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Abstract—In this paper we develop a multiple process 

approach for finding the most preferred plan instance within 

military defense planning. In this problem tens of thousands of 

alternative plans with different simulation settings are evaluated 

by multiple measures of effectiveness through simulation. In a 

sequence of processes, the Pareto optimal frontier of the plans is 

first found. Using decision makers’ preferences where the 

decision makers may provide incomplete preferences regarding 

subsets of disjoint measures, these measures are ordered by their 

importance. Alternative sets of random weights are assigned to 

the set of measures by a Monte Carlo approach where weights 

uphold the preferred order. Finally, all plans are evaluated using 

the weighted measures and the most preferred plans according to 

a ranking index are further analyzed to provide decision support. 

Keywords—Defense planning; Pareto optimal frontier; 

preference modelling; belief function; Dempster-Shafer theory; 

multiple-criteria decision making; MCDM; Monte Carlo; ranking; 

data analysis. 

 INTRODUCTION I.

In this paper we develop a multi-criteria decision support 
methodology for defense analysis.  With this methodology a 
decision maker can analyze tens of thousands of alternative 
plan instances regarding the best use of available resources in 
military operations. The analysis use data that is generated by a 
simulation system with stochastic processes that simulates 
alternative parameter settings for the scenario under analysis. 
In an experiment we use a ground warfare scenario where 
50 000 alternative plan instances described by 37 parameters 
each, are simulated 20 times with different random seeds. Each 
simulation is evaluated by multiple measures of effectiveness 
(MOE) that measure how well each individual scenario 
instance performs in fulfilling all of the criteria. 

Initially, we try to find the most effective plan instance as 
evaluated by all measures of effectiveness (MOEs). When 
there are many such measures we are faced with a multiple-
criteria decision making problem when assessing which plan 
instances are preferred. As a first step, we develop a new 
method for finding the Pareto optimal frontier [1–2] of the 
entire set of all plan instances where utility intervals over each 

measure of effectiveness is received from the 20 simulations, 
due to the stochastic nature of the simulations. The plans on the 
Pareto optimal frontier are the plans that are better than all 
other plans regardless of how the measures of effectiveness 
might be weighted in a subsequent assessment process. 

As we assume that it is impossible for decision makers to 
assign precise weights to all measures of effectiveness, we let a 
group of decision makers express any number of preferences 
on the importance between any two disjoint subsets of MOEs. 
We further develop an extension to Utkin’s [3] preference 
ranking method which is focused on finding the order of 
importance of the measures of effectiveness from the 
preference assignments made by the decision makers. Utkin’s 
method is extended by Schubert’s method [4] for interpolation 
in belief-plausibility intervals regarding the obtained degree of 
preference of all different measures of effectiveness. 

Using the preference order of importance for all MOEs we 
develop a Monte Carlo approach for assigning weights to these 
MOEs. In this method we randomly assign weights that abide 
by the preferred order of importance of the MOEs. That is, the 
most preferred measure will be weighted higher than the 
second most preferred measure, etc. In the spirit of the Monte 
Carlo approach we perform 1000 alternative weight 
assignments for all measures, yielding 1000 alternative 
rankings of all alternative plan instances. The plans with the 
highest average ranking over the 1000 alternative rankings are 
the most preferred plan instances. A process overview is 
provided in Fig. 1. 

 
 Process overview. Fig. 1.

Other authors have considered different approaches to 
weight assignment. Huang et al. [5] consider the assignment of 
weights to criteria based on the consistency and similarity of 
the opinions from decision makers regarding these criteria. In 
addition it is also possible to let the decision makers 
themselves be weighted. Yue [6] suggest using the decision 
makers’ experience regarding the topic under consideration as 
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a basis for assigning weights. A third approach discussed in 
this paper, is to let each decision maker use a weighting of his 
own as an expression of the importance placed on a pairwise 
comparison of two disjoint subsets of criteria. 

In Sec. II we describe defense planning as a concept. In 
Sec. III we describe our multi-criteria approach to decision 
making. In Sec. IV we develop an approach for finding the 
Pareto optimal frontier for a multiple run stochastic data 
farming experiment with interval parameter evaluation. We 
then develop the extension to Utkin’s preference ranking 
method (Sec. V). In Sec. VI we use the Monte Carlo approach 
for finding 1000 alternative random assignments of weights to 
all measures of effectiveness. In Sec. VII we analyze the 
ranking order for all 1000 alternative rankings, and find the 
best and worst ranking index for all remaining plan instances 
over all 1000 alternative rankings as a final meta-ranking. This 
meta-ranking is used to find the best plans that are further 
analyzed in order to explain the reason for success of the best 
plans. Finally, conclusions are drawn (Sec. VIII). 

 DEFENSE PLANNING II.

In defense planning the overall question is how to best use 
all available resources in military operations. Some examples 
of more detailed questions under study are: 

 How do we manage our resources for maximum 
effectiveness? 

 What are the requirements on sensors, weapons, 
tactics, etc. to achieve success? 

 Which overall configuration of forces is most 
effective? 

To answer these questions we simulate tens of thousands of 
scenario instances and perform extensive data analysis to find 
the scenario instances with the most promising parameter 
setting. For these particular instances we investigate which 
parameters and what combination of parameter ranges lead to 
overall success. 

A. Scenario 

The scenario of study in this paper is ground warfare 
between two opposing battalions. On the blue defending side 
we model a mechanized battalion with 60 Combat Vehicle 90. 
On the red attacking side we model a parachute battalion with 
27 Airborne Combat Vehicle BMD-4 and 16 Armored 
Personnel Carrier BTR-D. In the scenario the red force is on 
the move attacking the defending blue force, with an objective 
to break through. 

In order to learn as much as possible from the simulations 
as a data farming experiment, we will vary the numbers of 
units on both sides in different simulation runs, as well as study 
the effects of different avenues of approach, different tactics, 
different sensor ranges, etc. 

 MULTI-CRITERIA DECISION MAKING III.

When simulating the ground warfare scenario we evaluate 
the outcome by 37 different input parameters. These are 32 
binary (Boolean) parameters and five real parameters. Of these, 
18 parameters describe input values for the blue side, and 19 
parameters describe the red side. In the simulations we vary all 

of these input parameters for 50 000 different plan instances   , 

          . 

We measure the effect by five measures of effectiveness. 
The utility value of MOE number   in plan    is designated as 
   . Each of the plans is simulated 20 times with the same set-

up of input parameter values, only with different seeds. In total 
we have 1 000 000 simulated outcomes of all plans as each    
results in a group of 20 outcomes. In    we designate the utility 
value of the k

th
 outcome for measure     as     , where 

                       . In total we have 
5 000 000 output values. 

 PARETO ANALYSIS IV.

After simulating the 50 000 plans 20 times each with 20 
different seeds, a first filtering of the output data set is made 
using Pareto analysis. This is a form of multi-criteria analysis. 
The simulation results are analyzed for the most important 
input and output parameters found. In the analysis we focus on 
two input parameters and three output measures of 
effectiveness; 

 input: “# Blue Platoons In scenario” (BPI); it is a 
superior achievement to achieve success with a small 
number of blue initial platoons, than with a larger force, 

 output: “# Blue Unit Losses” (BUL); we want to 
minimize blue losses as much as possible, 

 input: “# Red Platoons In scenario” (RPI); it is a 
superior achievement to achieve success facing a large 
number of red initial platoons, than with a smaller red 
force, 

 output: “# Red Unit Losses” (RUL); we want to 
maximize red losses as much as possible, 

 output: “# Red Units Finish” successfully (RUF); we 
want to allow as few as possible of the enemy to break 
through the blue line of defense. 

These five criteria can be simultaneously maximized or 
minimized, where the 1

st
, 2

nd
 and 5

th
 are minimized and 3

rd
 and 

4
th
 maximized. These criteria can be weighted by their relative 

degree of importance. However, this is not needed in the Pareto 
analysis, which filters away all plan instances with a worse 
value on all criteria compared to at least one other plan 
instance among the set of 1 000 000. Some words are needed 
on how plans are compared in our Pareto analysis. First, we 
multiply the three parameters that are to be minimized by -1. 
Thus, criteria fulfillment, for all parameters will be better with 
higher parameter values. Since each plan is simulated 20 times 
with different seed, we get a variation of the three output 
measures (BUL, RUL and RUF) within a group of 20 seeds. 
When comparing two plans, we compare the min–max 
intervals for these three output measures. If there is an interval 
overlap for at least one of these three measures, no filtering 
will take place as a result of this comparison. For the two input 
parameters used in filtering (BPI, RPI) they are the same 
within each 20-seed group and comparison is made point-wise 
between plans. Hence, a plan    in a planning problem is 
filtered away if 

          
 

        
 

                               



The idea is illustrated in Fig. 2. In our example, Pareto 
filtering 50 000 plans leave 31 920 of them on the Pareto 
optimal frontier. Note here, that even though we had a total of 
37 input parameters and five output measures characterizing 
each plan instance that we could impose criteria on, we chose 
to use only the five most discriminating parameters as MOEs 
in the Pareto analysis. 

 
 A simple example with three plans (black, dark grey, light grey), and Fig. 2.

how their simulated outcomes from different seeds (giving values within a 

bar, indicating a min–max interval) fulfill three parameter criteria intervals. 
The two grey plans are seen to be Pareto optimal. The black plan can be 

filtered away after comparison with the dark grey plan. 

This approach is independent on any individual criteria 
weighting. After comparing all plans to each other, the 
remaining plans are now said to be on the Pareto optimal 
frontier. For these plans, not all criteria outcomes are worse 
than in some other plan. 

Another kind of weighting using regression trees can be 
done in order to figure out which input parameters, and what 
ranges, most strongly affect certain output parameters. From a 
regression tree that is “trained” on a set of plan instances, we 
can roughly predict an output parameter value when we know 
the values of the input parameters for some new plan that is 
simulated with the same simulation processes that produced the 
training plan set. We use all input parameters for the regression 

analysis and the function RegressionTree.fit in 
MATLAB Statistical Toolbox. As an example, for non-Pareto-
filtered data, we can check how the output parameter red units 
that crossed the finish line (RUF) can be estimated from input 
parameters. This is shown in Fig. 3. 

 

  A regression tree on the full plan set without any Pareto-filtering. Fig. 3.
Traversing the tree from root to leaf, at every branching point we select the 

branch with the value we have for the given input parameter at that branching 

point. Eventually, we reach a leaf which predicts the resulting output 
parameter value. Red sensor ranges are in top, giving highest impact on RUF. 

When working on the smaller Pareto-filtered set, we get the 
regression tree in Fig. 4. Now, the initial number of blue 
platoons (BPI) is the by far most important parameter. 

 

 A regression tree on the Pareto-filtered plan set. Here size of own Fig. 4.

forces (BPI) have strongest impact on RUF. 

We can also depict the total relative importance of the input 
parameters on an output parameter. We can compute estimates 
of input parameter importance by summing changes in mean 
squared errors due to splits in the regression tree on every 
parameter, and dividing the sum by the number of tree nodes. 
For the non-Pareto-filtered case, we observe in the upper part 
of Fig. 5 that RUF is mostly impacted by blue and red sensor 
ranges (BSR, RSR), which is reflected by the uppermost 
branching points in the regression tree. This is the case when 
working on the non-filtered plan set of consisting of all plans, 
i.e., also including not so successful plans. When working on 
the Pareto-filtered set (lower part) we notice the importance of 
BPI and RW. 

 

  The importance of some input parameters on RUF for the full non-Fig. 5.

Pareto-filtered plan set (upper) and the Pareto-filtered plan set (lower). The 

difference is large indicating that, for the best plans, the size of own forces 

(BPI) is of very large importance for the amount of red units that succeeds in 

crossing the finish line (which we want to prevent).  When including plans of 
lower quality, sensor ranges tend to much more affect the outcome. In neither 

case the initial amount of ammunition (BAI, RAI) affects the outcome as 

neither of the parties consumes all their ammunition. 

 DECISION MAKERS’ PREFERENCES V.

In order to be able to rank all simulations based on their 
measure of effectiveness (MOE) we need to be able to assign 
weights to these measures. This is something that is usually 
difficult for a decision maker. On the other hand, it is often 
possible to express an order of importance between different 
measures, or at least between some subsets of measures. 



In this section we will derive a method for finding an exact 
preference order of all measures of effectiveness. This method 
will accept any preference expression about the MOEs from 
multiple decision makers. For example, expressions such as 
“measure of effectiveness number i is more important than 
measure of effectiveness number j”;          , or 

expressions regarding two different subsets of all measures 
such as “measures i and j are more important than measures k 

and l”; {         }  {         }. We use a preference 

assignment approach developed by Utkin [3] in combination 
with a preference ranking approach by Schubert [4] to derive a 
complete ranking of all MOEs. 

We will keep track of all preferences expressed by all 
decision makers. This includes both preferences about the 
order of importance among single measures and among subsets 
of measures. For each expression we count the number of 
decision makers giving the same preferences. (Alternatively, 
we could let a decision maker use a weighting of his own 
expression of importance, where each decision maker can 
increase the count for a preference by more than one; this is, 
however, not used in this paper). 

For each preference we sum the total number of assigned 
preferences by all decision makers 

   ({    }    {    }   )                         

where       { }   
| |

  , i.e., A and B are subsets of an 

index set I of indices corresponding to the set of all MOEs, 

  {    } . Any number of these     may be equal to zero, 

due to a lack of assigned preferences regarding some subsets 

of MOEs. 
The preferences assigned between subsets of measures can 

be simplified to a set of preferences among single measures 
[3]. We have, 

{    }    {    }    {         }       
       

From the counts of assigned preferences in (2) we derive a 
basic belief assignment within belief function theory [7–9]. In 
this setting of our problem representation, the frame of 
discernment (i.e., the set of all possible elementary 
preferences) is 

   
{         }                                    

We have the following basic belief assignment, 

   ({         }       
)  

 
 

 
   ({         }       

)                      

where N is the total sum of all counts 

  ∑    ({         }       
)                     

While it is possible to change the representation in (5) 
using (3), it is not possible to divide the basic belief mass 

among the different preferences in {         }       
 as 

we have no information on how to divide it among the different 
preferences. Instead the entire mass must remain on the whole 
set. 

From the basic belief assignments in (5) we can calculate 
belief and plausibility for any subset of the frame of 
discernment. However, our interest is limited to analyze the 
support received by all preferences regarding single measures 
of performance such as, 

{    }                                               

where |{    }|   . These preferences are what we need, to 
make a full preference based ranking of all MOEs. 

We have belief of the preference of MOEs, 

   { }  {    }        { } ({         }   )

 ∑  { }    

  {         }   

                

and plausibility 

   { }  {    }        { } ({         }   
)

 ∑  { }     

  {         }   
  

            

We can sort all preferences based on the belief and 
plausibility for each preference {    }   . 

When both 

   { }  {    }        { } ({    }   )         

and 

   { }  {    }        { } ({    }   )          

then          . 

When an interval [   { }     { } ]  is included in an 

interval [   { }     { } ] it is not immediately clear which is 

the preferred measure; MOEi or MOEj. We can interpolate with 
a parameter ρ  [   ]  in each belief-plausibility interval in 
order to find the preferred measure [4]. However, we have no 
information regarding the value of ρ, and any assumption about 
ρ will be unwarranted. 

Instead we may calculate the point     where the two 

measures MOEi and MOEj are equally preferred. When 

[   { }     { } ]  [   { }     { } ]                   

correction inserted 



we have 

    
   { }     { } 

(   { }     { } )  (   { }     { } )
         

where each belief and plausibility function is taken for 

{    }    and {    }   , respectively. If         then 

         . 

When these points of equal preferences are calculated for 
all points     we can order all measures in a chain of 

preference. The different MOEs will be preferable for different 
intervals of  . Some MOEs may sometimes be dominated by 
other MOEs and not be preferable for any interval length of  . 
However, this is only important when searching for the MOE 
with highest probability of being the most highly preferred 
MOE among the set of all MOEs; {    }  [4]. 

We notice that in the special case when we are only 
comparing MOEs pairwise one-by-one the situation is 
simplified. The requirement that we must have         in 

order for           is equivalent to having 

   { }  
 

 
(   { }     { } ) 

    { }  
 

 
(   { }     { } )                      

i.e., that the mid-point in the belief-plausibility interval MOEi 
is higher than for MOEj. 

This implies that we can obtain an exact preference order of 
all MOEs using a standard sorting algorithm based on the 
belief-plausibility interval mid-points for each MOE. 

A. An example 

Based on a pre-evaluation of the importance of different 
measures, a set of five measures of effectiveness was deemed 
important for assessment of different simulation input 

parameter instances. We use {    }   
  in this example, where 

 MOE1 is “# Blue Platoons In scenario” (BPI), 

 MOE2 is “# Blue Unit Losses” (BUL), 

 MOE3 is “# Red Platoons In scenario” (RPI), 

 MOE4 is “# Red Unit Losses” (RUL), 

 MOE5 is “# Red Units Finish successfully” (RUF), 

and MOE1 and MOE3 play a dual role as input parameters that 
are also used as measures of effectiveness. 

In this example we have 76 statements of preference order. 
These are preference given by several experts. In contrast to 
the approach taken by Utkin [3] we register all given 
preference equally regardless of whether they are given by one 
or several decision makers. 

In Table I we observe a few of the preferences given by 
multiple experts and the recorded number of experts for that 
preference. 

 

TABLE I.  NINE SELECTED PREFERENCES AS EXAMPLES OUT OF 76. 

PREFERED SET   NON-PREFERED SET CAB 

{BUL}   {BPI, RPI, RUL} 5 

{RPI}   {BPI} 2 

{RUL}   {BPI, RPI} 3 

{RUF}   {BPI, RPI, RUL} 1 

{BPI, BUL}   {RPI, RUL} 1 

{BUL, RUL}   {BPI, RPI} 1 

{BUL, RUF}   {BPI, RPI} 1 

{RUL, RUF}   {BPI, BUL, RPI} 1 

{BUL, RUL, RUF}   {BPI, RPI} 1 

 
From the given preference we assign basic beliefs using (5) 

and calculate belief and plausibility for all {    }    using  
(8) and (9). These results are presented in Table II. 

TABLE II.  SUPPORT FOR MOES 

 MOE1 

BPI 

MOE2 

BUL 

MOE3 

RPI 

MOE4 

RUL 

MOE5 

RUF 

Bel 0 0.4605 0.0263 0.1184 0.0921 

Pls 0.0395 0.6711 0.0263 0.2895 0.3158 

 
From these numbers it is immediately obvious that “# Blue 

Unit Losses” (BUL), is the most preferred MOE since 
                          We also notice that the 
belief-plausibility interval of MOE4 is included in that of 
MOE5, and MOE3 is included in MOE1. As           
         we may conclude that {         }  
{         } but we don’t know directly which of MOE4 
and MOE5, on the one hand, and MOE1 and MOE3, on the other 
hand, that are the preferred measure. Using the ranking of (14) 
with midpoints             we get, 

                                       

as a full preference ordering of all measures of effectiveness. 

This is the preference order (15) that we will use in the 
following sections. 

 MONTE CARLO WEIGHTING VI.

Weighting of the different criteria can be done if one has 
sufficiently good knowledge of which parameter inputs and 
simulation outputs that are most important to minimize or 
maximize in order to obtain a preferred outcome in a planning 
process. Often, only simple preferences can be given, like 
“MOE2 is more important to maximize than MOE4”. 

When one measure is preferred over another the weight of 
that measure must be higher than the other. With two measures 
with           we may plot weight-pairs of these 
measures in a two dimensional diagram. If MOE1 is on the y-
axis and MOE2 is on the x-axis all allowed weight-pairs will be 
in the upper left triangle. With preference orders for more 
measures, the allowed volume will be a cut-out of a hypercube. 

Now that we have a full preference ordering (15) of all 
measures, we still have not assigned any weights (obeying this 
preference ordering) for further analysis. We reduce the 
problem step-by-step before assigning the weights: We have 



              remaining plans instances after the Pareto 
filtering of five criteria. We will replace the set of 20 outcomes 
for each measure from the 20 simulations of a particular plan 
instance Pi with a two point interval using the min and max 
values of from the set of 20, analogously to the Pareto analysis 
above, (designated with an asterisk “*” at the lower and upper 
index level) and assigning the resulting values to 
corresponding lower and upper interval points, where 

               
 

                                    

  
       

       
 

                                    

are framing each plan   . 

We then normalize the values for all measures in such a 
way that for a chosen measure, its value equals zero if it has the 
lowest value among all Pareto-optimal plans, and equals one if 
it has the highest value among those plans. Hence, all measures 
will be distributed between 0 and 1. We have, 

        
 

                                           

  
       

 
   

                                        

and 

    
  

        
 

  
       

                                    

   
    

   
     

 

  
       

                                   

Our idea is to use a Monte Carlo approach to observe the 
robustness in ranking all 31 920 plan instances for different 
combinations of weights. Therefore, we sample 1000 ordered 
sets of five random weights                    

uniformly distributed         where, within each set, the 

random numbers are sorted so they obey the preference 
ordering in (15). For each 1000 sets of random weights, we 
compute alternative upper and lower utilities Ri of all 31 920 
plans. We have for each plan   , 

      
 

 
∑     

 

   

    
                                 

   
   

 

 
∑     

 

   

   
                                  

These pairs of upper and lower bounding for each plan can 
be seen as 1000 alternative expected utility intervals for each 
plan. 

 DECISION SUPPORT VII.

In this section we focus on providing decision support 
regarding what is the best plan, and explain the reason for 
success of the best plan. We start with the just computed 1000 
alternative utility intervals for each plan   . Each result is 
summed up over all alternative weight assignments and 
normalized to obtain a grand total rank for all plan instances 
bounding each plan, 

     
 

    
∑     

    

   

                                     

  
   

 

    
∑    

 

    

   

                                      

The ranks can be visualized in different ways. To get a 
general view of the distribution of plan ranks we plot the five 
percentiles 0, 25, 50, 75, 100 corresponding to the min, lower 
quartile, median, upper quartile and max of all plan rankings 
  , see Fig. 6. 

 

 

 The normalized ranks for all plans after Pareto-filtering. The five Fig. 6.

different percentiles are shown in red and blue for     and   
 
, respectively. 

We also discriminate between     and   
  to show the plan 

intervals. The plans are sorted according their mean ranks, see 
Fig. 7. Therefore, the plots look “noisy” when plotting the 
percentiles. This is done simply to get a hint on the spread. 



 

 The sorted mean normalized rank distribution of all Pareto-filtered Fig. 7.
plans. 

In order to see how the plans are ranked for a more even 
planning situation, one can as an example use the subset where 
the number of blue and red platoons are equal to seven in both 
cases, that is BPI = RPI = 7. This constraint leaves 1500 plans 
out of the 31 920 plans to be analyzed. The rank distribution 
for those plans can be seen in Fig. 8. The plans are also here 
sorted according their mean ranks, see Fig. 9. 

 

 The normalized ranks for all Pareto-filtered plans after selecting plans Fig. 8.

where seven blue platoons are set up against seven red platoons (BPI = RPI = 
7). The five different percentiles are shown in red and blue for the then 

remaining     and   
 
, respectively. 

We can see that the rank is grouped in levels or steps with 
the same rank value, for instance the highest rank values within 
each percentile are the same for the first approximately 350 
plans, then it starts to drop step-wise. This first group of plans 
with approximately 350 plans is the solution to finding the best 
plans. The final step of analysis is to explain why these plans 
are successful. 

Going back to the Pareto filtered 31 920 plan set, we 
analyze groups of plans with the same ranking index and 
analyze the MOEs for the best, say 50 groups with highest 
mean ranking, which means the first approximately 2800 plans 
having mean ranks of at least approximately 0.43 in Fig. 7. We 

 

 The sorted mean normalized rank distribution of the Pareto-filtered Fig. 9.

plan set constrained to BPI = RPI = 7 platoons. 

write approximately here since these values shift up and down 
slightly due to the Monte Carlo noise from simulation to 
simulation. The groups are numbered in the same order as the 
plan numbers in that figure (the best plans in the first group, 
the next best plans in group no. 2, etc.). The result for the 
different MOEs can be seen in Fig. 10. 

 

 The distribution of different MOEs for all Pareto-filtered plans Fig. 10.

depending on rank group, sorted downwards according to the mean rank. Blue 
bars are the min values of outputs from 20 different seeds to simulations with 

identical inputs for respective MOE, red bars marks difference between the 
min and max values. 



The first seven are input parameters, followed by three 
output measures. Looking at these three measures we notice 
that BUL is the most important parameter to pay respect to, 
expected to be as low as possible. Thereafter, comes RUL, 
expected to be as high as possible. Blue losses BUL increases 
after the first twelve groups and red losses RUL start to 
decrease after the first 22 groups. The measure for red success 
RUF that could be argued to be the most important measure 
does not come into play for the first 46 groups. 

Blue bars goes up to min values for varying seeds, and red 
bars mark the span up to the max levels. We see that bars are 
red-only for the best plans, so the simulation seed has here had 
much influence on BUL. We also note that the invariance for 
some parameters up to group no. 23 (approximately the best 
1000 plans). We also notice that here           which 
means that almost all red vehicles are destroyed. 

In this analysis, we have not fixed the sizes of the blue and 
red forces which might result in too many free input 
dimensions to analyze causality and find clear cause-
consequence relations. We can use the above described 
grouping idea, but again constraining the number of platoons to 
BPI = RPI = 7 to observe the result for a more balanced 
situation (let be that blue platoons contain four vehicles and red 
platoons contain three). This let us focus on circa 1500 plans 
from the Pareto optimal frontier, see Fig. 9. We choose to 
focus on the 20 groups with highest mean rank, which contains 
approximately 1150 of the best plans with mean rank of at least 
approx. 0.335, see Fig. 11. 

 

 The distribution of different MOEs for all Pareto-filtered plans Fig. 11.
constrained by BPI = RPI = 7, sorted in descending order by the mean rank. 

Blue bars are the min values of outputs from 20 different seeds to simulations 

with identical inputs for respective MOE, red bars marks the difference 
between the min and max values. 

Since we have fixed BPI = RPI = 7, we have in the figure 
omitted the bar plots for those MOEs compared to Fig. 10. We 
now have much fewer plans to choose among (also reducing 
simulation fidelity), but we can see that the first group of plans, 
containing approximately 350 very similar plans, gives the best 
expected result; zero BUL, maximum RUL and zero RUF. 
From observing the five presented input parameters, the reason 
for success seems to lie in a combination of parameter values. 
For the first 10 groups RW is usually 3, BSR > RSR. RSpd 
varies, but is low for the best group of plans. From the red-only 
bars for RUF we also see that simulation seed has high 
importance for this MOE; for some seeds, no red vehicles 
succeed to break through, for others up to ten vehicles do. 

 CONCLUSIONS VIII.

We have derived a multi-process multiple-criteria decision 
making methodology for assessing military plans within 
defense planning. The plans are evaluated by several different 
measures of effectiveness by a simulation system. The decision 
support methodology uses Pareto analysis followed by 
preference analysis of measures of effectiveness and Monte 
Carlo weighting of the measures within the given preference 
order. By using this methodology, it is possible to get an 
estimate of ranking of each plan and further analyze the best 
plans to learn which parameters and combination of parameter 
ranges that leads to success. 
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