24)

12

Observation. We define pFN as the probability that a target is not observed at a given time step
(the probability of false negative). This entity is further discussed in Section 2.2.4. Assuming that
there are no spurious observations (a good approximation in our application), the posterior PHD
distribution is computed (Mahler and Zajic, 2001) from the prior as

DXt | Σ1:t(xt |Z1:t) =
∑
zi

t∈Zt

fXt |Zt,Σ1:t−1(xt | zi
t, Z1:t−1) + pFNDXt |Σ1:t−1(xt |Z1:t−1) (25)

where

fXt |Zt,Σ1:t−1
(xt | zi

t, Z1:t−1) ∝ fZt |Xt(z
i
t |xt) DXt |Σ1:t−1

(xt |Z1:t−1) , (26)

which is a pdf (with the integral 1 over the state-space).
Using Equations (23), (24) and (25), the PHD can be propagated in time. The result of the

tracking is the estimated number of targets, and the location of the detected maxima in the posterior
PHD in each time step.

2.2.2 Particle implementation

We will now describe the particle filter implementation of Equations (23), (24) and (25).
A pdf (with integral 1) is usually represented withN particles. Here, a PHD (with integral nt)

is represented with ntN particles, nt being the expected number of targets at time t. One time-step
proceeds as follows (Figure 6):

Prediction. The posterior PHD at time t−1 is represented by a set of particles {ξ1
t−1, . . . , ξ

nt−1N
t−1 }.

These are propagated in time by sampling from the dynamical model fXt | Xt−1(xt | ξj
t−1) for j =

1, . . . , nt−1N . The propagated particles are each given a weight �j
t = (1 − pD)/N . The set of

weighted propagated particles represent the second term in Equation (24).
For each of the observations zi

t−1,∈ Zt−1, i = 1, . . . , mt−1, N particles are sampled from the
birth model fXt |Zt−1

(xt | zi
t−1) (Equation (23)). Each particle is given a weight �j

t = pB/N . The
resulting set of weighted particles represent the first term in Equation (24).

The two weighted particle clouds are concatenated to form a set of particles with attached
weights,

{(ξ̃1

t , �
1
t), . . . , (ξ̃

(mt−1+nt−1)N
t , �

(mt−1+nt−1)N
t)}

that represent the approximate prior PHD (Equation (24)) at time t.

Observation. For each new observation zi
t ∈ Zt, i = 1, . . . , mt, a copy i of the prior particle

set is made. New weights πi,j
t ∝ �j

tfZt | Xt(z
i
t | ξ̃

j

t) are computed. For each set i, the weights
are thereafter normalized to sum to one. The re-weighted particle set represents the i:th term
fXt |Zt,Σ1:t−1

(xt | zi
t, Z1:t−1) in the sum in Equation (25).

The original prior particle set is down-weighted according to π0,j
t = pFN�j

t . This set now
represent the last term in Equation (25).

The concatenation of these mt + 1 sets,

{(ξ̃1

t , π
1
t), . . . , (ξ̃

(mt+1)(mt−1+nt−1)N
t , π

(mt+1)(mt−1+nt−1)N
t)}

is a weighted representation of the posterior PHD.

13

% prediction:

for j ← 1 : nt−1N
% from previous time-step: posterior ξj

t−1.

sample prior ξ̃
j
t from fXt |Xt−1

(xt | ξj
t−1).

compute prior weight �
j

t ← (1− pD)/N.
end

for i← 1 : mt−1

% from previous time-step: observation zi
t−1.

J ← j.

for j ← (J + 1) : (J +N)

sample prior ξ̃
j
t from fXt |Zt−1

(xt | zi
t−1).

compute prior weight �j
t ← pB/N.

end

end

% observation:

for j ← 1 : (mt−1 + nt−1)N
compute likelihood π0,j

t ← pFN�j
t.

end

for i← 1 : mt

for j ← 1 : (mt−1 + nt−1)N
compute likelihood π̃i,j

t ← �j
t fZt |Xt

(zi
t | ξ̃

j
t).

end

for j ← 1 : (mt−1 + nt−1)N
normalize likelihood πi,j

t ← π̃i,j
t∑

k π̃i,k
t

.

end

end

% resampling:

expected number of targets nt =
∑mt

i=0

∑(mt−1+nt−1)N
j=1 πi,j

t .

for j ← 1 : ntN
monte carlo sample posterior ξj

t from weighted set⋃mt
i=0{(ξ̃

1
t , π

i,1
t), . . . , (ξ̃

(mt−1+nt−1)N
t , π

i,(mt−1+nt−1)N
t)}.

end

Figure 6: Pseudo code for time-step t in a PHD particle filter.

14

Figure 7: The posterior PHD represented as a set of particles. For greater visibility, the histogram
over particle position is shown; the saturation of red in a certain sub-area (i.e., histogram bin)
represents the particle concentration in this area.

Resampling. An unweighted representation of the posterior PHD is now obtained by resampling
the weighted particle set. The expected number of targets is computed as the sum over all weights
in this set: nt =

∑(mt+1)(mt−1+nt−1)N
i=1 πi

t. Now, ntN new particles are Monte Carlo sampled
from the weighted set. The result is an unweighted particle set {ξ1

t , . . . , ξ
ntN
t } that represents the

approximate posterior PHD DXt |Σ1:t(xt |Z1:t) at time t.
An example of a posterior PHD is shown in Figure 7.

2.2.3 Terrain Dependent Motion and Birth Model

The state of a vehicle hypothesis at time t depends according to Equation (21) on the state of the
hypothesis at the previous time-step t − 1, and of the terrain at the vehicle position yt. Likewise,
the state of a newly born vehicle hypothesis depends according to Equation (22) on the observation
from which it was born, and on the terrain at its position.

While the former dependence can be modeled using linear dynamics, the terrain dependence is
highly non-linear. In this system, the terrain is only evaluated with respect to the vehicle position
yt, not speed and direction. For each position, the terrain can be retrieved from the database
(see Section 3.2). The terrain influence on the vehicle position is represented as probability ratios
πwater = pwater/proad = 0, πforest = pforest/proad = 0.04, πfield = pfield/proad = 0.2, and πroad = 1
of the vehicle being positioned in different type of terrain.

The sampling from the conditional pdf fXt |Xt−1(xt |xt−1) is performed in two steps:

15

1. Each particle in the old posterior cloud {ξ1
t−1, . . . , ξ

nt−1N
t−1 } is propagated using a first order

linear dynamical motion model.

2. Each new particle is given a weight πterrain type depending on the terrain type at its position.
A new particle cloud is then Monte Carlo sampled from the weighted particles.

Likewise, the sampling from the conditional pdf fXt | zt−1(xt | zi
t−1) for each old observation

zi
t−1 is performed as

1. N particles are sampled from observation zi
t−1 using a linear Gaussian model. The cloud is

propagated using a first order linear dynamical motion model.

2. Identical to step 2. above.

2.2.4 Sensor Position Dependent Detection Rate

The probability of missed detection pFN varies over space and time, due to the type and fields
of view of the different sensors. To achieve a correct PHD estimate it is important to model this
variance.

For each sensor i in the system, the target detection probability pi
t and the present field of view

Ai
t is known at a given time-step t (see also Section 3.1). The probability of missed detection in a

certain position y can then be derived as

pFN(y) =
∏
y∈Ai

t

1− pi
t . (27)

This varying pFN is used for propagation of the PHD over time as described in Equation (25).
This corresponds to intuition. If there are no sensors nearby, the prior particle distribution is

accepted as posterior distribution as is. However, prior particles that come inside the field of view
of a sensor are suppressed if there are no observations to support them. Accurate sensors with high
pi

t suppress particles to a higher degree than sensors with a low pi
t.

2.3 Sensor Management

The aggregation module in IFD03 implements a simple version sensor management based on ran-
dom set simulation. As in the tracking module (Section 2.2), random sets (Goodman et al., 1997;
Mahler, 2000) are used to formally describe the operation of our algorithm, and the probability
hypothesis density is used to render the method computationally feasible.

The purpose of the sensor adaptation implemented in IFD03 is to determine which of several
sensor adaptation schemes should be used in a given tactical situation. Inputs to the module are a
list of such sensor schemes or plans, a road network that describes the geography of the situation
of interest, and positions of enemy units.

Pseudo code for our sensor adaptation algorithm is shown in Figure 8. The algorithm, which
will be described in detail in future work, works as follows. We are given a density vector x0,
which describes the positions of the units of interest at time t = 0. We also assume a set S of
sensor adaptation schemes and information on the road network on which the enemy is assumed
to move.

We now introduce three different random sets:

16

1. X(t) denotes the positions of the enemy units at time t, conditioned on them being at x0 at
time 0. It can be seen as representing a simulation of ground truth: the instance x(t) of X(t)
occurs with probability P [X(t) = x(t)|X(0) = x0]. For simplicity of notation, we will not
explicitly show the conditioning on x0 in the following.

2. For each sensor scheme s ∈ S and instance x(t) of the future ground truth, we calculate a set
of possible observations Z(x(t), s, t) at time t. Z is also a random set; note that it depends
on ground truth as well as sensor scheme.

3. Finally, we determine what our view of ground truth would be, given the set of observations
Z. This gives rise to the final random set, Y(t). Y(t) is our fusion system’s approximation
of the (simulated) ground truth X(t) using the observations Z obtained by deploying sensors
according to scheme si.

Note that all of the random sets introduced are explicitly time-dependent. When writing an
expression like P [X(t)], we mean the probability of the entire time-evolution of X(t), not just the
probability at a specified time. P [] can thus be seen as a sort of “probability density functional” in
the space of all explicitly time-dependent random sets. Further mathematical details on this will
be presented in future work.

Determining which sensor scheme to use is now done simply by comparing the assumed ground
truth x(t) to the fusion system’s simulated view y(t). For each instance x(t) of X(t), we can easily
determine the best s by averaging over the ensembles of observations Z and simulated filter output
Y entailed by that simulated ground truth. A sensor scheme is good if the simulated filter gives
a good approximation of the simulated ground truth. The fit of a specific sensor scheme s for a
certain simulated ground truth x(t) can be written as

H(x(t), s) =∫
P [Z(t) = z(t)|X(t) = x(t), s]× P [Y(t) = y(t)|Z(t) = z(t)]× h(x(t), y(t))dx(t)dy(t)

(28)
where h is a functional that compares x(t) and y(t) and the integrals are functional integrals over all
random sets y(t) and z(t). In IFD03, we used four different h-functionals: two that computed the
entropy of y at either a user-specified target-time or averaged over all time, and two that calculated
the L2 distance between x and y, again either at a specific time or averaged over all times. The
difference between the entropy-like measure and the distance measure is that the entropy measure
rewards sensor schemes that give rise to peaked distributions, but might miss some of the enemy
units. A measure that uses a specific time is termed a local measure, while global h-measures
average over all times.

The overall best sensor scheme is then determined by averaging also over the random set X(t),
as

sbest = arg min
s∈S

∫
P [X(t) = x(t)]H(x(t), s)dx(t) (29)

Implementing Equations (28) and (29) would thus entail averaging over three different random
sets, which is clearly computationally infeasible. There are several possible ways of approximat-
ing these equations. One way is to use approximations of the probabilities P appearing in them,
perhaps doing some sort of Monte Carlo sampling instead of the ensemble averages. In the imple-
mentation used in IFD03, we use a number of approximations:

17

% Pseudo code for the four major steps of the adaptation algorithm.
% The module simulates Nt ground truths and does
% No realizations of the observation process for each
% ground truth, averaging the fitnesses. This process is
% repeated for each sensor scheme s, and the best s
% is selected.
% Note that xt, yt and zt here are vectors;
% we have discretised space to only include nodes that
% are present on the road network. T and δ below
% represent the motion model constrained to this network.
% T is the end time of simulation, while pd is the
% assumed detection probability of a sensor.

% Simulating ground truth:
x1 = x0

for t = 1 : T − 1
xt+1 = xt + δ where δ is randomly selected

end for

% Generate fictitious observations:
for t = 1 : T

if s has sensor with view of xt at time t
generate observation zt = xt with probability pd

end if
end for

% Simulate filter:
y1 = x1

for t = 1 : T − 1
yt+1 = Tyt + zt+1

where T is a transfer matrix corresponding to the road network
end

% Compare simulated ground truth and filter:
h1(s) = ‖yT − xT ‖2
h2(s) =

∑
t ‖yt − xt‖2

h3(s) = H(yT)
h4(s) =

∑
t H(yt)

where H(x) is the entropy of the vector x

Figure 8: Pseudo code for sensor adaptation.

18

1. As stated above, we constrain all motion of adversary units to a road network. We also use
discretised time instead of continuous.

2. Instead of full random sets for simulated ground truth, observations, and simulated filter, we
use PHD’s for these. This means that, for instance, x(t) only gives the expected number of
units at different positions in the road network.

3. We use a very simple model for determining P [X(t) = x(t)] and averaging over all x(t): we
assume that enemy movement can be described by a motion model T . This model is used
to determine paths for all enemy units present at time t = 0. Instead of averaging over all
possible futures, a certain number Nf of such paths are generated and assumed to have equal
probabilities of occurring.

4. A similar motion model in the form of a transition matrix T is used to simulate the filter
determining Y, and we average only over a number No of possible observations (i.e., real-
izations of Z).

The adaptation module returns the best found sensor scheme s as well as a quality measure that
simply gives the fractions of the number of simulated ground truths and observations in which s
dominated all other schemes.

The adaptation module is the least mature module in IFD03, and we see a number of possible
improvements to both the algorithm and the implementation.

3 System Description

In this section we describe the general design of the IFD03. The demonstrator utilizes all of the
methods described in Section 2, and also makes use of an advanced terrain database (Section 3.2)
that has been integrated into the simulation framework Flames (Section 3.1). An overview of how
the different components fit together is shown in Figure 9.

The connections between the parts can be summarized as follows.
All data originate in the scenario simulator. For IFD03, we chose to use the Flames system

(see Section 3.1). For the demonstrations performed, we have used a standard scenario from the
Swedish armed forces.

The parts of IFD03 that handle the scenario simulation are written in C and directly linked
into the Flames suite of programs. We also implemented a number of sensor models to make
observations on the red team.

The various fusion modules impose different requirements on what should be in an observation
report. The format chosen for our reports is described in Section 3.4. Note that the aggregation
module also generates reports of vehicles, platoons, companies, and battalions — these follow
basically the same format as those for observations, with obvious redefinitions.

All of our fusion modules are implemented in compiled Matlab code, which is linked into the
Flames program Fire to produce an executable.

When a sensor model has made an observation, it communicates this to the Fusion Node com-
ponent of IFD03, which is implemented in C and Matlab. The Fusion Node, upon receiving an
observation, stores this in an internal format (detailed in Section 3.4). Detailed analyses are not

19

Fusion Node

Flames

Visualizer

Log

Adaptation

Track

Aggregation

Cluster

ClassificationConflict

Nclusters

Figure 9: The connections between the different parts of the IFD03. Lines between modules mean
that the modules exchange data. Note that the Visualizer is a separate program, while all the other
modules are linked into the Fire program.

performed for each observation that is logged; instead different analysis modules are called at
different pre-specified times.

The three fusion modules implemented in IFD03 have somewhat different requirements on the
data supplied to them. The particle filter implemented in the Track module needs to get observa-
tions fairly regularly, while the Aggregation module can be called at greater time-intervals. The
sensor Adaptation module is currently only used once in the scenario — this occurs late in the
scenario when most of the blue force’s mobile sensor resources have been destroyed and they need
an accurate estimation of the future position of an enhanced tank company.

If the Fusion Node determines that a certain fusion module should be called, it collects the
appropriate input data for the module and then takes care of its output. The output is logged to data
files for later playback in the visualizer, see Section 4.

For the Track module, the appropriate input is a list of observations that have occurred since the
last time Track was called. Its output consists of histograms of the particles representing the PHD
of the hostile units. The Track module could also be used with aggregated platoons or companies
as inputs; this would enable us to follow units instead of vehicles.

Input to Adaptation (Section 2.3) consists of a list of positions of enemy units, as well as a set
of possible sensor schemes and the road network used in the random set simulation.

The Aggregation module utilizes all observations collected so far, and attempts to build an
hierarchical situation picture of the opposing units. Its first step consists of calculating a conflict
matrix (Section 2.1.1) and then clustering the observations (Section 2.1.2). The number of clusters
to use is unknown, so a special procedure is used to determine this, see Section 2.1.3. Once the

20

proper clusters are found, a classification procedure that compares the cluster to a pre-specified set
of templates is performed, Section 2.1.4. The output of the aggregation module consists of a list of
clusters and their classification in terms of templates.

This output forms the input for the next level of aggregation: classified clusters of sensor
observations are termed vehicles, and further analyzed to get platoons, clusters of which in turn
give rise to companies.

Each iteration of the aggregation module thus produces lists of vehicles, platoons, and compa-
nies. For details on how to connect units observed at one time-step with those observed at another,
see Section 3.3.

3.1 Simulator

We chose to base the simulator used for IFD03 on the commercial simulation framework Flames,
developed by Ternion Corporation. The reasons for this choice are discussed in detail in (Hörling
et al., 2002). Flames offers an infrastructure that includes common facilities for models, e.g.,
object management, time management, memory management, execution control, data base man-
agement, and so on. It also provides a set of standard applications to support scenario definition
and execution.

The primary objects of the simulation fall into three categories: actors, terrain model and Fu-
sion Node.

• Actors. The actors in a scenario simulation consist of units from two teams, the “red” team
and the “blue” team. Each unit is equipped with a platform model and a radio model for
within-team communication. Additionally, units in the blue team are equipped with various
sensors for target detection and classification. Sensor types modeled are a video and IR
camera, a “soldier” sensor (visual), a ground target multi-sensor system (acoustic/seismic)
and a communication intelligence surveillance system. The video/IR camera can be attached
to an unmanned aerial vehicle (UAV), which can also carry and drop a ground target multi-
sensor system. To enable target detection and classification, visual and acoustic/seismic
signatures are attached to the platforms of the red team. When a detection is made a report
is sent to the Fusion Node with target information. The format of the reports is described in
Section 3.4.

• Terrain. As further detailed in Section 3.2, the terrain model is structured as a triangu-
lated terrain skin with additional vector data, describing the features of the environment as
polygons. The platforms and sensors in a scenario use this information for movability and
visibility calculations. The same information is also available for the Fusion Node, which
currently uses it only in the tracking algorithm. In future versions, the terrain model will
possibly also be used for path-planning in the sensor management method.

• Fusion Node. In a strict meaning, the Fusion Node is also an actor in the scenario. It is
implemented as a Flames cognitive model attached to an immobile blue unit. The other blue
units constantly feed the Fusion Node with target reports and upon request, sensor status
reports. By sending sensor status reports a unit can update the Fusion Node on the current
coverage of its sensors. This information is used by the tracking algorithm, see Section 2.2.4.

21

The Fusion Node acts in the scenario by making sensor status requests on suitable units and
by directing blue sensor resources.

The scenario demonstrated in IFD03 takes place in May 2015. Tension in the Baltic Sea area
has grown gradually over several years and the state of alert of the Swedish defense has been
raised. At the outbreak of the war a number of concurrent events occur. One of these is a ”Trojan
horse” enemy landing at the ferry harbor at Kapellskär. A mechanized enemy battalion (the red
team) moves inland. The defending battalion commander wants to obtain a detailed picture of the
enemy’s size, composition, and activity in order to be able to judge the enemy’s action options and
decide his own. The intelligence sources available at the time of the landing (the blue team) are
five Home Guard patrols, three UAV:s, a traffic surveillance camera, a communication intelligence
surveillance system and three ground target multi-sensor systems.

3.2 Terrain Model

When planning IFD03 in 2001, the requirements for geographic information system (GIS) services
and the ability to use Swedish and European geodata formats was not satisfied by Flames. Ternion
Corporation proposed an augmentation of the capabilities of Flames which led to FOI placing an
order with Ternion for Flames terrain modeling enhancements. In 2003, Flames was equipped with
an advanced terrain model that offers user access for queries of altitude, line-of-sight and terrain
feature data. The model data is provided by a third party terrain database generation tool, Terra
Vista by Terrex Inc., that can import data from different sources in different formats and export
a single correlated terrain description. Terra Vista also has the ability to write the correlated data
in a variety of formats. Flames uses ARC Shape files as input to its terrain model. The model is
structured as a TIN DEM (Triangulated Irregular Network Digital Elevation Model) representing
the terrain skin, and additional vector data describing terrain features, such as roads, rivers, lakes
and houses. For the scenario used in IFD03, data come from the Swedish Land Survey and describe
a 45 x 20 km2 area over the peninsula of Rådmansö, north-west of Stockholm.

3.3 Data management

All reports that are generated are saved in the global variable all reports. Some sensors are tracking
sensors. Those sensors generates many reports about the tracked vehicle. This is useful for the
particle filtering methods but may cause the clustering algorithm to overflow. Therefore the sensor
sets a tracking flag when it generates a consecutive report. All reports that do not have the tracking
flag set, are saved in all reports to cluster.

For computational reasons we can not use all reports in all reports to cluster when we cluster
them into vehicles. Instead we consider only the last max number to cluster reports. This means
that we could lose vehicles when they stop generating reports. To prevent this we save the vehicle
observations in a vehicle record.

At startup time the vehicle record is empty.
When we have clustered reports into new vehicles, the vehicle observations in the vehicle

record are removed and the new vehicle observations are put in the vehicle record. Then the old
vehicles – that were removed from the vehicle record – are put back in the vehicle record if they
are not too old and if they consist entirely of reports that were not considered in the last clustering.

22

3.4 Report format

The report format, as shown in Figure 3.4, is the Matlab structure that defines the reports sent from
Flames to the Fusion Node.

Position
A 3-valued vector [latitude, longitude, height (meter)]

TARGET POS ERR TYPE FLAG
1 = no position error.
2 = circle, standard deviation in target pos err
3 = ellipse, major and minor axis + rotation angle in target pos err nswerot
4 = polygon, Nx2 matrix target pos err polygon contains coordinates

Class focals
eli = Class focals{i} contains the i:th set of elements the vehicle can be.
eli{j} contains the j:th element the vehicle can be.
The type of eli{j} is string.

Class masses
Class masses(i) is the mass of focal elements focals{i}

TARGET SPEED ERR TYPE FLAG
0 = no speed error given
1 = stddev in target speed err

TARGET HEADING ERR TYPE FLAG
0 = no heading error given
1 = stddev in target heading err

When the reports have been clustered into vehicles, the structure used for representing a ve-
hicle is almost identical to the report format structure. In addition to the report format structure,
the vehicle structure also contains a list of the reports referring to the vehicle, and the field : tar-
get class explainstr (string). The same is true for the Platoon structures, the Company structures
and the Battalion structures.

4 Visualization

For demonstrational purposes it is of great importance to have a flexible and functional visualiza-
tion tool. The IFD03 Visualizer is a strongly modified version of the original Flames visualizer
Flash aimed at illustrating the full functionality of the IFD03 Fusion Node. The simulation re-
sults can be visualized synchronously in multiple parallel visualizers, making it possible to use
several computers and screens simultaneously. New views can easily be created and customized.

Two categories of views were used in IFD03:

• The Analyst views. These views could help an analyst building a situation picture. An Ana-
lyst view is a window with a 2D projection of the terrain model, with zooming and panning
possibilities. On top of the map is a layer of Open GL graphics and Flames icons, repre-
senting sensor reports, unit positions or particle filter histograms. For IFD03 the following
views were designed and demonstrated: ground truth, sensor reports, vehicle, platoon and

23

report format = struct(
’report id’, ID

(number, set by Flames Report),

’sensor id’, ID (number),
’sensor pos’, Position,
’sensor type’, TYPE (string),
’sensor continuous tracking’,

REPORT NOT TO CLUSTRING FLAG,

’target class focals’, Class focals,
’target class masses’, Class masses,

’target pos’, Position,
’target pos err type’, TARGET POS ERR TYPE FLAG,
’target pos err’, standard deviation (meter),
’target pos err nswerot’, [a, b, θ],
’target pos err polygon, <Nx2 matrix>,

’target heading’, θ (−π <= θ <= π, 0 is north),
’target heading err type’, TARGET HEADING ERR TYPE FLAG,
’target heading err’, ∆θ (radians),

’target speed’, speed (m/s),
’target speed err type’, TARGET SPEED ERR TYPE FLAG,
’target speed err’, ∆s (m/s),

’target correct name’, NAME
(string, only for debugging
and evaluation),

’time detected’, detection time (string),
’time detected num’, dtime (set by MatLab),
’time received’, received time (string),
’time received num’, rtime (set by MatLab),

)

Figure 10: The report format

24

Figure 11: Snapshot of the ground truth and sensor report view in IFD03.

company aggregates and particle filter histograms on vehicle level. Snapshots of the ground
truth and sensor report views are shown in Figure 11, and vehicle and platoon aggregate
views in Figure 12.

Additional information for the analyst can be obtained by clicking on the symbols in a view.
An information box then appears with details specific for each type of symbol. As an ex-
ample, clicking on a platoon symbol gives information on the age of the aggregate, the
classification of it and its certainty, the number of vehicles in the cluster forming the platoon
and the best alternative classification.

• The Status views. These views display technical data from the analysis methods. Two
Status views were designed for the IFD03, using basic Matlab plotting tools. The first view
consists of four simple sub-plots (Figure 13). One shows the stream of incoming reports as
a floating table with information on the most recent reports. The other three sub-plots show,
respectively, the estimated number of vehicles, platoons and companies over time. In the
case of estimated number of vehicles, two graphs are shown, representing the estimate given
by the aggregation module and by the tracking module respectively. For higher aggregates
no information is currently provided from the tracking, but can of course be added when
tracking is performed on all levels.

The second status view is used for demonstrating the sensor management. The alternative
paths available for the sensor platform are shown and the final choice of the sensor manage-
ment method is highlighted.

25

Figure 12: Snapshot of the vehicle and platoon aggregate view in IFD03.

Figure 13: Snapshot of the standard status view in IFD03. The sub-plots show incoming reports
and the estimated number of vehicles, platoons and companies over time.

26

Technically the IFD03 Visualizer consists of four entities, out of which three are executable
applications. The database, handled by a MySQL database manager, stores simulation result data
to be visualized. The Postprocessor application is responsible for creating tables in the database
and for converting and transferring simulation result data into the database. The Playback Con-
trol application is responsible for synchronizing the playback of the scenario across the different
connected visualizers. The user controls the playback of the scenario from this application. The
user can move freely in scenario time and the clients will be updated accordingly. The application
works as a server to which the visualizers, clients, can connect. The modified Flash application
is responsible for the actual visualizing of the data. The different kinds of data are visualized in
views and Flash connects to the playback control as a client and fetches the data to be visualized
from the database.

5 Conclusions

The Swedish Defence Research Agency has developed a demonstrator IFD03 for demonstrating
information fusion methodology focused on intelligence processing at the division level. With this
demonstrator we are able to demonstrate possible methods for a future Network Based Defence
(NBF) / Network Centric Warfare (NCW) C4ISR system. The demonstrator also functions as
an internal development tool for testing newly developed methods in an established environment
together with previously developed methods.

A demonstration of IFD03 in December 2003 for the Swedish Armed Forces was a great
success.

References

Ahlberg, S., Hörling, P., Jöred, K., Mårtenson, C., Neider, G., Schubert, J., Sidenbladh, H., Sven-
son, P., Svensson, P., Undén, K. and Walter, J. (2004). The IFD03 information fusion demon-
strator, Proceedings of the Seventh International Conference on Information Fusion, Interna-
tional Society of Information Fusion, Mountain View, CA, USA, pp. 936–943.

Bengtsson, M. and Schubert, J. (2001). Dempster-Shafer clustering using Potts spin mean field
theory, Soft Computing 5(3): 215–228.

Biermann, J. (1998). HADES – A knowledge-based system for message interpretation and sit-
uation determination, in A. P. del Pobil, J. Mira and M. Ali (eds), Tasks and methods in
Applied Artificial Intelligence, Proceedings of the Eleventh International Conference on In-
dustrial and Engineering Applications of Artificial Intelligence and Expert Systems, LNCS
1416, Springer-Verlag, Berlin, Germany, pp. 707–716.

Cantwell, J., Schubert, J. and Walter, J. (2001). Conflict-based force aggregation, Cd Proceedings
of the Sixth International Command and Control Research and Technology Symposium, US
Dept. of Defence CCRP, Washington, DC, USA, Track 7, Paper 031, pp. 1–15.

Chaikin, P. and Lubensky, T. C. (1995). Principles of condensed matter physics, Cambridge Uni-
versity Press, Cambridge, UK.

27

Dempster, A. P. (1968). A generalization of Bayesian inference, Journal of the Royal Statistical
Society B 30(2): 205–247.

Goodman, I. R., Mahler, R. P. S. and Nguyen, H. T. (1997). Mathematics of Data Fusion, Kluwer
Academic Publishers, Dordrecht, Netherlands.

Gordon, N., Salmond, D. and Smith, A. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation, IEE Proceedings F (Radar and Signal Processing) 140(2): 107–
113.

Hörling, P., Mojtahed, V., Svensson, P. and Spearing, B. (2002). Adapting a commercial simulation
framework to the needs of information fusion research, Proceedings of the Fifth International
Conference on Information Fusion, International Society of Information Fusion, Sunnyvale,
CA, USA, pp. 220–227.

Isard, M. and Blake, A. (1998). Condensation – conditional density propagation for visual tracking,
International Journal of Computer Vision 29(1): 5–28.

Johnson, J. K. and Chaney, R. D. (1999). Recursive composition inference for force aggregation,
Proceedings of the Second International Conference on Information Fusion, International
Society of Information Fusion, Mountain View, CA, USA, pp. 1187–1195.

Lorenz, F. P. and Biermann, J. (2002). Knowledge-based fusion of formets: discussion of an exam-
ple, Proceedings of the Fifth International Conference on Information Fusion, International
Society of Information Fusion, Sunnyvale, CA, USA, pp. 374–379.

Mahler, R. (2000). An Introduction to Multisource-Multitarget Statistics and its Applications,
Lockheed Martin Technical Monograph.

Mahler, R. and Zajic, T. (2001). Multitarget filtering using a multitarget first-order moment
statistic, SPIE Vol. 4380 Signal Processing, Sensor Fusion and Target Recognition X, SPIE,
Bellingham, WA, USA, pp. 184–195.

Peterson, C. and Söderberg, B. (1989). A new method for mapping optimization problems onto
neural networks, International Journal of Neural Systems 1(1): 3–22.

Potts, R. B. (1952). Some generalized order-disorder transformations, Proceedings of the Cam-
bridge Philosophical Society 48: 106–109.

Schubert, J. (1993). On nonspecific evidence, International Journal of Intelligent System
8(6): 711–725.

Schubert, J. (2000). Managing inconsistent intelligence, Proceedings of the Third International
Conference on Information Fusion, International Society of Information Fusion, Sunnyvale,
CA, USA, pp. TuB4/10–16.

28

Schubert, J. (2003a). Clustering belief functions based on attracting and conflicting metalevel
evidence, in B. Bouchon-Meunier, L. Foulloy and R. R. Yager (eds), Intelligent Systems for
Information Processing: From Representation to Applications, Elsevier Science, Amsterdam,
Netherlands, pp. 349–360.

Schubert, J. (2003b). Evidential force aggregation, Proceedings of the Sixth International Con-
ference on Information Fusion, International Society of Information Fusion, Sunnyvale, CA,
USA, pp. 1223–1229.

Schubert, J. (2004). Clustering belief functions based on attracting and conflicting metalevel evi-
dence using potts spin mean field theory, Information Fusion, in press .

Shafer, G. (1976). A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ,
USA.

Sidenbladh, H. (2003). Multi-target particle filtering for the probability hypothesis density, Pro-
ceedings of the Sixth International Conference on Information Fusion, International Society
of Information Fusion, Sunnyvale, CA, USA, pp. 800–806.

Svensson, P. and Hörling, P. (2003). Building an information fusion demonstrator, Proceedings of
the Sixth International Conference on Information Fusion, International Society of Informa-
tion Fusion, Sunnyvale, CA, USA, pp. 1316–1323.

29

