Real-time Allocation of Firing
Units To Hostile Targets

FREDRIK JOHANSSON
GORAN FALKMAN

The protection of defended assets such as military bases and
population centers against hostile targets (e.g., aircrafts, missiles,
and rockets) is a highly relevant problem in the military conflicts
of today and tomorrow. In order to neutralize threats of this kind,
they have to be detected and engaged before causing any damage to
the defended assets. We review algorithms for solving the resource
allocation problem in real-time, and empirically investigate their
performance using the open source testbed SWARD. The results
show that many of the tested algorithms produce high quality
solutions for small-scale problems. A novel variant of particle swarm
optimization seeded with an enhanced greedy algorithm is described
and is shown to perform best for large instances of the real-time

allocation problem.

Manuscript received October 14, 2010; revised February 21, July 12,
and September 9, 2011; released for publication September 29, 2011.

Refereeing of this contribution was handled by Huimin Chen.

Authors’ addresses: F. Johansson, Division of Information Systems,
Swedish Defence Research Agency, SE-164 90, Stockholm, Swe-
den, E-mail: (fredrik.johansson @foi.se); G. Falkman, Informatics Re-
search Centre, University of Skovde, PO Box 408, SE-541 28 Skovde,
Sweden, E-mail: (goran.falkman @his.se).

1557-6418/11/$17.00 © 2011 JAIF

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO.2 DECEMBER 2011

1. INTRODUCTION

A severe threat encountered in many international
peacekeeping and peace forcing operations is that of
rockets, artillery, and mortars (RAM) fired by insur-
gents towards military bases, troops, and other assets.
Attacks like these have cost many human lives in places
like Iraq and Afghanistan during recent years. Similar
attacks are faced by civilians in some parts of Israel on
a regular basis, where so called Katyusha and Qassam
rockets are fired against Israeli population centers such
as Sderot and Ashkelon. Asymmetrical threats like these
have caused an increased interest in systems for detect-
ing and tracking incoming RAM before they hit their
intended targets. The detection and tracking of RAM
makes it possible to estimate the point of impact, so
that any troops or civilians in the impact area can be
alerted. However, such a warning is not always enough,
due to very quick course of events, and that buildings
and infrastructure will be destroyed no matter how early
warnings come, given that active countermeasures are
not taken. Hence, one would like to destroy incoming
RAM before they hit their intended targets (and before
they risk causing collateral damage upon destruction).
Systems for detecting, tracking, and engaging RAM are
often referred to as Counter Rocket, Artillery, and Mor-
tar (C-RAM) systems. An example of such a system
is the recently deployed Israeli Iron Dome system. An-
other kind of air defense situation is that in which we
would like to protect defended assets against maneuver-
ing targets such as fighter aircrafts, attack helicopters,
and non-ballistic missiles. For such kind of threats, we
can in general not easily predict which defended asset
(if any) is the intended target of an attack, making it
necessary to estimate the level of threat posed by de-
tected targets to the defended assets in a so-called threat
evaluation process.

When faced with many simultaneous threats, it is
unlikely that the defenders can take action against all
incoming threats, since there often are fewer firing units
available than there are threats. Even when this is not
the case, a problem is to know which firing unit to use
against which threat in order to maximize the surviv-
ability of the defended assets or minimize the total ex-
pected target value of surviving hostile targets. This can
be described as a resource allocation problem, known
as the weapon allocation problem [7] within the field
of operations research. Unfortunately, the allocation of
defensive firing units to targets has been shown to be
NP-complete [23].

The time available for weapon allocation depends on
many factors such as the type of RAM used, the range
from which it is fired, type of detection radar and type
of defensive weapons (rapid-fire guns, lasers, radar-
guided missiles, etc.). However, taking into account that
the incoming threats often have high speed and are
fired from a range of only a few kilometers, very short
time is available for detection, weapon allocation, and

187

interception. Hence, empirical results for how weapon
allocation algorithms perform on problem instances of
various size are needed.

We have reviewed the available literature in order
to identify suitable weapon allocation algorithms, and
we have implemented and systematically evaluated the
real-time performance of a selection of the identified al-
gorithms on static asset-based weapon allocation prob-
lems. The results show that especially particle swarm
optimization algorithms produce high quality solutions
for small-scale problems. In this article, we describe
a novel variant of particle swarm optimization seeded
with an enhanced greedy algorithm and show that the
seeded version performs very well relative to previously
tested algorithms also for large-scale instances of the
real-time allocation problem.

The rest of this article is structured as follows. In
Section 2, we present the static asset-based weapon allo-
cation problem, which is a suitable optimization model
when the impact area of a threat can be assumed to
be known. We also present its target-based counterpart
which is more suitable for air defense situations involv-
ing maneuvering targets. In Section 3, we present a liter-
ature survey of algorithms that have been suggested for
static weapon allocation (both target-based and static-
based). Based on this survey, we have implemented al-
gorithms for static asset-based weapon allocation which
are presented in Section 4. Experiments in which we
compare the real-time performance of the implemented
algorithms are presented in Section 5, and we conclude
the article in Section 6.

2. WEAPON ALLOCATION

Informally, weapon allocation (often also referred
to as weapon assignment or weapon-target allocation)
can be defined as the reactive assignment of defensive
weapon resources (firing units) to engage or counter
identified threats (e.g., aircrafts, air-to-surface missiles,
and rockets) [29]. More formally, the weapon alloca-
tion problem can be stated as a non-linear optimiza-
tion problem in which we aim to allocate firing units so
as to minimize the expected total value of the targets,
or, alternatively, to maximize the expected survivability
of the defended assets. These alternative views are re-
ferred to as target-based (weighted subtractive) defense
and asset-based (preferential) defense, respectively. The
asset-based formulation demands knowledge of which
targets that are headed for which defended assets and
thereby assumes a high level of situation awareness
[24]. Therefore, the static asset-based weapon allocation
problem formulation is suitable for problems involving
defense against ballistic weapons, while the target-based
formulation is more appropriate when the intended aims
of the targets are not known [28]. In Section 2.1 we de-
scribe the static asset-based weapon allocation problem,
and in Section 2.2 we give a similar description of the
static target-based weapon allocation problem.

188

2.1. The Static Asset-Based Weapon Allocation

Problem

When presenting the static asset-based weapon
allocation problem, the following notation will be
used:

o |A] £ number of defended assets.

A . :
|W| = number of firing units.

|T| £ number of targets.

A .
e w; = protection value of defended asset A;.

o P, = probability that firing unit W, destroys target 7;
if assigned to it.
o = probability that target 7; destroys the asset it is

aimed for.
e G, £ the set of targets aimed for defended asset A;.

{
[] ik =
0

In the static asset-based weapon allocation problem,
each offensive target is assumed to be aimed at a de-
fended asset, where each defended asset is associated
with a protection value w;. Each target has an associated
lethality probability 7;, indicating the probability that 7;
destroys the defended asset it is aimed for, given that
it is not successfully engaged. This probability depends
on the accuracy of the targets as well as the nature of the
defended assets [8]. As can be seen, we are assuming
that such probabilities are target dependent only, i.e.,
we do not take the type of the defended asset into con-
sideration. The defenders are equipped with firing units,
where each pair of firing unit and target is assigned a kill
probability F,. Now, the objective of the defense is to
allocate the available firing units so as to maximize the
total expected protection value of surviving defended
assets [7]:

if firing unit W, is assigned to target T;,

otherwise.

Al W]

max/ =3 w; [T | 1=m]Ja-r0™] @
j=1 i€G; k=1

subject to:
IT|
doxp=1, Vk
i=1 @)
Xz €1{0,1}, Vivk.

In (1), the inner product H}(‘le(l — P,)** should be in-
terpreted as the probability that target 7; survives the
countermeasures taken against it. Hence, the product
[Ticq, (1= TT2y (1 — B)') is the probability that the
defended asset A; survives the attack of all targets aimed
for it.

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO.2 DECEMBER 2011

A solution to a static weapon allocation problem can
be represented as a matrix of decision variables

X1 X2 X1w)
X2 X Xo|w)
X = (3)
Xik
M A KTy [wi

Such a solution is feasible if it fulfills the constraints
given in (2), i.e., that the entries of each column in
(3) sum to one. For a problem instance consisting of
|T| targets and |W]| firing units, there are |T|/W/ feasible
solutions.

From the solution of the static asset-based weapon
allocation problem, we can discover which of the de-
fended assets that should be protected, and in which
way each of the defended assets should be protected
(preferential defense).

2.2. The Static Target-Based Weapon Allocation

Problem

Using the same notation as in Section 2.1, but with
the additional definition:

A
e V. = target value of target 7,

we can define the static target-based weapon allocation
problem as:

L
minF =Y "V [](1-B)™ 4)
i=1 k=1

subject to the constraints given in (2). Since the product
as before is the probability that target 7, survives the
countermeasures taken against it, the objective function
should be interpreted as the minimization of the total
expected target value of surviving targets.

The estimation of target values is far from trivial, and
can be seen as a very important high-level information
fusion problem. A survey of how threat values V;;s can
be estimated (representing the threat posed by target 7;
to defended asset Aj) is presented in [11, 12]. Once
such threat values have been calculated, these can be
aggregated into target values using weighted averages
such as:

Vo= &=l i ®)

Nevertheless, this is only one choice of how to aggre-
gate threat values into target values. Furthermore, the
original target values rely on coarse models of what is
threatening behavior or not (typically parameters such
as distance between the target and the defended asset,
the speed and heading of the target, target type, etc).
To complicate matters, expert air defense operators fre-
quently disagree about the threat of individual aircraft
[31]. Consequently, it should be remembered that target

values will always be associated with uncertainty, and
that they to a large degree are subjective.

2.3. Properties of Weapon Allocation Problems

A few assumptions are made in the static weapon
allocation formulations. Firstly, all firing units have to
be assigned to targets, as indicated in the constraint
given in (2). Moreover, all the firing units have to
be assigned simultaneously, i.e., we can not observe
the outcome of some of the engagements before a
remaining subset of firing units are allocated. This is
what is meant by static weapon allocation, as opposed
to dynamic weapon allocation. The static formulation
makes sense for the problem domain studied here, since
the high speed of short-range RAM does not allow
for several engagement cycles. We also assume that
an engagement will not affect other engagements (e.g.,
that a firing unit can destroy another target than it is
allocated to, or that targets can destroy other assets than
they are aimed for). Without the last assumption, the
geometry of the problem must be taken into account,
creating an extremely complex problem. We also ignore
the risk of collateral damage to the protected area when
intercepting the targets.

Despite the assumptions, there is a combination of
factors that make the static weapon allocation problems
hard to solve. Firstly, the objective functions given in
(1) and (4) are non-linear, so that well-known linear
programming techniques such as the simplex algorithm
can not be used to solve the problems. Secondly, the
problems are discrete, since they only allow for integer
valued feasible solutions due to the second constraint
in (2) (i.e., fractional allocations are not possible). In
general, this kind of integer programming problems are
hard to solve. Thirdly, the problems are stochastic, due
to kill probabilities (and lethality probabilities) not equal
to zero or one. This non-determinism further compli-
cates the problems. Fourthly, it is not unusual with large-
scale problem instances, i.e., problems consisting of a
large number of firing units, defended assets, and/or tar-
gets. The asset-based formulation can be shown to be
a generalization of the static target-based weapon al-
location formulation [7] presented in Section 2.2. The
NP-completeness of the static target-based weapon al-
location problem was established in [23], and hence, we
can conclude that the static asset-based weapon alloca-
tion problem is NP-complete as well [7]. These proper-
ties taken together show that finding good solutions in
real-time to static weapon allocation problems is indeed
a very hard problem, and according to [7], rule out any
hope of obtaining efficient optimal algorithms.

3. A SURVEY OF ALGORITHMS FOR WEAPON
ALLOCATION

Initial research on the static target-based weapon al-
location problem dates back as far as the end of the
1950s (cf. [5, 25]). Much of the initial research on the

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 189

problem seems to have been motivated by the threat
from intercontinental ballistic missiles during the Cold
War era [24]. Despite the end of the Cold War, research
on defensive weapon allocation still remains a very ac-
tive area [24]. The static target-based weapon allocation
problem has been quite well studied, especially within
the field of operations research. Despite the extensive
research, static weapon allocation is an example of a
classical operations research problem that still remains
unsolved [1], in the sense that effective methods for real-
time allocation are lacking. Moreover, the asset-based
version of the problem is much less studied than its
target-based counterpart.

Much of the original work on weapon allocation fo-
cused on the allocation of missiles to defended assets,
rather than the other way around. Hence, the problems
were often modeled from an attacker’s side, instead of
from the defending side. A brief summary and review of
unclassified literature from the first years of research on
the problem is given in [26]. Some years later, a mono-
graph describing many of the developed mathematical
models for weapon allocation problems was published
in [6]. Unlike Matlin’s review, the monograph by Eck-
ler and Burr takes on the weapon allocation problem
from a defender’s view. The authors present a num-
ber of useful techniques for weapon allocation, such
as relaxing the integer constraint and then make use
of linear programming to solve the resulting contin-
uous problem. This is a technique that is still in use
(cf. [17]). It should be noted however, that fractional
assignments of firing units to targets does not make
sense, and rounding off the optimal solution to the re-
laxation of an nonlinear integer programming problem
can yield solutions that are infeasible or far from the
optimal solution to the original nonlinear problem [36].
Other kinds of tools such as the use of Lagrange multi-
pliers and dynamic programming are also described in
[6]. As the authors make clear, their focus is on analyti-
cal approaches, since it is argued that what they refer to
as computer-oriented solutions give less insight into the
weapon allocation problem than analytical approaches.
A somewhat more recent survey of work within weapon
allocation is presented in [3]. As in the earlier men-
tioned surveys, its focus is on analytical approaches to
weapon allocation. However, it is mentioned that a shift
towards various techniques such as implicit enumeration
algorithms and nonlinear programming algorithms had
been started at that time, since mathematical formula-
tions of the weapon allocation problem are not generally
amenable to solution in closed form [3, p. 66]. In later
years, advanced computer-based techniques have been
developed which are better suited for real-time weapon
allocation [9]. In the following, we will focus on modern
heuristic/approximate approaches, but will first present
enumerative techniques, since such approaches can be
very useful for special cases of static weapon allocation
problems.

190

3.1. Exact Approaches

For small values of |T| and |W]|, the optimal solu-
tion to a static weapon allocation problem can easily be
found by exhaustive search (also referred to as explicit
enumeration), i.e., a brute-force enumeration where all
feasible solutions are tested one after the other. How-
ever, as a static weapon allocation problem consists of
|T|'WI feasible solutions, this is not a viable approach
for air defense scenarios involving a large number of
targets and firing units.

Exact polynomial time algorithms have been iden-
tified for the special case of the static target-based
weapon allocation problem in which the kill probabili-
ties of all firing units are assumed to be identical, i.e.,
P, = P. For this special case, the well known maxi-
mum marginal return (MMR) algorithm suggested in
[5], and the local search algorithm suggested in [7] can
be proven to be optimal. Some other special cases of
the static target-based weapon allocation problem can
be formulated as network flow optimization problems.
If we assume the constraint that all firing units have
kill probabilities B, € {0,B}, i.e., that firing units ei-
ther can or cannot reach a target, and in the former
case, the kill probability only depend upon the target,
the problem can be transformed into a minimum cost
network flow problem with linear arc costs, for which
several efficient algorithms exist [7]. A similar trans-
formation can be done for the special case of the static
target-based weapon allocation problem where we as-
sume that |T| <|W]|, and that at most one firing unit is
to be allocated to each target. In this case, we can con-
vert the problem into a so called transportation problem,
for which efficient algorithms exist [7]. However, the
general static target-based weapon allocation problem
has been proved to be NP-complete [23], as have been
discussed earlier. This also holds true for the asset-based
version of the static weapon allocation problem, since
this can be seen as a generalization of the static target-
based version.

Another exact approach is to use branch-and-bound
algorithms for finding the optimal solution. Branch-and-
bound algorithms use tree representations of the solu-
tion space and are often able to prune away large sub-
sets of feasible solutions through calculation of lower
and upper bounds on different branches of the tree. In a
recent article by [1], three branch-and-bound algorithms
(using different lower-bound schemes) are investigated
and are shown to give short computation times on aver-
age. The results are impressive, however, in theory the
risk exists that the algorithm will require branching the
full tree for some problem instances. This means that in
worst-case, the performance of the branch-and-bound
algorithm can be at least as bad as the performance of
more naive exhaustive search algorithms. Although it in
practice is unlikely that this worst-case scenario will ap-
pear, it is unfortunately not possible to in advance com-
pute an upper bound on the computational time it will

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO.2 DECEMBER 2011

take to find the optimal solution to a problem instance
when using a branch-and-bound algorithm. Hence, as
can be seen in the results reported in [1], some problem
instances of large size can be solved very quickly, while
considerably smaller problem sizes can demand consid-
erably more time for the optimal solution to be found.
In other words, we have to rely on heuristic algorithms
for large-scale problems when real-time guarantees are
needed [1, 7].

3.2. Heuristic Approaches

A well-known heuristic approach for static target-
based weapon allocation is the greedy maximum mar-
ginal return algorithm, originally suggested in [5]. A
similar greedy algorithm is presented in [18]. Basically,
the maximum marginal return algorithm works sequen-
tially by greedily allocating firing units to the target
maximizing the reduction of the expected value. It starts
with allocating the first firing unit to the target for which
the reduction in value is maximal, whereupon the value
of the target is reduced to the new expected value. Once
the first firing unit is allocated, the same procedure is
repeated for the second firing unit, and so on, until all
firing units have been allocated to targets. Pseudo code
for the maximum marginal return algorithm is shown
in Section 4.1. Obviously, the maximum marginal re-
turn algorithm is very simple and fast. This is a gen-
eral advantage of greedy algorithms, but due to their
greedy nature they are also very likely to end up with
suboptimal solutions. Since the algorithm uses target
values for choosing which target to be allocated next,
it cannot be used as is for static asset-based weapon
allocation. However, in [27] a number of greedy algo-
rithms for asset-based weapon allocation are described.
These algorithms basically work by approximating the
asset-based problem with its target-based counterpart,
by using the protection value of the defended asset to
which the target is aimed for as the target value. When
the problem has been approximated by a target-based
problem, it is suggested that the maximum marginal re-
turn algorithm returns a solution that can be used as
an approximative solution to the asset-based problem.
Another suggested approach in [27] is to use the so-
lution returned from the maximum marginal return al-
gorithm and to apply local search on the solution so
that the target allocated by one weapon can be swapped
to the target allocated by another weapon, and vice
versa.

Another kind of heuristic approach to a constrained
version of the target-based weapon allocation problem
has been suggested in [35], in which artificial neural net-
works are used. It is stated that solutions close to global
optima are found by the algorithm, but results are only
presented for a few small-scale problem instances, from
which it in the authors’ view is not possible to gener-
alize. It is in [9] also argued that artificial neural net-
work algorithms for weapon allocation sometimes are

unsteady and non-convergent, leading to that obtained
solutions may be both suboptimal and infeasible.

As an alternative, the use of genetic algorithms
seems to be popular. Such an algorithm for static target-
based weapon allocation is described in [16], while a
genetic algorithm combined with local search is pre-
sented in [22] and [21]. The quality of the solutions
returned by the greedy maximum marginal return al-
gorithm presented in [18] is in [16] compared to the
solutions returned by genetic algorithms. However, the
algorithms are only evaluated on target-based weapon
allocation problems. The standard genetic algorithm is
outperformed on large-scale problem sizes, but only one
problem instance is tested for each problem size, so the
possibility to generalize the results can be questioned.
Even though, the results seem to indicate that greedy
search works better than standard genetic algorithms on
large target-based problem instances. It is in [16] sug-
gested that genetic algorithms can be seeded with the
solution returned from a greedy algorithm, which seems
to be a suitable approach to improve the quality of ge-
netic algorithms on large problem sizes. In [2], a genetic
algorithm combined with local search is suggested for
a dynamic version of the asset-based weapon alloca-
tion problem. It is shown that local search improves
the results, but that the computational time needed is
increased. The effects of real-time requirements on the
algorithms are not tested.

The use of ant colony optimization for target-based
weapon allocation is suggested in [19, 20]. Reported
results in [19] and [20] indicate that ant colony opti-
mization algorithms perform better than standard ge-
netic algorithms on large-scale problems, and that the
algorithms can be improved upon by using local search.
However, the algorithms were allowed to run for two
hours, so it is unclear how this generalizes to settings
with real-time requirements.

A simulated annealing algorithm for static asset-
based weapon allocation is presented in [4]. Basically,
simulated annealing is based on an analogy of thermo-
dynamics with the way metals cool and anneal, in which
a liquid that is cooled slowly is likely to form a pure
crystal corresponding to a state of minimum energy for
the metal, while a quick cooling phase is likely to result
in states of higher energy levels [32]. By controlling an
artificial “temperature” when making the optimization
(corresponding to the minimization of energy levels), it
becomes possible to escape from local minima in the
hunt for the optimal solution (the purest crystal in the
thermodynamics analogy). However, no evaluation of
the quality of the solutions obtained by the algorithm
is presented in [4], so it is unknown how good their
implemented algorithm performs. Another implemen-
tation of a simulated annealing algorithm provides so-
lutions of lower quality than ant colony optimization
and genetic algorithms in a static target-based weapon
allocation experiment described in [19]. The algorithms
were, as describe above, allowed to run for two hours,

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 191

TABLE I
Algorithmic Approaches to Weapon Allocation

Algorithmic Approach References
Branch-and-bound [1]
Genetic algorithms [16, 21]

Ant colony optimization [19, 20]
Greedy algorithms [5, 18]

VLSN [1]
Neural networks [35]
Particle swarm optimization [33, 37]

so it is not known how the algorithms perform under
more realistic time constraints.

In [1], good performance results for an approach us-
ing a minimum cost flow formulation heuristic for gen-
erating a good starting feasible solution are presented.
This feasible solution is then improved by a very large-
scale neighborhood (VLSN) search algorithm that treats
the problem as a partitioning problem, in which each
partition contains the set of firing units assigned to target
T.. The very-large scale neighborhood search improves
the original feasible solution by a sequence of cyclic
multi-exchanges and multi-exchange paths among the
partitions. As the name suggests, the size of the used
neighborhoods are very large. To search such large
neighborhoods typically takes considerably amounts of
computations and demands implicit enumeration meth-
ods [10]. By using the concept of an improvement
graph, it becomes possible to evaluate neighbors faster
than other existing methods [1, 10].

Recently, the use of particle swarm optimization
for static target-based weapon allocation has been sug-
gested. In [33], a particle swarm optimization algorithm
is implemented and compared to a genetic algorithm.
The results indicate that the particle swarm optimiza-
tion algorithm generates better solutions than the ge-
netic algorithm, but the algorithms are only tested on
a single problem instance consisting of five targets and
ten firing units. For this reason, it is not possible to
generalize the obtained results. Experiments presented
in [37] also indicate that particle swarm optimization al-
gorithms create better solutions than genetic algorithms
for static target-based weapon allocation.

As evident from the literature survey presented
above, a lot of different algorithmic approaches have
been suggested for the static weapon allocation prob-
lem. A summary of some of the approaches presented
above is presented in Table I.

4. THE IMPLEMENTED ALGORITHMS

Based on the results from the literature survey pre-
sented in Section 3, a number of heuristic algorithms
have been implemented. Since the target-based weapon
allocation seems more well-researched than the asset-
based problem, the focus of the rest of this article will
be on the latter.

192

The algorithms for static asset-based weapon allo-
cation evaluated in this article share the same kind of
representation, in which a solution is represented as a
vector of length |W|. Each element k in the vector points
out the target 7; to which the weapon is allocated. As
an example of this, the vector [2,3,2,1] represents a
solution in which W, and W; are allocated to 7, W, is
allocated to 7;, and W, is allocated to 7;.

4.1. A Maximum Marginal Return Algorithm for Static

Weapon Allocation

A greedy algorithm for static target-based weapon
allocation, known as the maximum marginal return
(MMR) algorithm, was initially suggested in [5]. This
algorithm (described with pseudo code in Algorithm 1)
is very simple since it as already explained works greed-
ily by assigning weapons sequentially to the target that
maximizes the reduction of the expected target value.
When the first weapon has been allocated to the tar-
get for which the reduction in value is maximal, the
target value is reduced to the new expected value. Af-
ter that, the same procedure is repeated for the second
weapon, and so on, until all weapons have been allo-
cated to targets, yielding a computational complexity of
O(IW| x [T]).

ALGORITHM 1 Maximum marginal return algorithm
for all k such that 1 <k <|W| do
highestValue «— —oo
allocatedTarget — 0
for all i such that 1 <i<|T| do
value —V, x P,
if value > highestValue then
highestValue «— value
allocatedTarget — i
assign Wy to target 7;ﬂlocatedTarget
V highestValue

allocatedTarget < VallocatedTarget —
return allocation

It is not obvious how to use the MMR algorithm
for the static asset-based weapon allocation problem,
since it in this version of the problem does not exist
any target values. Instead, there are protection values
associated with the defended assets, and lethality values
associated with the targets. In [27], it is suggested that
a defended asset’s weight (protection value) is equally
distributed over the targets aimed for it, so that a target’s
value is computed as V; = w;/|G,| (where j is the index
for the set G ; of which target 7 is a member), and that
the asset-based problem is approximated with its target-
based counterpart. Similar reasoning is presented in [7]
where it is suggested that the value of a target is set to
the expected destroyed protection value of the defended
asset to which it is aimed, given that the target is not
engaged and that all other targets aimed for the defended
asset are destroyed.

We have here chosen to calculate the target value V;
for a target 7; as:

(6)

Vi:wjxm

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO.2 DECEMBER 2011

where j is the index of the defended asset to which
target 7; is aimed. Hence, the target value has been
calculated as the product of the lethality probability T,
of the target and the protection value w; of the defended
asset it is aimed at. In this way, we follow the approach
suggested in [7] to use the protection value of the
defended asset to impact on the target value, but we
complement this with taking the lethality of the target
into account, since this extra information otherwise is
lost.

We have also included a variant of greedy search
where we have taken the solution generated by the
MMR algorithm and improved it with a simple local
search (LS) that creates neighbor solutions by swap-
ping two positions selected at random in the solution
vector (this variant of the MMR algorithm, described
with pseudo code in Algorithm 2, will in the follow-
ing be referred to as MMR-LS). This algorithm is an
implementation of the idea briefly discussed in [27].

ALGORITHM 2 The MMR-LS algorithm
bestSolution — MMR()
Jpest < CalculateFitness(bestSolution)
while rermination criteria not met do
neighborSolution < neighbor(bestSolution)
Jyew — CalculateFitness(neighborSolution)
if J,,., > Jp.,; then
bestSolution < neighborSolution
J] best < J, new
return bestSolution
Obviously, the quality of the solutions generated by
the MMR-LS algorithm will always be at least as good
as the quality of the solutions returned by the MMR
algorithm.

4.2, An Enhanced Maximum Marginal Return

Algorithm for Static Weapon Allocation

What here will be referred to as the enhanced maxi-
mum marginal return algorithm (the authors’ terminol-
ogy) is quite similar to the standard maximum marginal
return algorithm. The difference is that in the enhanced
maximum marginal return (EMMR) algorithm it is not
predetermined which firing unit to allocate next. In-
stead, the choice of which firing unit to allocate next is
based on which weapon-target pair that maximizes the
marginal return. We have implemented this algorithm
based on the description in [16], and the pseudo code
for the algorithm is given in Algorithm 3. In the first
iteration it = 1, |W| x |T| combinations are tested. The
weapon-target pair with highest marginal return is se-
lected, so that the firing unit is selected to the target, and
the target value of the corresponding target is updated
accordingly. After this, [W|— 1 firing units are unallo-
cated. In next iteration, the remaining (|W|—1) x |T|
weapon-target pairs are tested, and so on, until there
does not remain any unallocated firing units. Hence, the
time complexity of EMMR becomes O(|W|?|T)).

ALGORITHM 3 Enhanced maximum marginal return al-
gorithm (adapted from [16])
for all it such that 1 <ir<|W| do
highestValue «— —oo
allocatedTarget — 0
allocatedWeapon «— O
for all k such thar 1 <k <|W| do
for all i such that 1 <i <|T| do
value — V, x P,
if value > highestValue then
highestValue «— value
allocatedWeapon «— k
allocatedTarget — i

assign vvullocatedWeapon to 7;ﬂlocatedTarget
\% — highestValue

allocatedTarget - VallocatedTarget
return allocation

As the standard MMR algorithm, EMMR is rely-
ing on target values. Hence, we calculate target values
according to (6), solve the approximated target-based
problem using EMMR, and return the solution as the
solution to the asset-based problem.

4.3.

In [13], we presented a genetic algorithm (GA) de-
signed for real-time allocation of defensive weapon re-
sources to targets. The original version of the algorithm
was intended for the static target-based problem, but we
have now with some modifications adapted it to also suit
the static asset-based formulation of the problem.

The algorithm is described in pseudo code in Al-
gorithm 4. First, an initial population consisting of
nrOfIndividuals is created, through generation of a vec-
tor of length |W|. In this vector each element W, is as-
signed a random integer value in the interval {1,...,|T|}.
In each generation we evaluate all individuals in the
population and determine their objective function val-
ues in accordance with (1). Hence, each individual is
assigned a fitness value that is used in the follow-
ing phases of selection and recombination. After the
evaluation phase, deterministic tournament selection is
used as selection mechanism to determine which indi-
viduals in population Pop that should be used as par-
ents for Pop/, i.e., we pick two individuals at random
from Pop and select the one with best fitness value.
When two parents have been selected from Pop, we
apply one-point crossover at a randomly selected po-
sition k € {1,...,|W|}, generating two individuals that
become members of Pop’. This is repeated until there
are nrOfindividuals in Pop'. Thereafter, we apply mu-
tation on a randomly selected position k € {1,...,|W|}
in the first individual of Pop’, where the old value is
changed into i € {1,...,|T|}. Hence, there is a probabil-
ity of 1/|T| that the individual is unaffected of the muta-
tion. The mutation operator is repeated on all individuals
in Pop’ and the resulting individuals become members
of the new population Pop. This loop is repeated until
the termination criterion is fulfilled (the upper limit on

A Genetic Algorithm for Static Weapon Allocation

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 193

the computational time bound is reached). At this point,
the individual with the best fitness found during all gen-
erations is returned as the allocation recommended by
the algorithm.

ALGORITHM 4 Pseudo code for our genetic algorithm
fitnessy, g +— —00
Pop «— GeneratelnitialPopulation()
while termination criteria not met do
for [— 1 to nrOfindividuals do
J; < CalculateFitness(Pop(l))
if J, > fitness,,; then
§ — Pop(l)
ﬁmessbest —J
Pop’ — Crossover(Pop)
Pop «— Mutate(Pop')
return g

Furthermore, we have implemented a variant of the
genetic algorithm that is seeded with well-performing
individuals. Instead of creating all individuals in the
initial population at random, x individuals are created
based on the solution returned by the EMMR algorithm
(a random swap between the targets of two of the firing
units is first made for each of the seeded individuals
in order to create some diversity among them). The re-
maining individuals are created randomly just as before.
This seeded version of the genetic algorithm will in the
following be referred to as GA-S.

4.4. A Particle Swarm Optimization Algorithm for
Static Weapon Allocation

In [14], we developed a particle swarm optimization
(PSO) algorithm for the static target-based weapon allo-
cation problem. We have modified this algorithm to also
suit the static asset-based weapon allocation problem.

A particle swarm consists of nrOfParticles particles,
in which each particle is associated with a position X/, a
velocity v/, and a memory El’ storing the particle’s per-
sonal best position. Moreover, we also store the swarm’s
global best position in a vector g’. Each particle corre-
sponds to a solution, given by the particle’s position.

ALGORITHM 5 Pseudo code for our particle swarm
optimization algorithm
Initialization()
while rermination criteria not met do
for [— 1 to nrOfParticles do
J; « CalculateFitness(x;)
if J; = CalculateFitness(g) then
p; < Reinitialize()
else
if J, > CalculateFimess(l;l) then
b, — %,
if J, > CalculateFitness(g) then
§—X
for [< 1 to nrOfParticles do
v, < UpdateVelocity(p,)
X; < UpdatePosition(p,;)
return g

The algorithm is described in pseudo code in Algo-
rithm 5. In an initialization phase, each particle is as-
signed an initial position ¥ (where the elements in the
initial position vectors are integers randomly distributed
between 1 and |T|), and an initial velocity 7 (a vector
of real numbers randomly distributed from the uniform
distribution U[—0.5|T|,0.5|T|]). A fitness value is cal-
culated for each particle, given by the objective function
value J (see (1)) that is obtained for the solution cor-
responding to the particle’s position. The new fitness
is compared to the personal best and the global best to
see whether these should be updated accordingly. Af-
ter this, the velocity and position is updated for each
particle, according to (7) and (8).

T = Wi 4ol o (B — X)) + e, Fa o =X (1)

fll+1 — fll + ‘—}'Zz+1' (8)
In (7), w is a parameter referred to as inertia or mo-
mentum weight, specifying the importance of the previ-
ous velocity vector, while ¢; and ¢, are positive con-
stants specifying how much a particle should be af-
fected by the personal best and global best positions
(referred to as the cognitive and social components, re-
spectively). 7 and 7] are vectors with random numbers
drawn uniformly from the interval [0, 1]. Moreover, the
o-operator denotes the Hadamard product, i.e., element-
by-element multiplication of the vectors. In order to
avoid that particles gain too much momentum, a V.
parameter that constrains the velocities to stay in the
interval [V, ...V,] has been introduced.

After the position update specified in (8), we round
off the particles’ positions to their closest integer coun-
terpart. In next iteration we calculate the particles’ new
fitness values, whereupon the velocities and positions
are updated, and so on. This is repeated until a termi-
nation criterion is met, i.e., that no more time remains.
When this happens, the best solution obtained so far is
returned as output from the algorithm.

A problem that must be handled is particles moving
outside the bounds of the search space. When this hap-
pens, we reinitialize the position and velocity values of
the coordinate for which the problem occurred. More-
over, in order to avoid premature convergence to local
optima (stagnation), we reinitialize the velocity vector
for particles rediscovering the current best solution. For
a more thorough explanation of the problem of stagna-
tion in particle swarm optimization, see [34].

In addition to the described particle swarm optimiza-
tion algorithm, we have also included a variant in which
we seed the starting position for « particles in the initial
population in the same way as with the GA-S algorithm
(while their initial velocities are randomized in the same
manner as for the remaining particles). This seeded par-
ticle swarm optimization algorithm will in the following
be referred to as PSO-S. To the best of our knowledge,
the use of seeded particles is novel for the weapon al-
location problem.

194 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO.2 DECEMBER 2011

5. EXPERIMENTS

In the experiments reported here, we have used
the open source testbed SWARD! (System for Weapon
Allocation Research and Development) which we have
developed in order to allow for systematic comparison
of various weapon allocation algorithms [11, 15]. The
testbed is implemented in Java, and we have been
running the experiments on a computer with a 2.67 GHz
Intel Core i7 CPU and 8 GB RAM. By using SWARD,
we make sure that the experiments presented here are
easily reproducible, so that researchers can test other
algorithms on the same problem instances.

In order to recreate the problem instances used in
the experiment presented in Section 5.1.1, the following
settings should be used in SWARD:

i vtart 5 ‘/Vvlart 5

i end =9, ‘/Vend =9,

® step =1, vvstep 1,

e iterations = 10, DAs =5,

e seed =0, timeLimit = 1000 ms.

Similarly, for recreating the problem instances used in
the experiment presented in Section 5.1.2, the following
settings should be used:

vtart 10 VVvtart 10
end =30, Wnd =30,
=10, W, =10,

ste ste,

iterations = 100, DAs = 5,
seed = 0, timeLimit = 1000 ms.

The time limits make sure that no algorithms are al-
lowed to run for more than a total time of one sec-
ond (including seeding). For the genetic algorithms
we have used the parameter setting: nrOfindividuals =
max(|T|,|W|). Additionally, we have for the seeded
version used k = 0.5 x nrOfIndividuals. For the part-
icle swarm optimization algorithm we have used
nrOfParticles =50, ¢, =2.0, ¢, =2.0, w=0.8, and
Viax = 0.5 x |T|. The same settings have been used for
the seeded version, with the additional parameter setting
Kk =25.

5.1. Heuristic Algorithm Performance

For scenarios that demand solving the static asset-
based weapon allocation problem faster than is possi-
ble with optimal algorithms, we have to rely on heuris-
tic algorithms. In Section 5.1.1, we present experimen-
tal results obtained with the suggested heuristic algo-
rithms on small-scale problem instances, while we in
Section 5.1.2 present results on large-scale problem in-
stances.

5.1.1. A comparison against the optimal solution for
small-scale problems
We have in order to investigate the quality of the

solutions generated by the suggested algorithms com-

I'The open source testbed SWARD can be downloaded from http:/
sourceforge.net/projects/sward/.

TABLE II
Deviation from Optimal Solution (in %)
Averaged Over Ten Problem Instances

5x5 6x6 7x7 8§x8 9x9
GA 0 0 0 0.1 0.7
GA-S 0 0 0 0.2 0.5
PSO 0 0 0 0 0.2
PSO-S 0 0.1 0.1 0.2 0.2
MMR 2.9 3.7 4.8 6.4 6.6
EMMR 0.3 0.8 0.8 0.8 0.9
MMR-LS 0.6 1.1 0.8 1.3 1.7

pared their obtained objective function values to the
optimal objective function values obtained by exhaus-
tive search for relatively small-scale scenarios between
(IT| = 5.|W| = 5) and (|T| = 9,|W| =

The average percentage deviation from the opti-
mal solution is a common metric to use for evaluating
heuristic algorithms on small-scale optimization prob-
lems where the optimal solution can be calculated, and
therefore it also has been used here. The percentage
deviation A, for a specific algorithm on a specific
problem instance has been calculated as:

A _ ‘Jalg 7J0pt|
alg — J(th

x 100)

where J,, is the objective function value for the tested
algorithm and J,,, is the optimal objective function
value. In the tables we use bold to show which obtained
objective function value that is the best for each tested
problem size.

Looking at Table II, the algorithms’ percentage de-
viations from the optimal solution show that most of the
algorithms are able to find optimal or very near-optimal
solutions for the smallest tested problem sizes. The
MMR algorithm is by far the worst of the algorithms on
the tested small-scale scenarios, but when allowed to im-
prove its initial solution by local search (i.e., the MMR-
LS algorithm), the quality is improved. The EMMR al-
gorithm produces solutions that are better than both the
MMR and MMR-LS algorithms. However, as can be
seen, all these greedy heuristics are outperformed by the
nature-inspired metaheuristics. Of the nature-inspired
metaheuristics, the PSO algorithm performs somewhat
better than the others. In fact, it produces optimal solu-
tions to all problem instances of size (|T| = 5,|W| = 5)—
(IT| = 8,|W| =8), and for (|T| =9,|W| =9) it is in one
second able to generate almost optimal solutions to
problems consisting of 99 = 387,420,489 feasible solu-
tions.

It should be noted that the results obtained on small-
scale problems do not necessarily extends to large-
scale problems. For small instances of any combina-
torial problem, it is likely that algorithms such as PSO
algorithms and GAs are able to search a large fraction
of the solution space in a short period of time, making
it more probable to find a high quality solution, while

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 195

TABLE III
Average Objective Function Value for |T| = 10
Averaged Over 100 Static Asset-Based Problem Instances
(higher objective function values are better)

TABLE V
Average Objective Function Value for |T| = 30
Averaged Over 100 Static Asset-Based Problem Instances
(higher objective function values are better)

10 % 10 10 % 20 10 % 30 30 % 10 30 % 20 30 % 30
GA 266.7 (42.0) 301.9 (49.1) 302.4 (46.5) GA 96.8 (20.4) 147.9 (30.4) 186.2 (33.7)
GA-S 268.7 (42.3) 304.1 (49.5) 303.1 (46.6) GA-S 97.2 (20.3) 151.8 (29.1) 208.7 (36.9)
PSO 269.2 (42.1) 303.2 (49.4) 302.3 (46.5) PSO 99.8 (21.4) 128.6 (29.2) 150.7 (29.2)
PSO-S 270.0 (42.2) 304.3 (49.5) 303.2 (46.6) PSO-S 103.0 (19.9) 155.5 (31.3) 208.6 (36.8)
MMR 251.5 (40.3) 296.8 (48.6) 301.2 (46.3) MMR 53.6 (20.4) 117.0 (27.0) 174.8 (32.2)
EMMR 268.1 (42.2) 304.1 (49.5) 303.1 (46.6) EMMR 59.7 (24.2) 135.7 (30.6) 208.1 (36.5)
MMR-LS 267.5 (42.7) 303.6 (49.4) 302.9 (46.6) MMR-LS 59.8 (23.9) 137.6 (31.1) 205.7 (37.0)

TABLE IV

Average Objective Function Value for |T| = 20
Averaged Over 100 Static Asset-Based Problem Instances
(higher objective function values are better)

20 x 10 20 x 20 20 x 30

GA 153.7 (30.6) 219.3 (36.4) 263.5 (34.7)
GA-S 154.7 (30.9) 237.3 (37.1) 279.8 (36.0)
PSO 158.1 (30.6) 212.6 (37.2) 245.1 (34.1)
PSO-S 160.0 (31.1) 238.4 (37.5) 280.0 (36.0)
MMR 117.6 (28.6) 210.2 (36.4) 261.2 (34.0)
EMMR 127.6 (29.8) 237.0 (37.0) 279.8 (36.0)
MMR-LS 128.9 (30.2) 234.9 (37.6) 2772 (35.4)

one wrong decision by a constructive, one-pass heuris-
tic may result in a solution differing dramatically from
the optimum of a small case [30]. Therefore, the results
should not without further tests be generalized to larger
problem sizes. With this said, it is still very relevant to
test the performance on small-scale problem instances,
not at least since it in many real-world air defense sce-
narios is likely that the number of targets and available
firing units will be close to the settings tested here.

5.1.2. A comparison between algorithms on
larger-scale problems

In a second experiment with the heuristic algorithms,
we have tested them on larger-scale problems ranging in
between (|T|=10,|W|=10) and (|T| = 30,|W| = 30).
The algorithms have also in this experiment been al-
lowed to run for one second on each problem instance.
The optimal solutions are hard to obtain for large-scale
problem instances, so instead of calculating the devi-
ation from the optimal solution, we have here simply
plotted the objective function values obtained (averaged
over 100 problem instances) in Tables III-V. We also
show the associated standard deviations within paren-
theses. As before, bold is used to indicate the best ob-
tained objective function value on each problem size.

A note to make is that the standard deviations shown
in many cases are larger than the differences in mean
values among the algorithms. However, this should not
be interpreted as that there are no significant differences
among the algorithms. Rather, the largest part of these
standard deviations are due to the differences between
various problem instances. In some problem instances

the optimal objective function values are lower, while
they in others are higher (as a natural result of the ran-
dom fashion in which the problem instances are gener-
ated). As a consequence of this, also optimal algorithms
would obtain large standard deviations.

When analyzing the obtained results, it can be seen
that the use of local search significantly improves the
quality of the solutions found using MMR also on
large problem sizes. A comparison of the solutions
generated by MMR-LS with the ones returned by the
EMMR algorithm shows that the performance of these
are approximately equally good (although EMMR is
significantly faster than MMR-LS). This indicates that
it in the future may be worth studying if it would be
beneficial to apply simple local search also to EMMR.

It can be seen that the seeded particle swarm op-
timization algorithm (i.e., PSO-S) is performing best
relative to the other algorithms on all tested problem
sizes except the largest, on which the seeded genetic
algorithm (GA-S) performs slightly better. We have in
earlier work [14] shown that PSO runs into some trouble
when applied to large target-based problem instances
under tight real-time constraints, and this trend can be
seen also for the large asset-based problem instances
tested here. However, when combined with the seed-
ing mechanism, particle swarm optimization seems to
work very well. It can be seen that the obtained objec-
tive function values for the greedy algorithms MMR-LS
and EMMR are reasonably close to the best algorithms’
objective function values for many of the tested problem
sizes, while they for problem instances where |T| > |W]|
are much worse. These results are in line with the ana-
lytical arguments in [7], predicting that it will work well
to approximate the static asset-based weapon allocation
problem with its target-based counterpart on problem
instances involving a strong defense (a large number of
firing units compared to the number of targets), while
the approximation will work bad in cases of a weak
defense (i.e., problem instances where there are more
targets than firing units). Although the differences be-
tween e.g., EMMR and PSO-S or GA-S and PSO-S are
not very large for problem instances involving a strong
defense, the differences should not be ignored, since
such small but significant differences can have severe

196 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO.2 DECEMBER 2011

impact on the end result if such algorithms are applied
in a real-world C-RAM system.

6. CONCLUSIONS AND FUTURE WORK

We have in this article presented the static asset-
based weapon allocation problem, which is an optimiza-
tion problem that needs to be solved in a short amount
of time in air defense situations involving RAM threats
such as rockets and mortars. We have also presented
the static target-based weapon allocation problem, but
the focus has been on the asset-based case. We have
implemented two versions of a genetic algorithm, two
versions of a particle swarm optimization algorithm, and
various versions of the greedy maximum marginal re-
turn algorithm. Such algorithms have earlier been used
for the static target-based weapon allocation problem,
but as far as we know, it is previously unknown how
they perform on the asset-based version of the prob-
lem. Our experiments have shown that optimal or very
near-optimal solutions are obtained in real-time by the
genetic algorithms and the particle swarm optimization
algorithms on small-scale problems. The standard max-
imum marginal return algorithm yields worse solutions,
but these can easily be improved upon by local search,
or by using an enhanced version of the algorithm. How-
ever, the quality does not become as good as that of the
genetic algorithms or the particle swarm optimization
algorithms.

For larger problem instances the optimal solutions
are not known, and can therefore not be used for com-
parison. Instead, the objective function values produced
by the algorithms have been compared to each other. It
has been shown that the greedy algorithms create solu-
tions of good quality (compared to the other algorithms)
for scenarios with a strong defense, but that they per-
form bad on scenarios involving a weak defense, i.e.,
where there is a larger number of targets than there are
firing units.

The algorithm that has been performing the best on
large-scale problem instances is a novel improvement on
the particle swarm optimization algorithm where the ini-
tial population is seeded with individuals based on small
variations of the solution returned by the enhanced max-
imum marginal return algorithm. For the problem in-
stances where there is a strong defense, the algorithm is
not able to improve very much on the solution returned
by the enhanced maximum marginal return algorithm,
but for the problem instances involving a weak defense,
the difference is dramatic. For problems of quite small
scale, the difference in solution quality is very small be-
tween the particle swarm optimization algorithm and its
seeded version. However, as the problem size increases,
the difference in solution quality becomes very evident.

6.1. Future Work

The obtained results can be used as benchmarks for
other heuristic algorithms. Hence, it is our hope that

the used data sets (problem instances) will be used by
other researchers as well, so that a better understanding
of which algorithms that work well for static asset-based
weapon allocation is obtained. Moreover, in the current
research on static asset-based weapon allocation, it is
assumed that kill probabilities, lethality probabilities,
and target aims are known with certainty. Obviously,
these estimates will in real-world systems be associated
with uncertainty, and it would therefore be interesting
and useful to know how sensitive the solutions produced
by the algorithms are to such uncertainties.

In the experiments presented in this article, we have
been generating problem instances in which there are
no dependences among the values of the parameters.
As an example, there is no correlation between any
of the kill probabilities involving a specific target (or
rather, there might be such correlation, but if so, this is
by pure chance). This is consistent with how weapon
allocation algorithms have been evaluated earlier in
reported literature, but it can be discussed whether this
lack of structure really would be seen in estimated
kill probabilities from real-world air defense scenarios.
Thinking of such a scenario, two targets, 7, and 7,
of the same type, approaching a firing unit W, from
the same direction and on the same altitude, would
most likely result in kill probabilities A, and P, being
quite similar. Likewise, two firing units W, and W,
would obtain kill probabilities of approximately same
magnitude, given that the firing units were positioned
close together and being of the same type. Hence, the
random fashion in which problem instances have been
generated here (and in previous reported experiments
with weapon allocation algorithms) may not necessarily
create the same kinds of search spaces that would be
experienced in real-world air defense situations. An idea
that could be of interest for the future is therefore to
create problem instances with an inbound structure that
better reflect reality.

ACKNOWLEDGMENT

We would like to express gratitude to the reviewers
for their constructive comments and suggestions that
have helped to improve the article. This work was
supported by the Information Fusion Research Program
(University of Skovde, Sweden) in partnership with
Saab AB and the Swedish Knowledge Foundation under
grant 2003/0104.

REFERENCES

[1] R. Ahuja, A. Kumar, K. Jha, and J. Orlin
Exact and heuristic methods for the weapon target assign-
ment problem.

Operations Research, 55, 6 (2007), 1136-1146.

[2] J. Chen, B. Xin, Z. Peng, L. Dou, and J. Zhang
Evolutionary decision-makings for the dynamic weapon-
target assignment problem.

Science in China Series F: Information Sciences, 52, 11

(2009), 2006-2018.

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 197

(31

[4]

[5]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

(14]

(15]

[16]

[17]

198

C. K. Cheong
Survey of investigations into the missile allocation problem.
Master’s thesis, Naval Postgraduate School, Monterey, CA.
1985.

C. Ciobanu and G. Marin
On heuristic optimization.
An. Stiint. Univ. Ovidius Constanta, 9, 2 (2001), 17-30.

G. G. den Broeder, R. E. Ellison, and L. Emerling
On optimum target assignments.
Operations Research, 7, 3 (1959), 322-326.

A. R. Eckler and S. A. Burr
Mathematical Models of Target Coverage and Missile Al-
location.
Technical Report DTIC: AD-A953517, Military Operations
Research Society, Alexandria, VA, 1972.

P. A. Hosein
A Class of Dynamic Nonlinear Resource Allocation Prob-
lems.
Ph.D. thesis, Massachusetts Institute of Technology, Dept.
of Electrical Engineering and Computer Science, 1990.

P. A. Hosein and M. Athans
Preferential defense strategies: Part 1—the static case.
Technical report, Massachusetts Institute of Technology,
1990.

C. Huaiping, L. Jingxu, C. Yingwu, and W. Hao
Survey of the research on dynamic weapon-target assign-
ment problem.
Journal of Systems Engineering and Electronics, 17, 3

(2006), 559-565.

K. C. Jha
Very large-scale neighborhood search heuristics for combi-
natorial optimization problems.
Ph.D. thesis, University of Florida, 2004.

F. Johansson
Evaluating the performance of TEWA systems.
Ph.D. thesis, Orebro University, 2010.

F. Johansson and G. Falkman
A comparison between two approaches to threat evaluation
in an air defense scenario.
In Proceedings of the 5th International Conference on Mod-
eling Decisions for Artificial Intelligence, 2008, 110-121.
F. Johansson and G. Falkman
An empirical investigation of the static weapon-target allo-
cation problem.
In Proceedings of the 3rd Skovde Workshop on Information
Fusion Topics, 2009.

F. Johansson and G. Falkman
A suite of metaheuristic algorithms for static weapon-target
allocation.
In Proceedings of the 2010 International Conference on
Genetic and Evolutionary Methods, 2010.

F. Johansson and G. Falkman
SWARD: System for weapon allocation research & devel-
opment.
In Proceedings of the 13th International Conference on In-
formation Fusion, 2010.

B. A. Julstrom
String- and permutation-coded genetic algorithms for the
static weapon-target assignment problem.

In Proceedings of the Genetic and Evolutionary Computation
Conference, 2009.

O. Karasakal
Air defense missile-target allocation models for a naval task
group.
Computers and Operations Research, 35, 6 (2008), 1759—
1770.

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

S. E. Kolitz
Analysis of a maximum marginal return assignment algo-
rithm.

In Proceedings of the 27th Conference on Decision and
Control, 1988.

Z-J. Lee and C-Y. Lee
A hybrid search algorithm with heuristics for resource
allocation problem.

Information Sciences, 173, 1-3 (2005), 155-167.

Z-J. Lee, C-Y. Lee, and S-F. Su
Parallel ant colonies with heuristics applied to weapon-
target assignment problems.

In Proceedings of the 7th Conference on Artificial Intelli-
gence and Applications, 2002.

Z.J. Lee and W. L. Lee
A hybrid search algorithm of ant colony optimization
and genetic algorithm applied to weapon-target assignment
problems.

In Proceedings of the 4th International Conference on In-
telligent Data Engineering and Automated Learning, 2003,
278-285.

Z.J. Lee, S. F. Su, and C. Y. Lee
A genetic algorithm with domain knowledge for weapon-
target assignment problems.

Journal of the Chinese Institute of Engineers, 25, 3 (2002),
287-295.

S. P. Lloyd and H. S. Witsenhausen
‘Weapon allocation is NP-complete.

In Proceedings of the 1986 Summer Conference on Simula-
tion, 1986.

W. P. Malcolm
On the character and complexity of certain defensive re-
source allocation problems.

Technical Report DSTO-TR-1570, DSTO, 2004.

A. S. Manne
A target-assignment problem.

Operations Research, 6, 3 (May—June 1958), 346-351.

S. Matlin
A review of the literature on the missile-allocation problem.
Operations Research, 18, 2 (1970), 334-373.

W. A. Metler and F. L. Preston
A suite of weapon assignment algorithms for a SDI mid-
course battle manager.

Technical report, Naval Research Laboratory, 1990.

R. A. Murphey
Target-based weapon target assigment problems.

In P. M. Pardalos and L. S. Pitsoulis (Eds.), Nonlinear
assignment problems: algorithms and applications, 2000,
39-53.

S. Paradis, A. R. Benaskeur, M. Oxenham, and P. Cutler
Threat evaluation and weapons allocation in network-
centric warfare.

In Proceedings of the 8th International Conference on Infor-
mation Fusion, 2005.

R. L. Rardin and R. Uzsoy
Experimental evaluation of heuristic optimization algo-
rithms: A tutorial.

Journal of Heuristics, 7 (2001), 261-304.

M. St. John, D. I. Manes, H. S. Smallman, B. Feher, and J. G.

Morrison
An intelligent threat assessment tool for decluttering naval
air defense displays.

Technical report, SSC San Diego, CA, 2004.

B. Suman and P. Kumar
A survey of simulated annealing as a tool for single and
multiobjective optimization.

Journal of the Operational Research Society, 57 (2006),
1143-1160.

JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 6, NO.2 DECEMBER 2011

[33] P Teng, H. Lv, J. Huang, and L. Sun

Improved particle swarm optimization algorithm and its ap-
plication in coordinated air combat missile-target assign-
ment.

In Proceedings of the 7th World Congress on Intelligent
Control and Automation, 2008.

[34] F. van den Bergh and A. P. Engelbrecht

A new locally convergent particle swarm optimiser.

[36]

(37]

W. L. Winston

Operations Research: Applications and Algorithms.
Wadsworth Publishing Company. 1997.

X. Zeng, Y. Zhu, L. Nan, K. Hu, B. Niu, and X. He

Solving weapon-target assignment problem using discrete
particle swarm optimization.

In Proceedings of the 6th World Congress on Intelligent
Control and Automation, 2006.

In Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, 2002.

[35] E. Wacholder
A neural network-based optimization algorithm for the
static weapon-target assignment problem.
ORSA Journal on Computing, 1, 4 (1989), 232-246.

Fredrik Johansson obtained his M.Sc. in computer science from University of
Skovde, Sweden, in 2005 and his Ph.D. in computer science from Orebro University,
Sweden, in 2010.

During his Ph.D. studies he was a member of the Skovde Artificial Intelligence
Lab (SAIL) and the Information Fusion Research Program at the Informatics
Research Centre (IRC) in Skovde. Currently, he works as a scientist at the Swedish
Defence Research Agency (FOI) in Kista.

His research interests are applied artificial intelligence and high-level informa-
tion fusion, and the application of probabilistic techniques such as Bayesian net-
works for decision support. He is also interested in the use of techniques such
as social network analysis, natural language processing, and web harvesting for
supporting the work of intelligence analysts.

Goran Falkman obtained his Ph.D. in computing science from Chalmers University
of Technology, Sweden, in 2003.

He holds a position as an Associate Professor of Computer Science, with a
specialty in Interactive Knowledge Systems, at University of Skovde, Sweden,
where he works as a researcher and senior lecturer within the Skovde Artificial
Intelligence Lab (SAIL) at the Informatics Research Centre (IRC). He has been
a project leader for three applied research projects within the area of information
fusion, focusing on algorithms for threat evaluation and weapon allocation, visual
analytics and maritime domain awareness, and anomaly detection for surveillance
applications, respectively. He has also been the leader for the Situation Awareness
scenario within the Infofusion research program at University of Skovde. Currently,
he is one of the principal investigators of the Uncertainty Management in High-Level
Information Fusion (UMIF) research project. Since 2009, he is an elected member
of the Executive Board of the Swedish Artificial Intelligence Society (SAIS).

The research interests lie in the intersection of applied artificial intelligence,
knowledge systems, interaction design, and information fusion. This includes work
on the design, implementation and use of formal knowledge representation and
knowledge-based systems (especially, case-based reasoning, ontology engineering,
and the Semantic Web), as well as the use of interactive visualization for supporting
knowledge-based reasoning processes (especially, situation analysis and decision-
making).

\ |
N

REAL-TIME ALLOCATION OF FIRING UNITS TO HOSTILE TARGETS 199

