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Abstract - We discuss  the application of Hidden Markov
Modeling (HMM) techniques to the column recognition
problem, where a non-cooperative military unit consisting
of a sequence of objects forms a transportation column.
Here the task is to infer the object composition and orga-
nizational structure of the column from imperfect obser-
vations of individual objects, in combination with generic
a priori information about the organizational structure of
the non-cooperative forces. Good solution methods for the
column problem would provide a significant contribution
to the automatization of the force aggregation process in
tactical situation assessment. 
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1 Introduction

To make effective decisions, a tactical military com-
mander needs the best possible information about both
own and enemy1 forces’ situation and options. Histori-
cally, the decision maker has had limited means at his dis-
posal to help him assess and understand his tactical
situation on the basis of all available and relevant factors.
Today, however, a large number of information collection
and processing devices are available to aid the com-
mander.

Although on one hand the current rapid technological
evolution of sensor, communication, and information pro-
cessing systems has led to an ever larger availability of
intelligence information, on the other it creates a need for
a faster tempo of operations and therefore of tactical deci-
sions and situation assessments. In international peace-
enforcement operations additional complicating factors
occur: need for political acceptance by a possibly scepti-
cal international public opinion, partially opposed local
civilian populations, low density of own forces relative to
those of the opponent, high confidence levels required for
target engagement. To help tactical intelligence analysts

cope with these requirements, more efficient and less
labor intensive computer-aided situation and threat
assessment methods are needed, helping them to timely
combine uncertain information fragments into coherent
and increasingly complete knowledge representations.

After introducing in Section 2 the concept of tactical
information fusion, we survey previous work concerning
this concept with some focus on one of its subtasks, the
aggregation process. This is the process of fusing infor-
mation about the composition of entities on a low organi-
zational level with generic apriori knowledge of
organizational structure to infer the higher-level composi-
tion of non-cooperative forces, a key task in ground com-
bat situation assessment.

In Section 3, we describe the main contribution of this
paper, i.e., the application of Hidden Markov Modeling
(HMM) techniques [1],[2],[3] to the column recognition
problem, a special case aggregation process applicable
where a non-cooperative military unit forms a transporta-
tion column. Again, the task is to infer the object compo-
sition and organizational structure of the column from
imperfect observations of individual objects in combina-
tion with generic a priori information about the organiza-
tional structure of the non-cooperative forces. 

The results stated in this paper are elaborated further
in [4], the M Sc thesis of one of the authors.

2 Tactical information fusion

Data fusion is a broad concept, containing the processes
object refinement (level 1), situation assessment (level 2),
impact assessment (level 3) and process refinement (level
4) [5]. In this paper, we use the term information fusion to
denote the later stages of the data fusion process, i.e. lev-
els 2-4.

The purpose of object refinement is to achieve greater
robustness, precision and range by combining informa-
tion, possibly from several sensors of various kind.

In situation assessment one tries to identify the
observed situation by inferencing from observed data and
events in combination with relevant a priori information.
Several alternative hypotheses are generated and evalu-
ated. 

In impact assessment risks and opportunities in each
1. Henceforth, we will preferentially use the more general 

and less antagonistic term non-cooperative forces 
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of the inferred possible situations are analysed and evalu-
ated. 

Process refinement is a feedback process aiming at
improving the result of a data fusion process by control-
ling associated collection and interpretation processes so
as to reduce identified (and significant) uncertainties in
the fusion product.

By tactical information fusion we denote here the use
of information fusion processes in military tactical scenar-
ios, in particular near-real-time interpretation of intelli-
gence information relating to large-to-medium size
formations of ground forces (division level and below).

There are few detailed accounts of information fusion
systems and methods in the open literature, partly due to
confidentiality restrictions, partly to the fact that the num-
ber of such methods and systems is still limited. Below,
we survey three recent papers which summarize well the
state-of-the-art open literature on tactical information
fusion.

2.1 NATO Data Fusion Demonstrator

A group of NATO countries have developed the NATO
Data Fusion Demonstrator (DFD) [6]. The DFD consists
of a scenario simulator, a fusion system (DFS), and a
result evaluator. The simulated scenario generates a flow
of intelligence reports which is sent to the fusion system.
A set of fusion methods can be applied to this flow in
combination with various kinds of apriori terrain and doc-
trine information to produce a situation picture which is
then compared to the ground truth situation by the result
evaluator.

The fusion process in DFS consists of a set of subpro-
cesses:

• classification is a process in which the kind and size
of an observed unit is determined from knowledge of the
opponent’s doctrine

• correlation is a process which combines information
from different sensors which refers to the same object;
this process is used in particular to track moving objects

• aggregation is a process which combines related
objects using apriori knowledge of the opponent’s organi-
zation structure (“order of battle”)

• fusion is a process which combines incomplete and
uncertain information from different sources relating to
one or more objects

• situation assessment is a process which produces the
most complete and consistent hypothesis for the tactical
situation picture based on all the information from the
previous processes.

Evaluations of the DFD indicate that its technology
provides several opportunities to increase the degree of
automation of the tactical intelligence process. On the
other hand, further research and development is needed to
create an operational system based on the DFD technol-
ogy. In particular, the aggregation problem is indicated as
an issue requiring further research.

2.2 Hybrid AI architecture for 
information fusion

The paper [7] describes a system prototype based on com-
bining fuzzy logic and bayesian networks. The system
aims at fusing available information, generating hypothe-
ses about what situation may have caused the intelligence

information, predicting probable future actions and ana-
lyzing needs for complementary sensor information.

Object identification is a continuous process con-
trolled by a fuzzy logic module where incoming data are
associated with previously observed objects. New esti-
mates are made of the objects’ type and position. The
updated object information is stored in the database.

The situation assessment process has two purposes:
• to identify probable situations which may have

caused the observed information
• to generate hypotheses about possible future events.
Situation identification is obtained by letting a fuzzy

logic event detector compare the observed behavior of
objects with predefined events stored in an event library.
Objects which probably belong to the same unit are asso-
ciated. Labeled by their estimated probabilities, the situa-
tions identified are then passed on to a bayesian network.
Its purpose  is to maintain and evaluate a small set of pre-
defined hypotheses about possible enemy intentions. The
probabilities associated with each hypothesis are updated
whenever new or corrected information arrives from ear-
lier stages of the fusion process.

Feedback is obtained by having a fuzzy logic collec-
tion module suggest how available resources are to be
used to obtain the desired information. These proposals
are based on a knowledge base of more than 100 rules and
several fuzzy variables, in combination with information
about characteristics and positions of available sensors
and sensor platforms.

Testing of the prototype was done by simulation.
Results of the simulation are described as satisfactory,
e.g., the system was able to aggregate lower level units
into higher level forces. No quantitative corroboration of
this claim is given in the paper.

2.3 Bayesian network-based recursive 
composition inference for force 
aggregation

The paper [8] proposes a solution for the aggregation
problem. The authors use a bayesian network to make
inferences of probable unit types from observations of
individual vehicles. The method employs models repre-
senting types of vehicles used by different units, in combi-
nation with estimates of the probability P(y|x) to observe
a vehicle of type y given that its actual type is x. It is
assumed that all vehicles observed belong to the same
unit. The paper briefly discusses the possibility to extend
the model to cover also the combination of propositions
about several smaller units into hypotheses about the
composition of more complex force units. The only
parameter studied in the model is vehicle type. No refer-
ence is made to vehicle formations, such as columns.

In [4] we briefly studied the use of classical bayesian-
network based methods for the force aggregation prob-
lem. We found that these methods should be useful prima-
rily to aggregate unordered clusters when primary object
(vehicle) classification can be considered to be accurate
(non-probabilistic) and only the inferences regarding
higher level units are uncertain. We believe that applica-
tion of bayesian network methodology to force aggrega-
tion should be based on learning from data [9], since the
problem of determining all required conditional probabili-
ties will probably otherwise become overwhelmingly dif-
ficult. By use of learning techniques, the above-
mentioned requirement of accurate primary object classi-
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fication could perhaps also be relaxed.

3 The aggregation process and 
the column recognition problem

In general, the aggregation process does not presuppose
any particular context in which the non-cooperative forces
occur. The only assumption necessary is that organiza-
tionally close vehicles tend to be strongly clustered in
some observable space, geographical, temporal or other. 

There may exist situations where the likelihood for the
existence of a specific unit type could be high even if only
a small part, possibly even a single piece of equipment,
has been observed. Although one should not expect such
situations to occur often, for example the spotting of a
specific kind of missile launch vehicle might be highly
significant if and when it occurs. So one might ask how
large a subset of the components of a certain unit type
must have been observed in order to justify an aggrega-
tion attempt. It turns out that this issue can be left to the
modeling method itself to decide.

In situations where clustering is associated with a pre-
ferred ordering of objects, much stronger conclusions
about the character and composition of the entire structure
can be drawn from a given number of observed objects,
given that the structure approximately conforms to one of
a set of alternatives known a priori. The prototypical
problem here is recognition of kinship between stretches
of DNA from different organisms [1],[2]. The importance
of this problem has given rise to a new branch of science,
genome informatics, a subarea of bioinformatics. 

This paper takes inspiration from results in genome
informatics to find ways of recognizing (parts of) an orga-
nization from imperfect observations of sequences of
objects. We call this the column recognition problem, in
the expectation that our model fits the intelligence prob-
lem of recognizing ground troop organizations from
(sub)sequences of observed object types.

We restrict ourselves to situations where we have
available a set of observations of objects in a ground tar-
get environment. A comparatively simple and unambigu-
ous scenario is that of a complex military unit moving as a
column along a road or road network. The observations

may originate from various sources, such as human obser-
vations, radar sensors, signal intelligence etc. The prob-
lem is to generate a hypothesis distribution of possible
force compositions from these observations in conjunc-
tion with a priori information about the appearance, trans-
portation behaviour, and organization of the non-
cooperative forces.

3.1 A priori knowledge in the form of 
military doctrine 

The behaviour and formation of a military unit or force is
usually controlled by a set of more or less strict rules, a
tactical doctrine. These rules define, e.g., the composition
of units, as well as distances and ordering between neigh-
bouring units. The set of rules usually depends strongly
on which tactical operation the military unit is perform-
ing.

The doctrine describes the typical preferred behaviour
of each kind of unit. Actual situations may show smaller
or larger discrepancies since the behaviour of a unit is
influenced not only by doctrine but also by situation-
dependent personal preferences of the force commanders.
In addition, various attempts to achieve deception may
occur. E.g., the unit may try to hide its identity or indicate
a different tactical objective than the real one. Weather
and geography are additional factors which may influence
the behaviour of the unit. 

Below, a rough classification of different rules of for-
mation is made depending on how strictly the structure of
the column is controlled by doctrine. Presumably, any real
case will fall somewhere “in between” these classes.

• Complete freedom with regard to ordering: The
order between vehicles is random, i.e. any sequence of
input symbols to the interpretation process is equally
probable. 

• Clustered unordered units at each level: In this
case all components of individual subunits cluster
together but no predetermined order between units on the
same level is enforced.

Figure 1: Controlled order for lower-level entities, 
unordered on higher levels: lower level units (e.g., 

platoons) tend to maintain a predetermined order between 

Figure 1: Deployment of an advance battalion, Russia. 
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its components (e.g., vehicle types), whereas higher level
units, (e.g., companies) do not.

• Controlled order for higher-level entities, unor-
dered on lower levels: higher level units tend to maintain
a predetermined order between its components, lower
level units do not.

• Completely controlled: the formation on any level
of hierarchy is determined by doctrine. Thus the sequence
of symbols that make up the sensor classifications is
deterministic. 

• Probabilististically controlled: for each subunit of
the column there exists probability distributions describ-
ing possible formations and compositions. 

Different combinations of these cases might also be
considered, e.g., where some units on the same level are
ordered, others unordered.

3.2 The observation process

There exist many different types of information collection
system that may be used to obtain information about, or
detect, non-cooperative force structures. Tactical intelli-
gence collection is often obtained through one or more of
the following general techniques:

• Signal reconnaissance
• Radar reconnaissance
• Air reconnaissance 
• Troop reconnaissance, e.g. using special forces. 
These techniques are neither exhaustive nor mutually

exclusive and they should only be considered as practi-
cally important examples.

Here we concentrate on the situation analysis part of
the data fusion process. We usually assume that data from
the collection process have been subjected to the object
refinement process. Thus, a first processing of the input
has been performed where uncertain information from
one or several sensors has been combined into a refined
sequence report about the observed objects. Sensor per-
formance aspects such as sensitivity, range etc. have been
taken into account at this stage. 

The fact that observations are uncertain means that
some of the sensor propositions about type, position, or
time are uncertain. The resulting information for each
potential vehicle in the observed sequence is represented
as a probability distribution over possible vehicle types. If
unusually large distances between consecutive vehicles
need to be considered during interpretation, delimiter
objects could be interspersed and formally treated as a
special kind of vehicle.

Due to limited sensor coverage, geographical obsta-
cles and other factors which may influence observations it
is plausible that only a subset of the force has been
observed.

To aggregate these uncertain object observations
means to cluster objects which are believed to belong to
the same unit. In the ground force scenarios we consider
here, this usually means clustering first object observa-
tions into platoons, then platoons into the next hierarchi-
cal organizational level, companies, etc. The aggregation
principle is either always the same, or it may exploit dif-
ferent a priori knowledge about ordering at different lev-
els, as discussed above. 

4 Modeling the column problem 
with Hidden Markov Models 

The method we employ here is Hidden Markov Mod-
els (HMM), see [1],[2],[3]. Sequence recognition using
HMM is based on the following general idea: given a set
of sequences of symbols, or strings, with possibly impre-
cise similarities in structure. Such a set is said to form a
family. From a given family of sequences it is possible to
create an associated HMM by “training” the model using
data from the family. The HMM may then be used e.g. to
decide if an arbitrary string belongs to the family. 

A typical application is matching of DNA strings in
genome informatics [1],[2]. 

Application of HMM to the column problem requires
the availability of a priori “doctrinal” information describ-
ing the normal formation of units with respect to object
type and mutual ordering. The method thus starts by
defining the structure of a model by which the doctrinal
knowledge is to be represented.  The model is then trained
using a set of data, either generated from doctrines using
simulation and/or obtained from real observations. 

An observed sequence may then be assessed against a
bank of trained models, each member of which obtained
from training data (approximately) corresponding to a
specific doctrine. The assessment is made by computing a
measure of fit for the sequence, based on the probability
of observing the sequence given the model, see below and
[1],[2],[3]. 

If observations are given as a probability distribution
over possible object types one may use Monte Carlo sim-
ulation to generate a set of sequences from these distribu-
tions. Each one of the sequences are then assessed against
the model. The mean value of the measure of fit from the
different simulated sequences may be used to estimate the
likelihood that the observations originate from the type of
unit which the model was trained to recognize. 

4.1 Structure and properties of Hidden 
Markov Models

An HMM is a stochastic process composed by two
related probabilistic mechanisms. These are (1) an under-
lying Markov chain with a finite number of states and (2)
a stochastic symbol generating process associated with
each state. For each discrete time step the process is
assumed to be in some state, and a symbol is generated by
the associated stochastic process. Then the Markov chain
changes its state according to its associated transition
probability matrix. Only the generated symbols but not
the state of the Markov chain can be observed, thus the
name Hidden Markov Model.

A so-called Standard HMM Architecture is shown in
Figure 2.

The model can be viewed as a non-deterministic finite
state machine which generates strings from an alphabet
O = {o1, o2, ... ,oK}. The nodes in the HMM correspond to
different states. In addition to the start and end states there
are three kinds of state: mi are main states, di are delete
states, and ij are insert states. The main and insert states
always emit a symbol, in our basic example one of the
vehicle types in the column. In the delete state no symbol
is emitted. Edges correspond to transitions between states.
Each node (state) has an associated probability distribu-
tion for the different transitions that may occur in this
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state. The main and insert states also have probability dis-
tributions for emitted symbols. These distributions are
represented as transition and emission probability matri-
ces of the model. The length of the model is defined as the
number of main states. The HMM of Figure 2 has length
2.

More formally, an HMM is characterized by:
• Underlying Markov chain: A Markov chain

 taking values from a finite set of states S = {1,
2, ... , J} with J states. The transition probabilities
between states are given by the transition matrix

 , where ai|j is the probability for tran-
sition from state i to state j, subject to:

At time n = 0 the initial state X0 is given by the probability
distribution  where πj(0) = P(X0
= j).

An HMM is often modelled as having specific start
and end states. Since in this case the Markov chain always
starts in the start state, we get πstart(0)=1. The end state
becomes an absorbing state with aend|end=1.

• Observable stochastic process: A stochastic pro-
cess  with a finite set of states O = {o1,o2, ... ,oK
} , where normally . The processes  and

 are for each fixed n related by the conditional
probability distribution bj(k) = P(Yn= ok | Xn = j). These
form the emission probability matrix B according to:

subject to 

• Conditional independence: For each sequence of
underlying states j0j1 ... jn the probability of observing the
string o0o1 ... on is given by:

The probability distributions for observing some
string oi is given by the parameters A, B, and π(0),
compactly represented as λ= (Α,Β, π(0)) [3].

Initial transition and emission distributions are
obtained from some kind of a priori knowledge. One
might e.g. define the initial probability for the emission of
a “lorry” as being equal to the a priori probability for lor-
ries, i.e. if we know that an army has N vehicles of which
n are lorries this probability is n/N, corresponding to a so-
called Dirichlet distribution [1]. If there is no a priori
knowledge the initial probabilities are equally distributed
over reachable states. 

The network is trained by being fed a family of strings
corresponding to the doctrinal knowledge, using the
Baum-Welch algorithm [3]. During training the probabil-
ity distributions are modified to fit the family of strings
generated from the doctrinal knowledge.

4.2 Sequence assessment

To assess how well an observed string fits a given
family the measure of fit for the string is computed using
the HMM. Given that the HMM has parameters λ=(Α,Β),

where A and B are the transition and emission probability
matrices respectively, having been created from a family
of strings, how does one decide if an arbitrary string o0o1

... oN belongs to the family?
This can be done by computing the probability P(Y0=

o0,... , YN = oN | λ) for the string, i.e. the probability to
observe the string given the model. This probability is
called the measure of fit of the string given the model.

Figure 2: HMM Standard Architecture.

How is P(Y0= o0,... , YN = oN | λ) computed? To do
this we first define the forward variable  αn(j) giving the
probability of observing the string o0o1 ... on up to time
step n ≤ Ν  and that  the hidden Markov model at time step
n is in state j, 1 ≤ j ≤ J: 

αn(j) = P(Y0= o0 ,..., Yn= on , Xn= j). 
It can be shown, see [3], that P(Y0= o0,... , YN = oN | λ)

may now be computed as:
P(Y0= o0,... , YN = oN | λ) = αN(j) 
When comparing a string, o, against an HMM, Mi, one

obtains an estimate for the probability that the string was
generated by the model, P(o|Mi). Thus by comparing an
observed sequence against a bank of HMMs correspond-
ing to several possible strings, a sequence of probabilities
P(o|M1), P(o|M2), P(o|M3), ...  is obtained, expressing the
likelihood that each model has generated the sequence.

From this we want to obtain a probability distribution
for the different units given the observation o, i.e. 
P(M1| o), P(M2| o), P(M3| o),..., subject to  =1. 

This can be computed from Bayes rule as: 

  where P(o) is the probability

for making the observation. The exact value of P(o) is
inconsequential since this factor is present in all terms
when performing the normalization as described below.
We therefore define:  

P(o|M) are the probabilities obtained from compari-
sons with the HMM. P(M) are the a priori probabilities for
the string which corresponds to the model M. Without any
prior information on the origin of the observations these
probabilities are set uniformly for all possible strings. 

In order for the computed values to form a probability
distribution they need to be normalized as:
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The computed measures of fit represent the probabili-
ties given the observation for the HMMs corresponding to
each string.

These measures of fit give, however, only a measure
for how well the entire string, or observation sequence,
corresponds to each unit. A measure of how well different
partial sequences fit the model is also desirable. In [4] we
suggest the use of the Viterbi algorithm [3] to support this
purpose. This algorithm detects the most probable path
through the HMM and may thus be used to estimate the
number of main states traversed while matching different
strings.

4.3 Alternative ways of applying HMM 
to the aggregation problem

Assume that a unit has been partially observed as in Fig-
ure 3. For simplicity we assume that one has observed
four out of seven objects making up the unit. We now
want to compare the observations 1´- 4´ against a set of
HMMs corresponding to different units which the column
1-7 may represent.

Figure 3: Observations of a column.

4.3.1 Aggregation in a single  step

In this case one tries to estimate the total composition of
the column directly from the observations. Assuming that
we have observed parts of a battalion this means that we
try to estimate the likelihood of different types of battal-
ion directly from the observations without estimating their
constituent platoons and companies first.

We summarize the major subprocesses when aggregat-
ing in a single step as follows:

• Generate training sequences from doctrine for the
unit

• Create HMMs for different unit types through train-
ing using these sequences

• Select one or more observation sequences from the
set of observations

• Compare the observation sequences with the differ-
ent HMMs to decide which unit type the observations fit
best.

4.3.2 Aggregation for each level of hierarchy

In this case aggregation is made in several steps, one for
each level of the hierarchy. The results are then used to
estimate the complete force structure. This means that an
HMM has to be created for each subunit. For this the
same conditions apply as when aggregating in a single
step. To perform the aggregation one also has to decide
which objects may be assumed to belong to the same unit.

We summarize the major subprocesses as follows:
• Generate training sequences for the unit from doc-

trine
• Create HMMs for different unit types on each level

of hierarchy through training from these training
sequences

• Select one or more observation sequences from the
set of observations

For each aggregation level of hierarchy the following
is done:

• Cluster objects into possible formations and compare
how well each cluster corresponds to HMMs for the level
one wants to aggregate to

• Create sequences for the new level using the result
from the previous step. Go to the previous step if not
ready.

5 Test results

Since we have not had access to empirical data on the for-
mation of units, we have instead made a number of simu-
lation tests using Monte Carlo-generated input strings.

Simulations were designed to correspond mainly to
those of the cases described in 3.1 which should be best
suited to modeling using HMM [4]. 

Assume for simplicity that company subunits (pla-
toons) are elementary detectable objects. Each subunit is
represented by a single lower-case letter in the input
string. Let us assume that T=tts corresponds to an
armoured company, A=aaas to an anti-aircraft company,
M=mms to a mechanized company, and L=llsl to a logis-
tics support company, where t is a tank platoon, s a staff
platoon, a an anti-aircraft platoon, m a mechanized pla-
toon, and l a logistics support platoon.

The case where companies are clustered and the order
both within and between companies is random was simu-
lated as follows. The components of each “company”
string were randomly permuted, then the resulting strings
were randomly joined. Training was made using 5000
such strings, which is the approximate number of different
strings in this example. It turns out that the resulting mea-
sure of fit is unable to discriminate between different
strings. The method is thus unsuitable in this case, which
should come as no surprise since only clustering and no
ordering is involved.

The case where larger units are unordered and smaller
units ordered was tested in a similar way, requiring only
200 strings in this case. The measure of fit was about 10-6,
essentially independent of the order between companies,
i.e., higher level units. 

The “opposite” case where larger units are ordered,
smaller unordered, gave a higher measure of fit than the
previous case, about 10-3. 

Although the values for the measures of fit may seem
small, the method should be useful in both these cases if
properly trained since it is able to discriminate between
strings that follow the training pattern and those that do
not (giving them much lower scores).

Sequences derived from strings faithful to doctrine by
insertions or deletions were also found to be recognizable,
although the creation of an appropriate collection of train-
ing sequences requires careful experimentation and analy-
sis.

Finally, a two-level hierarchical HMM was tested for
the case of an ordered “battalion” with unordered “com-

1 2 3 4 5 6 7

2´ 3´1´ 4´

Column

Observations
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panies”, allowing both insertions and deletions. The
results obtained in this case were encouraging, with a
measure of fit about 0.1 and responding to insertions and
deletions in a way consistent with intuition. 

In all cases, the length of the trained model was
obtained as the average length of the strings used to train
the model.

6 Discussion and conclusions

The general conclusion we draw from our tests is that the
method seems applicable to the problem at hand, given
that some information about the order between objects is
available a priori.  The applicability of the method
increases with the degree of order of the units. An inter-
esting result is that cases with a high degree of order on
higher hierarchical levels and lack of order on lower lev-
els give better measures of fit and are therefore better
suited to the method than vice versa. Our test results indi-
cate that the best method is to make aggregation sepa-
rately for each level of hierarchy. This reduces
computation time and model fit is improved. When carry-
ing out aggregation in several steps one may produce
measures of fit not only for the entire unit of force but also
for each subunit, assuming that it is possible to decide
which objects belong to the same subunit. 

More complete tests using data that correspond to real
organizations should be carried out to evaluate the useful-
ness of the HMM technique for the aggregation problem
before a real application is considered.

There exist some software packages for HMM model-
ling, e.g. HMMER and SAM. Both HMMER and SAM
are designed for bioinformatics applications. One of these
software packages might possibly be used for force aggre-
gation purposes, although when performing this study we
have developed our own software.
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