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Abstract - The paper summarizes the result of a literature
study of robust uncertainty management methodologies,
carried out to indicate options available in the design and
construction of trustworthy decision support systems based
on high-level information fusion methods. Among the
candidate methodologies briefly discussed for creating
trustworthy decision support are robust Bayesian
statistics, imprecise probabilities and sensitivity analysis
of simulation models. However, few reports of the
application of such techniques in information fusion
software systems were found.
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1 Introduction
An important topic in information fusion research is fusion
performance, including relevance, trustworthiness,
reliability, and robustness. Llinas [1], e.g., lists relevance
of decisions or recommendations, correctness in reasoning
(reliability), and adaptability in reasoning (robustness)
among representative assessment criteria for high-level
fusion systems (i.e., situation and impact refinement, or
“level 2 and 3”, systems), cf. [2, 3]. Sheridan [4] suggests
reliability, robustness, familiarity, understandability,
explication of intention, usefulness, and dependence as
potential components in a user’s relation of trust in a
command and control system. 

In this paper we use the term trustworthiness as a
human factors attribute of a system, meaningful only when
given a specific usage domain and an adequate relationship
between user, system, and environment, including
sufficient user training and experience for the task at hand
given the tool and an environment which stays within the
specified usage domain of the system. The term reliability
will be used to denote the technical system property of
delivering quantitative results which are reasonably close
to best possible, subject to known statistical error
distributions. Thus, reliability is viewed as a technical
precondition of trustworthiness. The term robustness,
finally, is used to denote the property of a system to react
appropriately to exceptional conditions, including to avoid
making large changes in recommendations as a

consequence of small changes in input data. The latter
property will also be referred to as stability. In essence, the
environment model of a robust DSS needs to be able to
discover situations of high risk and quantify the range of
recommendation uncertainty inherent in these.

While numerous papers deal with trust and
trustworthiness as human factors issues in command and
control and intelligence management systems, e.g. [5, 6],
few studies discuss basic reliability concepts in high-level
fusion-based decision support systems (HLFB-DSS) and
applications. In such systems, generic conceptual
architectures such as Bayesian networks [7], decision
trees, influence diagrams [8], and Bayesian games [9] are
frequently adopted, while different approaches to
uncertainty management are often combined [2, 3, 10].
However, the effects of such combination on precision and
robustness of the output are rarely fully understood.
Consequently, current approaches to information fusion
methodology are not likely to be sufficient to satisfy
HLFB-DSS users’ reliability requirements. Indeed, unless
concepts and methodologies are found and generally
applied which enable researchers and developers to
achieve and demonstrate reliability of high-level
information fusion methods and algorithms, operational
decision makers are unlikely to be willing to trust or use
decision support systems based on such techniques. 

On the other hand, in recent decades substantial
research and engineering work in robust decision analysis
and its applications has been performed in other fields.
Since this partly fundamental research indicates that
reliable behaviour of HLFB-DSS might be achievable, we
believe that it needs to be noticed, evaluated and, if
possible, adapted for use in the design of HLFB-DSS. With
the aim of contributing to the initiation of such efforts, this
paper discusses aspects of reliability and trustworthiness of
certain classes of methods and models of decision-making
under uncertainty. Such aspects are likely to be limiting
factors in many complex decision-making and risk
management situations. However, although we strongly
believe that reliability assessment of HLFB-DSS needs to
be based on well-understood theories for management of
uncertainty, for fundamental reasons guaranteed
performance is likely to remain an unachievable ideal,
except perhaps in the simplest cases. 



The paper is structured as follows. In Section 2, we
introduce concepts and some applications of decision
support methodology in a Bayesian framework. Next, we
review three methodological approaches to increased
reliability and robustness in DSS: robust Bayesian analysis
(Section 3), sensitivity analysis (Section 4), and imprecise
probabilities, including interval probabilities (Section 5).
In Section 6, we review a paper by Arnborg [11], further
elaborated in [12], on the relationship between robust
Bayesian analysis and evidence theory, which concludes
that these approaches may lead to quite different
conclusions, at least in input-sensitive, ill-conditioned [13]
[14] cases. In Section 7, we review experimental results
presented in [15] on the application of various imprecise
probability methods to the so-called Sandia challenge
problems, a set of simple, abstracted models of expert
judgment aggregation problems. Section 8 concludes the
paper.

2. Decision analysis: 
concepts and applications
French and Rios-Insua [16] summarize the Bayesian
approach to inference and decision analysis as a multistep
process:
1. Modeling beliefs about a parameter of interest through 

a prior which, in presence of further information, is 
updated to the posterior.

2. Modeling preferences and risk attitudes about (possibly 
multicriteria) consequences with a (multiattribute) 
function.

3. Associate with each alternative its (multiattribute) pos-
terior expected utility.

4. Propose the alternative which maximises the posterior 
expected utility.

Since the assessment of beliefs and preferences is in
general a difficult task, and since the decision models
needed in practice may be complex, the need for
evaluating the sensitivity of the output with respect to
changes to the inputs (model, beliefs and preferences) is
typically great. In addition, since in the Bayesian
framework the decision maker’s judgments are encoded
into inputs to the analysis, he or she is likely to want to
explore their implications, as well as repeat the analysis
process using revised judgments, until the space of
alternative outcomes has been sufficiently explored and
understood. Only then should a decision be made.
Classical texts describing Bayesian decision analysis are
[17][18]. 

In an influential paper, Apostolakis [19] discussed the
concept of Bayesian analysis in probabilistic safety
assessment (PSA) of technological systems. The purpose
of doing a PSA is to make decisions regarding the safe
operation of a facility. Expected utility theory provides the
framework within which decisions can be analyzed in a
formal manner and in accordance with several reasonable
principles [18]. Because the events or phenomena of
interest in PSA are usually very rare, thus lacking
significant statistical or experimental support, the opinions

of experts, and how to elicit prior probability estimates
from them, acquire great significance. 

In HLFB-DSS, a role somewhat analogous to that
played by experts in PSA applications is filled by sensor
subsystems which need to be subjected to extensive off-
line experimentation and measurement, as well as
modeling and model training (see, e.g., [20, 21, 22]),
before they can provide reliable, calibrated inputs to
automatic fusion algorithms. In these calibration
processes, elicitation of expert knowledge often plays a
key role. High-level information fusion systems also
frequently involve automatic interpretation of observations
according to some more or less predefined behavioral
model, e.g., a model of the opponent’s tactical doctrine, if
one exists and is known. Ultimately, users may want to
engage in a mixed-initiative dialog [23] with the DSS by
providing prior probability estimates of parameters in such
models. 

Jiménez et al. [24] describe a generic PC-based decision
support system based on a Bayesian multiattribute utility
model that is intended to ease many of the operational
difficulties involved in the decision analysis cycle. The
system, GMAA, accounts for uncertainty about the
alternative consequences, which can be defined in terms of
continuous uniformly distributed intervals for each
attribute, and provides several types of sensitivity analysis.
It admits incomplete information about preferences by
permitting interval responses to the probability questions
put to the user, which leads to sets of utility functions and
weight intervals. This makes the system suitable also for
group decision support, where individual conflicting views
in a group of decision makers can be captured through
imprecise answers. The system was designed to be useful
in a range of complex decision-making problems discussed
in the operations research literature [25], such as military
systems acquisition processes, analysis of alternatives for
the disposition of surplus weapons-grade plutonium, etc. 

Ekenberg and Thorbiörnson [26] provide a theory for
analyzing decisions under risk when the available
information is vague and imprecise, cf. Section 5. Partly
based on this work, Larsson et al. [27] present a decision
tree evaluation method for analyzing multiattribute
decisions under risk. Information is modeled using convex
sets of utility and probability measures restricted by closed
intervals. 

3 Robust Bayesian analysis
According to Berger [28], there is a common perception
that foundational arguments lead to subjective Bayesian
analysis as the only coherent method of behavior. This is
indeed true if it is assumed that one can make arbitrarily
fine discriminations in judgment about unknowns and
utilities. In reality, however, it is very difficult to
discriminate between, say, 0.10 and 0.15 as the subjective
probability, P(E), to assign to an event E. However,
realistic foundational structures, or axiomatic theories,
exist (see, e.g., [29], and further references in [28]), based
on axiomatics of behavior which acknowledge that
arbitrarily fine discrimination is impossible. The



conclusion of these theories is that coherent behavior
corresponds to having sets of input models, priors, and
utilities, which yield a range of possible Bayesian answers.
If the range of answers is too large, the question may not
be settled. Conceptually introduced in the 50´s by Good
and later refined by Kadane and Chuang [30], modern
surveys of this so-called robust Bayesian analysis are
given in [28][31][32]. 

Berger et al. [32] declare the early 90’s the golden age
of robust Bayesian analysis. Since then, the need to
consider Bayesian robustness has in fact increased
dramatically, since models that are now routinely used in
Bayesian analysis are sometimes so complex that their
inputs (such as priors) can be elicited only in a casual
fashion. Still, robust Bayesian methods have not yet had
much impact on applications, although the already cited
paper [24] by Jiménez et al. provides some examples. On
the other hand, new research opportunities are offered by
developments in algorithms, the possibility of using
MCMC methods, and the growing need for robust
behavior and sensitivity analysis in applications. 

Robust Bayesian analysis provides tools to check the
impact of the utility function, the prior and the model on
the optimal decision alternative and its posterior expected
utility. Three main approaches to Bayesian robustness can
be distinguished: informal, global sensitivity, and local
sensitivity. According to [32], a number of theoretical
results show that one may model imprecision in beliefs and
preferences through a set of probability distributions and a
set of utility functions. These results have two basic
implications. First, they provide a qualitative framework
for sensitivity analysis in decision analytic problems,
describing under what conditions one may undertake the
standard approach of perturbing the initial probability-
utility assessments. Second, they point to the basic concept
of robust approaches: determining the set of non-
dominated alternatives. In the common cases when the
non-dominated set is too large to imply a final decision,
one should look for additional information that would help
reduce its size. 

As indicated above, the usual practical motivation of
robust Bayesian analysis is the difficulty in assessing the
prior distribution. Instead, however, one could directly
operate with the constraints  obtained by,
e.g., expert elicitation. If a parameterized utility function is
assessed, the constraints are typically placed on the
parameters of the utility, such as the risk aversion
coefficient. In developing the model for the data itself
there is a typically great imprecision, and a need for
careful study of the model robustness. And when there are
several decision makers and/or experts involved, it may
not be theoretically possible to obtain a single model, prior,
or utility; instead, one might be left with only sets of each,
corresponding to differing expert opinions.

4 Sensitivity analysis: 
concepts and applications
Bayesian robustness is playing a role in SAMO (Sensitivity
Analysis of Model Output), a network of researchers
interested in investigating the relative importance of model
input parameters on model predictions [34] in many
applied areas. There are many reasons to check the
sensitivity of the output (the optimal alternative) with
respect to the inputs (model, beliefs and preferences).
Since inputs to the analysis encode the decision makers’
judgments, he or she should wish to explore their
implications and possible inconsistencies. The need for
sensitivity analysis is further emphasized by the fact that
the assessment of beliefs and preferences is a difficult task. 

Stability theory [35] provides a unifying sensitivity, or
robustness, framework. When strong stability holds,
careful elicitation should lead to decisions with expected
utility close to the greatest achievable; when weak stability
holds, at least one stabilized decision will have this
property. However, when neither concept of stability
applies, even small elicitation errors may lead to disastrous
results in terms of large losses in expected utility.

Sensitivity analysis of simulation models [34][36][37]
can be used to identify the most significant exposure or
risk factors in a model, as an aid in identifying the
important uncertainties for the purpose of prioritizing
additional data collection or research, and it can play an
important role in model verification and validation
throughout the course of model development and
refinement. Sensitivity analysis also can be used to provide
insight into the robustness of model results when making
decisions. In [37], a number of sensitivity analysis
methods are surveyed. 

Kleijnen [38] gives a survey on the use of statistical
designs for “what-if” analysis in simulation, including
sensitivity analysis, optimization, and validation/
verification. Sensitivity analysis is divided into two
phases. The first phase is a pilot stage, which consists of
screening or searching for important factors among
possibly hundreds of potentially important factors. The
second phase uses regression analysis to approximate the
input/output transformation that is implied by the
simulation model; the resulting regression model is also
known as a metamodel or response surface. Regression
analysis gives better results when the simulation
experiment is well-designed, using either classical
statistical designs (such as fractional factorials) or optimal
designs. To optimize the simulated system, the analysts
may apply Response Surface Methodology (RSM); RSM
combines regression analysis, statistical designs, and
steepest-ascent hill climbing. To validate a simulation
model, again regression analysis and statistical designs
may be applied.

In military applications of modeling and simulation,
there are specified processes of verification, validation,
and accreditation (VV&A) [38][39]. In a sense,
information fusion may be seen as a special case of M&S,
since information fusion is partly based on situation
modeling using theories of uncertainty, and frequently
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Figure 1. Result of a scenario-based simulation experiment for evaluating particle filter-based state estimation in 
a tactical plan recognition system using proactive control of sensor resources. From Johansson & Suzic [10].

employs Monte Carlo simulation techniques in model
evaluation and decision-making. Including HLFB-DSS in
the VV&A processes, a necessary provision for
acceptance, therefore seems to be possible without having
to introduce a great number of unfamiliar concepts.

In [10], and more thoroughly in [40], Johansson and
Suzic study information acquisition for robust plan
recognition, using Monte Carlo simulation in the form of
particle filtering to obtain a measure of modeling
uncertainty. According to [10], tactical commanders want
to obtain predictive situation awareness. To do this
effectively, they need real-time decision support tools
which can both recognize basic tactical plans of the
opponent, such as an imminent attack, and proactively
control limited sensor resources by prioritizing dangerous
plan alternatives in a sensible way. Johansson and Suzic
introduce a particle filter that maintains a state estimate of
opponent plans even when observations are lacking. The
particle filter produces a multi-mode state representation
with each particle as a mode. 

The approach is studied in a scenario-based simulation
experiment, see Figure 1. Initially, the suspected attacker
(cs) is observed by both UAVs and observers on the
ground. Estimated attack probability is close to best
possible and the uncertainty is small. As estimated attack
probability increases, the sensor control manages to keep
the uncertainty relatively small by prioritizing this
objective. Near the end of the scenario, attack probability
has decreased (because cs is now moving away from the
own targets) and the automatic sensor control gradually
changes its priorities. Together with a built-in “gravity”
bias of the model which pulls particles towards own
targets, this explains why the uncertainty interval fails to
cover the best possible estimate during the final time steps. 

5. Imprecise probabilities 
Recently, there has been considerable interest in theories of
imprecise probabilities. The biannual conference series
ISIPTA (International Symposia on Interval Probabilities
and Their Applications) started in 1999 [41][42]. Another
effort, of particular relevance for engineering applications,
is the Sandia Workshop on Alternative Representations of
Epistemic Uncertainty, held in August 2002. This
workshop has been documented in a special issue of the
journal Reliability Engineering & System Safety [43]. 

Imprecise probability is a generic term used to describe
mathematical models that measure uncertainty without
precise probabilities. This is certainly the case with robust
Bayesian analysis, but there are many other imprecise
probability theories, including in decreasing order of
generality coherent lower and upper previsions, coherent
lower and upper, or interval, probabilities, Choquet
capacities of order 2 (cf. Sec. 6 where this concept is
defined and used), belief and plausibility functions,
possibility and necessity measures, and fuzzy logic, see
[29][44][45]. Thus, e.g., belief functions are a special case
of Choquet capacities of order 2 [29][11]. 

Some of these theories, such as fuzzy logic and belief
functions, are only tangentially related to robust Bayesian
analysis, while others are closely related. Seen from the
robust Bayesian perspective of [32], the major difference
between robust Bayesian analysis and these alternative
theories is that robust Bayesian analysis stays with
ordinary Bayesian intuition, considering bounded sets of
individual prior distributions that are each compatible with
prior beliefs. In contrast, the alternative theories view the
sets themselves (not the individual priors) as the basic
elements of the theory. 

In [46], Walley claims that a general theory of imprecise
probability can accommodate all the kinds of uncertainty
and partial ignorance that are currently being studied,



including vague or qualitative judgments of uncertainty,
models for complete ignorance or near ignorance, random
sets and multivalued mappings, and partial information
about an unknown probability distribution. In [29] Walley
describes the connection between robust Bayesian analysis
and the theory of coherent lower and upper previsions (for
a tutorial introduction to these concepts, see [47]). 

According to Walley [46], coherent lower and upper
previsions are needed in a general theory because these are
direct generalizations of the most commonly used models
(interval probabilities, Choquet capacities of order 2, belief
functions, possibility measures, and probability
distributions), so that a general theory of imprecise
probability can be applied directly to these special models.
Sets of probability distributions are also needed in a
general theory because, at present, most examples of
coherent models are presented in this form. This is the
approach in the robust Bayesian theory, which uses a set of
probability distributions as the canonical model for
uncertainty. Since upper and lower envelopes of a set of
probability distributions are always coherent upper and
lower previsions, specifying a set of probability
distributions is a simple way of constructing a coherent
model. For example, after receiving new information, a set
can be updated by using Bayes’ rule to update each
probability distribution in the set. 

However, as seen from the foundational perspective of
Walley, the robust Bayesian approach has some serious
defects, and sets of probability distributions are not an
adequate foundation for a general theory of imprecise
probability. There are many applications, of belief
functions and possibility measures in particular, in which it
is misleading to regard a set of probability distributions as
a set of hypotheses about the “correct” probabilities,
because it is meaningless to talk of “correct” probabilities. 

6. On the relationship between 
Bayesian inference and evidence theory
Although many papers discuss the abstract relationships
between different approaches to uncertainty management,
such papers are less abundant that compare the precision
and robustness of different approaches in specific
application examples. Notable exceptions are some of the
papers from the Sandia workshop, presented in [43] (see
Section 7), as well as the paper [11] where Arnborg
discusses the relationship between robust Bayesian
inference and evidence theory, using Zadeh’s ill-
conditioned example [48] [49] to illustrate the effects on
conclusions of different fusion rules, or rules of
combination. Assuming evidence theory is being used,
Arnborg notes that to obtain bodies of evidence,
likelihoods and priors are needed, and therefore a robust
Bayesian analysis based on these likelihoods and priors
might be used to compare the conclusions emanating from
the application of evidence theory with those from a purely
Bayesian approach. The approach used in [11] assumes
that impreciseness in conclusions is caused by
impreciseness in sampling functions and priors. 

The Dempster-Shafer (DS) combination rule [44] is
computationally equivalent to allowing the operands as
well as the result to be non-empty random sets. The
combination of evidence - likelihood functions normalized
so that they can be seen as probability distributions - and a
prior over a finite space is done in [11] by component-wise
multiplication followed by normalization. For precise
beliefs, the resulting combination operation agrees with
the DS and the MDS rules, the latter proposed by Fixsen
and Mahler [50] and involving a re-weighting of the
operands. The robust Bayesian version of this procedure
would replace the probability distributions by sets of
probability distributions, for example represented as DS
belief functions.

Before continuing with the presentation of Arnborg’s
paper, it is appropriate to define the concept of Choquet
capacities of order 2 [46]:

Let O denote the set of possible outcomes under
consideration. Suppose that lower probabilities P(A) are
defined for all elements A in K, where K is a collection of
subsets of O. Here, K is assumed to be an algebra. Lower
probabilities determine conjugate upper probabilities
through P(A) = 1 - P(Ac), so it suffices to consider lower
probabilities (upper and lower probabilities are also known
as interval-valued or interval or non-additive
probabilities). Let  denote the empty set. Assume that

 for all A in K, P( ) = 0 and P(O) = 1. The
lower probability P is said to be 2-monotone, or a Choquet
capacity of order 2 or a convex capacity, when it also
satisfies, whenever A and B are in K,

. 
Rounding. Arnborg shows how a set of distributions

which is not a Choquet capacity of order 2 can be
approximated by rounding it to a minimal Choquet
capacity that contains it, and this rounded set can be
represented by a DS-structure. This is a convex set of
probability distributions which can be very compactly
represented (typically by a few real numbers). Thus,
imprecise distributions can, if constrained by rounding to
Choquet capacities, be viewed as random sets. The random
sets can be combined by taking the intersection of the
participating random sets on condition that the result is
non-empty (i.e., component-wise multiplication followed
by normalization) and the resulting random set can be
regarded as a Choquet capacity. Arnborg introduces the
concepts of robust Bayesian combination operator and
rounded robust Bayesian combination operator and notes
that they are both monotone with respect to imprecision. 

When interpreting DS-structures as Choquet capacities
of order 2, it is highly desirable that the combination gives
a capacity that is contained in the robust rule result. In fact,
the MDS rule, viewed as a capacity, is contained in the
robust Bayesian fusion result. This is not true in general
for Dempster’s rule, however. Furthermore, Arnborg notes
that, unlike the robust and rounded robust Bayesian
combination operators he proposes, the DS and MDS
operators are not monotone with respect to imprecision. In
fact, they either underestimate or eliminate imprecision,
whereas the maximum entropy principle used in robust
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Figure 2. Results of three imprecise probability evaluation methods when applied to the six Sandia test problems.

Bayesianism can be given a rational game interpretation,
and gives a different result in many cases. 

Thus, evidence theory and robust Bayesianism are
different in their conclusions. Arnborg concludes that
“further work is required for understanding the basis for
assessing uncertainty objectively, so that a given problem
will not have incompatible solutions in the two
frameworks. ... For higher level uncertainty management,
dealing with quantities recognizable to users like military
commanders, the need for clarity cannot be exaggerated.”. 

7 Imprecise probability methods 
and the Sandia challenge problems
The “Sandia challenge problems” were presented in [15]
as addressing issues in the representation and aggregation
of information concerning model parameters. The
information can be of different types and may emanate
from a number of sources, including measurements and
expert opinion. The Sandia challenge problems embody
several issues that concern all technologies for uncertainty
propagation, whether probabilistic or not, distributional or
not, approximate or rigorous. These issues are: 
1. Aggregation of information from different sources 

(such as expert judgements).
2. Combination of probabilistic and non-probabilistic 

uncertainty.
3. Repetition of uncertain parameters.

The problem set is given by a simple algebraic system
of the form y = (a + b)a. Within this problem set, six main
variants (and in some cases, subvariants, see [15]) were
proposed:

Problem 1. a and b are contained in the closed real
interval A and B, respectively.

Problem 2. a is contained in the closed interval A, and
the information concerning b is given by n independent
and equally credible sources. Each source specifies a
closed interval Bi of possible values for b. 

Problem 3. The information concerning both a and b is
given by independent and equally credible sources of
information, m sources for a and n sources for b. 

Problem 4. a is contained in the closed interval A, and b
is given by a log-normal distribution, . The
value of the mean, , and the standard deviation, , are
given by the closed intervals M and S, respectively.

Problem 5. The information concerning a is given by m
independent and equally credible sources of information.
Each source specifies a closed interval Ai that contains the
value of a. The information concerning b is given by n
independent and equally credible sources of information.
Each source specifies closed intervals, Mj and Sj, of
possible values of the mean and the standard deviation of
the log-normal distribution. 

Problem 6. a is contained in the closed interval A and b
is given by a log-normal distribution. The values of both
the mean and the standard deviation are precisely known. 

Imprecise coherent probabilities. In [51], Kozine and
Utkin use coherent imprecise probability models to
estimate the results for the Sandia challenge problems.
Partial knowledge is modeled by providing a set of
admissible distributions that is smaller than all possible
distributions. In all of the problems 1-6 expected values
are sought. Since the source information is partial, i.e., the
distributions are not precisely known, expected values can
however only be found approximately as intervals. Such
intervals are computed by formulating and solving
analytically each problem as an optimization task.

Coherent lower previsions. In [47], de Cooman and
Troffaes discuss why coherent lower previsions provide a
good uncertainty model for solving generic uncertainty
problems involving possibly conflicting expert
information. They review the definition and meaning of
important concepts in imprecise probability models,
adding up to a concise and readable introduction to the
subject. Finally, they apply their proposed optimization
approach to the Sandia challenge problems, arguing that
the theory of coherent lower previsions is eminently suited
for solving the set of problems. Like Kozine and Utkin,
their approach is by analytical optimization but the
problems are formulated and solved differently.

Arithmetic with uncertain numbers. Ferson and Hajagos
[52] solve the Sandia challenge problems using probability
bounds analysis, an extension into probabilistic
applications of the classical robust numerical methodology
of interval analysis [53]. The inputs are expressed as
interval bounds on cumulative distribution functions.
Probability bounds analysis is based on work by
Williamson and Downs [54], who developed an approach
that computes rigorous bounds on the cumulative
distribution functions of convolutions. According to [52],
although probability bounds analysis does not prescribe a

bln N µ σ,( )∼
µ σ



general solution for the question of how to aggregate
information from disparate sources, it does offer a
workable, albeit computationally intensive, strategy for
handling repetitions of uncertain parameters in
expressions. Using mathematical programming
techniques, Berleant et al. independently derived and
implemented arithmetical interval analysis algorithms to
compute convolutions of bounded probability
distributions, both with and without independence
assumptions. The application of these methods to the
Sandia challenge problems is reported in [55]. Results are
of comparable quality to those in [52]. 

From the point of view of HLFB-DSS applications the
Sandia problems are very simple. Nonetheless, the
diagram in Figure 2 above shows limited quantitative
agreement between the different approaches, indicating
that also in this case, more comparative research is needed
in order to eventually reach consensus on what imprecise
probability methodologies are both feasible in practice and
truly trustworthy.

8. Conclusion 
From an engineering perspective of trustworthy

information fusion, robust Bayesian concepts, and
probably other kinds of imprecise probabilities as well, are
likely to become of fundamental importance. Although
robust Bayesian decision modeling is still an active area of
research, it seems that methods and demonstrator systems
have reached a level of maturity that is sufficient for
inclusion in information fusion test applications. Robust
sensor perception and target behavior submodels equipped
with global reliability estimates to achieve robustness
remain to be demonstrated, however. Few papers address
these issues, and much more research is needed. 

Emerging theories of imprecise probability indicate that
a unified robust framework can be developed, in which
several methodologies which were often considered
incoherent and incompatible with Bayesian methods, such
as belief or possibility measures, may be integrated. As
illustrated by [11], such integration may require the
development of methods of transforming and bounding of
imprecise probability results in terms of robust Bayesian
concepts. Judging from the sometimes widely differing
attitudes of experts in these areas, however, a consentient
unification of imprecise probability concepts in
uncertainty management is probably not to be expected in
the near future.

Noteworthy efforts are ongoing to include numerical
approaches such as probability bounds analysis in safety-
critical risk management applications. 

In general it is very hard to solve all reliability issues
before a new kind of system is fielded. When HLFB-DSS
for a network-enabled defence are to be built, exploiting
new sensor, communication, and modeling technology,
this dilemma will become acute, and ways to plausibly
demonstrate system reliability and robustness will have to
be developed. In that undertaking, robust Bayesian
analysis is likely to become the common yardstick.
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