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Abstract - In a paper at Fusion 2000, Björnfot and Svensson
discussed the use of HMMs to recognize mobile military
organizations moving in column formation along a road from
observations of the types and relative positions of its component
vehicles. Straightforward use of standard HMMs in the sequence
recognition task restricts the application of this technique to the
rather unlikely situation where all vehicle types normally follow
each other according to a fixed sequential pattern. In this paper,
this restriction is relaxed by representing a multi-level
organization by an Hierarchical Hidden Markov Model, in which
each possible component sequence for each organizational
subunit type is modelled by a separate “sub-HMM”. Experiments
are carried out using simulated data which illustrate the
increased flexibility and applicability of this approach in column
recognition tasks. 
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1. Introduction

In [1], Björnfot and Svensson discussed the
concept of using HMMs to recognize military
organizations moving in column formation along
a road from observations of the types and relative
positions of its component vehicles. In the course
of that work, it was noted that the use of
additional a priori knowledge about hierarchical
organization structure should help in the
recognition task. The straightforward use of
standard HMMs in a vehicle sequence
recognition task restricts the application of the
technique to the rather unlikely situation where
all vehicle types normally follow each other
according to a fixed sequential pattern. Also, it
precludes the application of the technique in the
probably quite common situations where vehicle

types would be allowed to switch positions while
staying within the spatial extent of their local
organizational unit. 

In this paper, these restrictions are relaxed. The
basic idea used is to represent as an HMM
submodel each possible component sequence for
each organizational unit type. These are then
connected together into an hierarchical HMM
(HHMM) structure. Experiments are carried out
using simulated data which illustrate the
increased flexibility and applicability of the
HHMM approach in column recognition tasks. 

Recently, efficient algorithms for learning and
inference in hierarchical HMMs have been
proposed [2,3,4]. In these papers, as well as in the
theses [5,6], improved representation and
algorithmic techniques are described. In
particular, in [5] Murphy shows how to embed a
large number of special cases of HMMs into the
general framework of Dynamic Bayesian
Networks (DBN). This shift of perspective also
encouraged the application of fast algorithmic
techniques developed for Bayesian networks to
HHMM training and recognition [3]. 

Since our goal in this work is primarily to study
the benefits of using the hierarchical approach in
representing and solving the column recognition
problem per se rather than exploring HHMM
algorithms in general, we decided to approach our
task by using essentially the same basic HMM
learning and recognition algorithms as in [1], but
structure the problem statement and
computations differently. 
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To deal with our first issue, representing
hierarchies, we assume that we have available a
set of training samples which provide:
1. “bags” of platoon types each of which define 

a company type (see Sec. 2),
2. bags of vehicle types each of which define a 

platoon type.

For comparison, we also assume that a set of
samples is available where each sample is a
sequence of vehicles which defines a company
type. This set should cover essentially all relevant
vehicle sequences. In order to carry out this
experiment comfortably on a 1.5 GHz PC, we
decided to use somewhat smaller test examples
than are likely to be encountered in practical
intelligence work, specifically, to use templates
with three vehicles per platoon and three platoons
per company.

Important issues that need to be addressed when
proposing the use of HMM-based recognition
methods to the problems described above are:
• what kinds of changes in relation to distribu-

tions expected a priori are likely to occur in 
different practical situations?

• will the method be robust with respect to 
small such changes ?

• will the method be robust with respect to 
missing, extraneous, or misclassified data?

• are there effective techniques that can be used 
to learn vehicle sequence distributions from 
data, or generate them from known rule sets 
such as military transportation doctrines?

In this paper we give partial answers to these
questions by presenting experimental evidence
which supports the following conclusions:
• HHMM recognition methods can be useful in 

situations where the order between “symbols” 
is not known in advance, given that it is possi-
ble to learn or predict whole families of per-
missible alternate sequences and these 
sequences are relatively short. In our applica-
tion, symbols correspond to vehicle and pla-
toon types. Note that in the general unordered 
case, computational complexity grows expo-
nentially with the length of the sequence;

• such sets of sequences can probably be used 
to model military organizations as long as the 

number of subunits within each unit is rela-
tively small, say less than 10;

• standard HMM learning and recognition algo-
rithms can be adapted to cover this case;

• these methods can be made reasonably toler-
ant of missing, extraneous, and misclassified 
data.

1.1. Related work

In [7], HHMMs are used in a different tactical
fusion application, feature-based recognition of
aircraft behaviors in an air patrol context. Both
the problem characteristics and the modeling
approach used there are quite different from the
one considered here.

Another remotely related problem discussed in
the literature is gene splice site prediction, see
[8,9]. In a sequence of genomic data, a gene
occurs as a band of alternating non-coding introns
and coding exons. The issue is to decide which
subsequences are exons and which are introns.
The start of an intron is characterized by a donor
subsequence and the end by an acceptor
subsequence.

In [10], a Bayesian network is used to estimate
force type from vehicle observations, given
template models which describe the vehicle
composition of force types and Bayesian models
for the probability of false vehicle classification.
Information about formations or multilevel
organizational hierarchies are not used.

In [11, 12] some of the concepts from [10] are
extended to an hierarchical target evaluation
problem.

The books [13, 14] provide background
information on Hidden Markov Models and the
Baum-Welch (EM) algorithm used in this paper.

2. Problem statement and representation

The class of recognition problems we study is the
following:
• Entities we want to recognize are called com-

panies. We observe sets or sequences of 
objects (vehicles) and want to decide which 
company type they might belong to, if any. To 



enable us to do this, we assume that we know 
organization templates for a number of differ-
ent company types.

• A company organization template consists of 
a known bag of platoon types, i.e., only the 
number of platoon instances of each type but 
not the order between them is assumed to be 
relevant for classification.

• Each platoon template consists of a known 
bag of vehicle types.

• We observe a set of vehicles (either one at a 
time or all at once) and are able to classify 
each type of vehicle with known probability 
of correct classification. 

• Using the organization template, we are then 
able to infer first which bag of platoon types 
is most likely to be at hand, then which com-
pany type this bag most likely indicates.

In principle, this technique can be applied
hierarchically level by level, although both as a
function of the depth of the organization tree and
of the maximum length of organizational
subunits, computational complexity for training
and recognition both increase exponentially.
Therefore, we have only applied the approach to
three-level hierarchies with small maximum
branching factor (“fan-out”). Fortunately, this
seems to be the most interesting case in
applications. Note that the assumption that
organization templates are known does not mean
that they have to be perfectly obeyed. In fact, as
a soft modeling technique, HMMs are fairly
robust to noisy input, cf. the results shown in
Sec. 4.

3. Experiments in learning organizational 
structure

Organizational structure is learned by applying
the standard Baum-Welch algorithm [13] to a set
of linear HMMs on each organizational level,
figures 1-3. The training is done for each linear
HMM separately, e.g., each of the three parallel
sequences in figure 1. In this manner, the number
and types of main states are learned from data, as
are necessary transition probabilities. Then the
HMMs are connected, so as to form a complete
hierarchical structure like that in figure 2. 

In the experiments, the organizational structure
was defined as follows: A single company type
was used, consisting of three platoons, two of
type A and one of type B. Platoons of type A
contain two vehicles of type a and one of type b,
while platoons of type B contain one vehicle of
type b and two of type c. This structure was
learned in three different ways, as two
hierarchical HMMs with different noise levels,
and for comparison, also as a “bank” of flat
HMMs, in each case using 120 training instances.
Each training instance is a unique vehicle
sequence, simulating a noisy company
observation. The bank of 81 flat HMMs uses a
standard HMM method in the manner described
in [1], repeated for each of the 81 different
vehicle sequences that satisfy the organizational
structure. Training times for each of the two
hierarchical models was 4 minutes, whereas
training the flat HMM bank required 10 hours of
CPU time on a 1.5 GHz PC.
Figure 1. HMM subgraph for one platoon type, corresponding to the a priori case “two vehicles
of type a, one vehicle of type b”. Each parallel sequence has probability 1/3. Insert and delete
states are removed from the figure to improve readability.



Figure 3. Hierarchical HMM recognizer for a specific company structure, composed of three platoon
subsequences connected in parallel. Main states are labeled with their platoon type (A or B), delete
states with D, and insert states with I. Only the upper hierarchical level is shown. The lower level
submodels are symbolized by squares, which are linked by dashed lines to the upper level.

Figure 2. Hierarchical HMM structure for a complete company organization including platoons
(A,B) and vehicles (a,b,c). Insert and delete states are removed from the figure to improve
readability.



Case 1. Hierarchical 1

The six different HMMs on the lowest level were
trained to recognize respectively the A-sequences
aab, aba, baa and the B-sequences bcc, cbc, and
ccb. Analogously, three HMMs on the higher
level recognize the sequences AAB, ABA, and
BAA respectively. For each organization type,
i.e., company, platoon A, and platoon B, the
HMMs for the three alternative component
sequences were connected in parallel, each with
probability of execution 1/3. 

The training sequences for platoons were
generated such that the probability of an insertion
or a deletion were both 0.08, and the probability
of making a vehicle type exchange was 0.08.
Together, this means that the probability for
generating a normal vehicle at a given position
was 0.7728 and the probability of generating a
normal platoon was 0.4615. Training sequences
for the company had probability 0.01 for both
deletions and insertions and probability 0 of type
exchange. Thus, the probability of generating a
platoon sequence conforming exactly to the
company template (without any platoon
insertions or deletions) was 0.94. The probability
of generating an entire vehicle (and platoon)
sequence conforming exactly to the company
template was 0.94 (0.4615)3 = 0.0925.

Case 2. Hierarchical 2

Here, the probabilities for insertion, deletion, and
type exchange of any platoon contained in the
company template were all set to 0.08, different
from the previous case. All other properties were
the same. The net effect of these changes was that
the probability of generating a platoon sequence
conforming exactly to the company template was
reduced to 0.4615 and that of generating a vehicle
sequence conforming exactly to the company
template was reduced to 0.045.

Case 3. Flat

Each of the 81 linear HMMs which correspond to
a vehicle sequence conforming to the company
template was trained with 120 sequences,
conforming to the sequence except for insertion,

deletion and exchange noise. The probability of
an insertion, deletion, and exchange in a given
vehicle position were all 0.08. Thus, the
probability of a given vehicle conforming to the
template was 0.7728, the probability of all
vehicles in a given platoon conforming was
0.4615 and the probability of an entire vehicle
sequence conforming to the company template
was 0.0983. 

4. Recognition experiments and results

In the experiment descriptions below, the
following conventions were used:

Five different experiments were performed. In all
cases, the set of training cases Flat,
Hierarchical 1, Hierarchical 2
introduced in Sec. 3 are used as recognizers
against which a small number (2-4) of company
instances (test instances) were matched. Except
in the Perfect case, the test instances were all
similar but not equal to the standard company
template. Insert 1 and 2 correspond to one
and two added vehicles respectively, Delete 1
to one missing vehicle, and Platoon
inserted to one inserted platoon.

The results for each recognizer, averaged over the
number of test instances in each training case are
shown in figure 4. To allow for easy comparison
across training cases belonging to the same
experiment, the sum of the three recognizer
fitness values in each experiment was normalized
to 1. The absolute fitness corresponding to the
normalized unit value is given in figure 4 below
each experiment identifier. While the
Hierarchical 2 recognizer scores lowest in
all the four experiments with low to moderate
noise, it is the most permissive one when
confronted with the insertion of an entire platoon.
The Flat recognizer, on the other hand, rejects
this case entirely.

5. Discussion

From the experiments, we conclude that the
hierarchical approach needs much less memory
space, is vastly faster to learn and more robust to
changes on the upper level of the two-level
hierarchy than is the use of a complete bank of



Figure 4. Results from the recognition experiments. Each group of bars corresponds to the relative
results of one experiment category, see text. The number below each group identifier is the sum of
the fitness values across categories for each experiment. 
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linear HMMs. Recognition using HHMMs is also
much faster.

The HHMM approach described above may be
used to create and train recognizers for any
combination of ordered and unordered
organizational components, e.g., vehicles
unordered within platoons while platoons are
ordered within companies, or vice versa. Partial
ordering is also possible, such as prescribing that
a certain platoon type should always go first,
while no order is precribed for the remaining
platoons. Also, a doctrinal rule can be modelled
which states that platoons are allowed to move on
parallel roads while vehicles within a platoon
must always follow each other.

An objection that could obviously be raised
against the proposed method is its exponential
computational complexity with respect to the
cardinality of the organizational components
(number of vehicles in a platoon, number of
platoons in a company etc.), as well as with
respect to the number of organizational levels.
However, using present-day PCs, the method
should be applicable at least up to a cardinality of
10 in each of two organizational sublevels. We

believe this performance to be sufficient for the
method to be useful in practice.
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