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ABSTRACT 

When providing decision support to commanders in military operation planning, one important task is to present 

decision makers with a quick and simple overview of which factors are important for success and within which 

parameter ranges success is achieved. We develop a methodology that simulates 10 000 different instances with 

uniform distributions over all input parameters, select the 1000 best simulations where blue forces achieve 

success according to the measures of effectiveness, and observe which parameters have skewed distributions 

within the smaller set of 1000. These are the important parameters, and the high frequency ranges of these 

parameters are the value ranges corresponding to blue force success. 

1.0 INTRODUCTION  

In this paper, we develop a Commander’s Overview approach to decision making, providing a commander a 

quick and simple overview of the consequences of different decisions in military operation planning.  

The approach analyses large amounts of output data from simulations in a multiple-criteria decision support 

system focused on answering questions regarding force configuration, outcomes, etc. We assume a data farming 

[1] simulation experiment with multiple evaluation criteria has already taken place. Before addressing the 

commander’s decision support, we must perform the multiple-criteria analysis and evaluate the entire data set 

using Measures of Effectiveness (MOEs) describing conditions for blue force success. 

To provide decision support for a commander in operation planning, we perform a sequence of process steps. 

We first conduct scenario development, modeling, and simulation, followed by data analysis and decision 

support. The final step of decision support goes a step beyond what is traditionally performed within data 

farming. We think of this as data farming’s decision support mode. In the operation-planning problem that we 

study, we have up to ten different MOEs. This gives us a multiple-criteria decision-making (MCDM) problem, 

which is managed by preference analysis of the MOEs, followed by a Monte Carlo weight assignment process. 

With this approach, we can avoid the difficult problem of weight assignment by human analysts and decision 

makers. With these two processes completed, we can focus on decision support. The decision support process is 

subdivided into three sub-processes: the Analyst View process, which is similar to the traditional statistical 

analysis typically performed in data farming; the Commander’s Overview process, which is focused on the big 

picture of how to win in military combat; and the Commander’s Specific Questions process, focusing on more 

specific questions of when we will win in different specific situations. In this paper, we focus on the 

Commander’s Overview process. The other two processes are discussed in other papers. 
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The fundamental idea of the Commander’s Overview process is to select a subset of all simulation runs where 

blue forces achieve success as measured by the MOEs and observe any possible skewedness in the frequency 

distribution over the parameter ranges of all input parameters to the simulations in the remaining simulation 

subset, assuming a uniform distribution in the entire initial data set. In an experiment, we select the 1000 best 

simulation instances from the 10 000 instances simulated. Parameters with skewed distributions are considered 

important because outcomes vary over different ranges for these parameters, and we want to find what these 

parameters are and within what value ranges the parameters have a high frequency of being in the 1000-large set 

of simulations with preferable outcomes. To find the parameters with highly skewed distributions, we measure 

the entropy of the normalized frequency distribution of the parameters. 

In Sec. 2, we present an overview of the data farming approach used to perform simulations. The ground warfare 

scenario used in this study is briefly described in Sec. 3. Then, in Sec. 4, we first describe three different 

processes of decision support to put the work of this paper into the context of previous work and then continue 

by developing the Commander’s Overview approach, which focuses on the Skewed Distribution Analysis. 

Finally, some general conclusions are presented (Sec. 5). 

2.0 DATA FARMING 

Data farming [1] is a process aimed at maximizing the information available from a large set of data. The focus 

is on trying to produce a sufficiently complete landscape of potential outcomes rather than on identifying an 

individual response. In addition to identifying significant effects and relationships between input parameters, 

attention is also focused on detecting possible anomalies and including them in the decisions. 

Data farming aims to provide insights into problem formulations and is an iterative process consisting of a loop 

of loops, as shown in Figure 1. In this paper, our focus is on data analysis and data visualization within operation 

planning. 

 

Figure 1: Scenario development and experimentation loop [1]. 

There is perhaps no optimal decision possible in a system where there are opponents acting in their own 

interests, but the notion is that more informed decisions can be made because the decision maker is allowed to 

understand the landscape of possibilities. 
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Based on the characteristics of the problem to be solved, there is a need for the modeling of nonlinearities, 

abstractions, and influence between the various parts of the problem in a functional manner. It is the combination 

of simple, efficient, and abstract models, as well as high-performance computing together with effective 

experiment design, that enables quick exploration of a solution space. Simple models make it easier to manage a 

large number of simulation runs, which enables exploration of a large parameter and value space and allows for 

the investigation of the solution space. The result is a landscape of outputs, which can then be used to analyze 

trends, detect anomalies, and generate insights regarding multiple parameter dimensions. In addition to 

identifying the general characteristics, the analysis also strives to provide understanding of the spread and central 

tendencies, as well as to elucidate internal parameter relationships and thresholds. 

The core of data farming is based on a rich and diverse array of different simulation runs that are carried out on 

computers to check different assumptions, gain new insights into relevant relationships, and obtain more robust 

statements on opportunities and risks in specific mission situations. This is achieved by systematically varying 

the different parameter values for the input parameters that are assumed to be crucial to measures of 

effectiveness. 

As mentioned, our focus is on data analysis and visualization and how we can use the data farming approach for 

decision-making generally and for decision support to a commander in operation planning specifically. 

3.0 SCENARIO 

Because we plan to employ the data farming method, we need to be able to create different versions of the 

scenario to act as input to our simulation runs. Hence, when modeling the scenario, we need a set of general 

variables that can be used for all versions of the scenario and a set of scenario-specific variables that depend on 

the current scenario terrain, units, tasks, and situations requiring tactical decisions. 

To model the scenario, it is important to broaden the space of possible decisions that the simulated unit leaders 

can make and the actions that the simulated units can take. This is to avoid missing any possible and interesting 

situations when running simulations using a data farming approach. 

Typically, a scenario in the context of operation planning is a description of the roles of different actors and their 

activities extended over a long period of time and over large areas. We initially focus on a smaller part of a 

scenario where only a few actors are active. This is called a vignette, which consists of a number of events 

together with actors who perform some specific activities, such as moving forward, reconnaissance, opening fire, 

etc. 

The initial vignette includes a limited ground combat situation. Hence, the vignette used in our work unfolds in 

the context of defense against an armored attack, where an attack has been going on for a number of days before 

the start of the vignette. In this situation, red forces have air-dropped a parachute battalion at an airport and are in 

battle with a blue-force mechanized battalion reinforced with a tank company. 

A new air-drop of a second red-force parachute battalion occurs in the areas around the village of Gimo  

(see Figure 2). 

The task of this unit is to move south towards the airport to support the first red parachute battalion in ensuring 

that the airport stays open for the landing of transport aircraft carrying new military units. At the same time, a 

second blue mechanized battalion has regrouped and is positioned in the northern part of Uppsala. The task of 

this battalion is to prevent the red forces from reaching the airport further south. 
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Figure 2: Scenario map. 

This part of the scenario is the focus of our simulation. The organization of the forces (Order of Battle − 

ORBAT) is as follows: a mechanized battalion on the blue side and a parachute battalion on the red side. In this 

example, these units are organized as described in Figure 3 and Figure 4. The units are simplified for the purpose 

of clarity. 

 

Figure 3: Blue order of battle. Left column are total man power and number of vehicles per unit. 
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Figure 4: Red order of battle. Left column are total man power and number of vehicles per unit. 

4.0 DECISION SUPPORT FOR THE COMMANDER 

4.1 Decision Support Process Overview 

The decision support processes are focused on identifying the most effective plan instances as evaluated by all 

measures of effectiveness (MOEs). When there are several MOEs, we are faced with an MCDM problem when 

assessing which plan instances are most preferred. 

To find the best simulations, we must rank all simulation runs based on their MOEs. Thus, we need to assign 

weights to these measures. In some special situations, there might be sufficiently accurate knowledge of which 

parameter inputs and simulation outputs are most important to optimize to obtain a preferred outcome. When this 

is the case, it may be possible to directly assign weights to the different MOEs. However, this is usually not the 

case and is often a difficult problem for decision makers. As an alternative approach, we may let them express 

preferences on the relative importance between different MOEs or between any two disjoint subsets of MOEs. 

In [2], we developed a preference-ranking approach as an extension to Utkin’s [3] preference assignment method 

that is focused on finding the preferred order of importance of all MOEs from the preference assignments made 

by the decision makers. This extension uses interpolation in belief-plausibility intervals [4] regarding the 

obtained degree of preference of all different MOEs and delivers a complete ranking of all MOEs. The method 

accepts any number of preference expressions regarding the MOEs from any number of decision makers, for 

example, an expression such as “MOEi is more important than MOEj”; MOEi ≽ MOEj or an expression 

regarding two different subsets of MOEs such as “MOEi and MOEj are more important than MOEk and MOEl”; 

{MOEi, MOEj}≽{MOEk, MOEl}. 

Each MOE is ranked by 

 
1

2
[𝐵𝑒𝑙{𝑖}Θ({𝑀𝑂𝐸𝑖} ⋟ Θ) + 𝑃𝑙𝑠{𝑖}Θ({𝑀𝑂𝐸𝑖} ⋟ Θ)] (1) 

where Bel and Pls are the belief and plausibility, respectively, and  = {MOEi}; see [2] for details. 

The preference-ranking approach has been further extended to allow partial preference ranking of MOEs [5] 

using belief function theory [6–8]. Partial rankings of MOEs have higher belief-plausibility but less information 

value. It may be beneficial when the belief-plausibility is too low for the best complete rankings of MOEs. 

However, we use the complete ranking method [2] in this paper. 

Using the preference order for all MOEs, we adopt a Monte Carlo approach to assign weights for these MOEs. 

We randomly assign weights that abide by the preferred order of the MOEs, i.e., the most preferred measure will 



Skewed Distribution Analysis in Simulation-Based Operation Planning 

5 - 6 STO-MP-SAS-OCS-ORA-2015 

PUBLIC RELEASE 

PUBLIC RELEASE 

be weighted higher than the second most preferred measure, etc. Using a Monte Carlo approach, we provide 

alternative weight assignments for all measures, yielding alternative rankings of all simulations. The simulations 

with the highest average ranking are the most preferred. 

With this methodology, we obtain a ranking of all plans and can then analyze the best plans to learn which 

combination of parameter ranges leads to success. A process overview is provided in Figure 5. 

 

Figure 5: Process overview. 

The last process step in Figure 5, Decision Support, can be split into three sub-processes (Figure 6). They are: 

• The Analyst View [9], where all data are statistically analyzed by an analyst who may prepare specific 

questions to be answered, 

• The Commander’s Overview, where the best simulations leading to blue success are analyzed to provide 

information regarding the number of input parameters needed to explain the result, which parameters 

these are, and what values these parameters should assume in order for blue to achieve success, and 

• The Commander’s Specific Questions [10], where subsets of simulations are analyzed by looking at a 

subset of parameter values for some red parameters or for some blue parameters. 

 

Figure 6: Three components of decision support. 

The focus in this paper is on the Commander’s Overview. The approaches taken in the Analyst View are 

developed in [9], and the approaches taken in the Commander’s Specific Questions are developed in [10]. 

When analyzing the entire data set, we vary all input parameters independently, both concerning the red side and 

the blue side. Such an analysis constitutes an unrestricted data exploration and is usually a good first step to 

obtain an overview of the entire data set. This is what was performed in the Analyst View [9]. 

However, when we prefer an overview for the commander, we focus on the most important parameters leading 

to success. In this analysis, we want to find the important parameters: how many are they, and what are they? 

Both of these questions should be analyzed quantitatively by ranking alternative options by numeric evaluation. 

That is, 

• We want to know what the preferred number of parameters is, what the second most preferred number 

of parameters is, etc. We also want to see a numeric evaluation of these alternative numbers of 

parameters, giving us an opportunity to compare the different alternatives, and 

• For each alternative number of parameters of interest, we want to know what the most preferred group 

of parameters is, and what the second most preferred group of parameters is, etc. Again, we want to see 

numeric evaluations for the comparison of different groups of parameters. 
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Given that we have identified a few possibilities for the number of necessary parameters and what they might be, 

we are interested in finding within what ranges of these parameters we have blue success as defined by the 

MOEs. 

This is the idea of the Commander’s Overview sub-process: How many parameters do we need to achieve blue 

force success? What are these parameters? What are the value ranges for blue force success for these parameters? 

4.2 Commander’s Overview 

4.2.1 Background of Skewed Distribution Analysis 

Traditionally, data analysis within data framing has found important parameters and their value ranges by 

establishing a target function and analyzing this function. A target function can be a function of one MOE or a 

function of several, possibly weighted, MOEs. The target function specified is analyzed using a regression tree. 

This analysis yields a tree with alternative sequences of parameters at different branches of the tree with a two-

way split of the parameter value range at each tree node. By stepping through the tree and deciding on the 

preferred value range, a sequence of the importance of parameters is found. 

In the NATO study Data Farming in Support of NATO [10], we performed a case study on force protection.  

In this study, we defined a target function as a function of blue losses. However, it turned out that it was 

relatively easy in the simulation of the model to minimize the target function and achieve a global minimum of 

zero blue losses. This was achieved in 45% of all simulations. This caused the standard regression tree analysis 

to fail. As an alternative approach, the first author of this paper suggested a Skewed Distribution Analysis 

approach where we observe the frequency distributions of all discrete input parameters when studying a subset 

of simulations that achieved the global minimum. Continuous parameters were discretized. It was suggested that 

the importance of any parameter is equal to its distribution skewedness as measured by the Shannon entropy [12] 

of the normalized frequency of its values. This approach was not developed mathematically at the time and was 

used only visually within the NATO study. 

4.2.2 Conceptual Idea of Skewed Distribution Analysis 

The idea behind Skewed Distribution Analysis is that, if a parameter is important, there must be a decisive 

decision regarding that parameter that differentiates between success and failure. This implies that, if we 

partition the set of all simulation runs into two subsets, one for success and one for failure, we should observe 

this parameter to take different values in the two subsets. Specifically, the frequency of values within the subset 

should be highly different. Thus, within each subset, the distribution of values should be highly skewed.  

The analysis can also be performed for several parameters where we measure the combined parameter 

skewedness by their joint entropy. 

4.2.3 Entropy Approach to Skewed Distributions 

We can estimate the deviation of a particular distribution of interest from a corresponding uniform distribution 

over the same parameter by comparing its entropy with the uniform distribution. In this approach, we study the 

entropy of discrete distributions for parameters whose possible values are enumerated with integers. This is 

performed for the best 10% of all simulations as measured by MOEs [10] (e.g., on the best 1000 simulations of 

all 10 000 simulations) to quantify the skewedness of the input parameters. For example, 

• When a parameter can take up to a maximum of 20 different values, we chose these values as the 

possible states for that parameter, and 
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• When the number of possible values of a parameter exceeds 20, we partition the parameter range into 20 

different states. 

The entropy 𝐻 of a discrete probability distribution 𝑃 of a parameter 𝑋𝑖 that can take 𝑁𝑖 discrete states is defined 

as 

𝐻𝑖 =  − ∑ P(𝑥𝑖𝑎) log2 P(𝑥𝑖𝑎)

𝑁𝑖

𝑎=1

,                                                                 (2) 

where P(𝑥𝑖𝑎) is the probability for state 𝑎 of parameter i. A uniform probability distribution with  

𝑥𝑖𝑎 = 1/𝑁𝑖, 1 ≤ 𝑎 ≤ 𝑁𝑖 yields the highest entropy, for which (2) reduces to 

𝐻𝑖,𝑚𝑎𝑥 =  − ∑
1

𝑁𝑖
log2 (

1

𝑁𝑖
)

𝑁𝑖

𝑗=1

=  log2𝑁𝑖.                                                         (3) 

Because the lowest entropy is reached when a parameter occupies a single state, e.g., 𝑥𝑖1 = 1, 𝑥𝑖1, … , 𝑥𝑖𝑁𝑖
= 0 

⇒  𝐻𝑖,𝑚𝑖𝑛 = 0, we have 0 ≤ 𝐻𝑖 ≤ log2𝑁𝑖. Within this interval, we can regard the analyzed distribution as being 

farther from uniform the closer 𝐻 is to zero. This does not necessarily mean higher skewedness because 

skewedness in some sense implies 𝑥𝑎 monotonically changing with increases in a. However, because the sum of 

(2) is invariant with respect to the summation order of a, we can obtain the same entropy for a spiky distribution, 

which looks like noise. If the analyzed parameter is ordinal, i.e., with an inherent order (such as the number of 

something, a distance, a weight, etc.), this can mean that the dependence on that parameter is weak because noise 

seems to dominate. In cases of nominal (categorical) parameters, the order of the possible states has no meaning. 

One example is a distribution for which 10 different transportation routes are the most advantageous for an actor 

to follow in a large number of simulations. 

When measuring skewedness of a distribution, we prefer all input parameter values to be sampled from uniform 

distributions. However, because imperfections in the sampling of input parameters for each simulation case can 

occur, we correct for these by dividing the frequencies of input parameter values for the best 1000 simulations 

with the corresponding frequencies for the full set of 10 000 simulations. 

As a final adjustment to obtain a better understanding of skewnesses, we normalize all entropies by dividing 

them with 𝐻𝑖,𝑚𝑎𝑥 for each distribution i. We obtain normalized entropy via 

�̅�𝑖 =
𝐻𝑖

𝐻𝑖,𝑚𝑎𝑥
.                                                                                  (4) 

The entropy calculation can be extended to the normalized joint entropy of two or several parameter 

distributions. The rationale for this is to study which combinations (tuples) of parameters are most important to 

pay attention to when trying to find good simulations. The number of possible states will, in those cases, be the 

product of the number of states for the singular distributions. For a pair (2-tuple) of parameters {𝑥𝑖, 𝑥𝑗},  

a simulation is in some joint state {𝑥𝑖𝑎 , 𝑥𝑗𝑏} where 1 ≤ a ≤ Ni, 1 ≤ b ≤ Nj. 

Analogously, for 2-tuples, there are 𝑁𝑖 ∙ 𝑁𝑗 joint states to sum over in the calculation of the joint entropy 𝐻𝑖𝑗.  

We have, 
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𝐻𝑖𝑗 =  − ∑ ∑ P(𝑥𝑖𝑎 , 𝑥𝑗𝑏) log2 P(𝑥𝑖𝑎 , 𝑥𝑗𝑏).

𝑁𝑗

𝑏=1

𝑁𝑖

𝑎=1

                                                    (5) 

We obtain the maximum joint entropy 𝐻𝑖𝑗,𝑚𝑎𝑥 =  log2(𝑁𝑖 ∙ 𝑁𝑗) and calculate the normalized joint entropy for  

2-tuples as 

�̅�𝑖𝑗 =
𝐻𝑖𝑗

𝐻𝑖𝑗,𝑚𝑎𝑥
.                                                                                (6) 

The 2-tuples approach can easily be extended for 3-tuples, 4-tuples, etc. 

4.2.4 How to Find Important Parameters and Their Ranges 

The above simulation and analysis form a basis for identifying the variables, and the associated values, that most 

decisively yield a desirable operational outcome. 

In the previous subsection, we calculated the normalized joint entropy for a selection of parameters.  

Low normalized joint entropy means a highly skewed distribution and suggests that the operational outcome is 

highly sensitive to the value selection for that parameter (or set of parameters). The minimum entropy value is 

zero when only one value leads to success. Conversely, high normalized joint entropy indicates that the 

simulation result is more or less independent on the value of that parameter and that the parameter in question 

may be ignored in further analysis. 

A first step to isolate the most decisive parameters and values is to look at the normalized joint entropies of all 

combinations of parameters. In the previous section, we described the computation of the normalized entropy of 

single parameter distributions (1-tuples) (4) and pairs of parameter distributions (2-tuples) (6). Generally, we call 

such combinations k-tuples. 

In Figure 7, we see the minimum normalized joint entropy over all k-tuples from one to 16 parameters. 
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Figure 7: The minimum joint entropies for all k-tuples from k = 1 to k = 16. 

As seen, the minimum normalized joint entropy apparently decreases monotonically as the number of parameters 

increases. For example, min
𝑖𝑗

�̅�𝑖𝑗 ≤ min
𝑖

�̅�𝑖, etc. This is because 𝐻𝑖𝑗,𝑚𝑎𝑥 (the denominator) increases faster than 

Hij (the numerator) in equation (6) (note that, while the inequalities max(𝐻𝑖, 𝐻𝑗) ≤ 𝐻𝑖𝑗 ≤ 𝐻𝑖 + 𝐻𝑗 hold for 

unnormalized entropies, this is not the case for normalized entropies (4, 6)). However, although it appears 

advantageous to consider more and more parameters, this may be costly in general. Hence, at some point  

(e.g., for some threshold, or when the normalized entropy decrease is small enough), it is sensible to stop 

considering more parameters. From Figure 7, it appears that considering three parameters may be worthwhile, 

but adding a fourth parameter does not add much. 

Once the number of parameters k to consider has been established, we can begin to consider which are the 

preferred parameters and study their optimal value ranges. In Figure 8, we present parameters and parameter 

value ranges yielding the lowest entropy. 
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Figure 8: Skewed Distribution Analysis of 16 input parameters (1-tuples) 
and the 16 best 2-tuples (rotated 90º counter clockwise). 
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On the first row, we observe distributions for single parameters (1-tuples) with the lowest normalized joint 

entropy depicted as a bar consisting of a stack of cells. Each cell represents a parameter value or a parameter 

interval. The parameter value, or the lower interval edge, is shown to the left of the cell. The value inside the cell 

is the frequency of that particular value in the skewed distribution. The frequency value is emphasized by the 

color of the cell: red for low frequencies, green for high, and yellow for frequencies in between. To the right of 

each parameter stack is a thin blue bar, which represents the normalized joint entropy value (4). Note that the 

maximum height of the blue normalized joint entropy bar (Hmax) is the same for all k-tuples on each row for easy 

comparison. 

On the second row, we show pairs of parameters (2-tuples) with the lowest normalized joint entropy value in 

increasing order. Note that, in the visualization (in Figure 8, row 2), we present several pairs of bars with two 

marginal distributions rather than single bars with joint distributions. Also note that k-tuples with sizes larger 

than two can be presented (although they are not shown in the figure). The total number of bar groups for each k-

tuple size is the binomial coefficient 

(
𝑛
𝑘

) =
𝑛!

𝑘! (𝑛 − 𝑘)!
,                                                                            (7) 

where, in our case, the number of parameters 𝑛 = 16. Already at 𝑘 = 2, the number of 2-tuples bars is 120 (only 

the first 16 are shown). 

Given the preferred number of parameters, we can study various parameter tuples on each row. Those on the left 

have the lowest normalized joint entropy and tend to have skewed distributions with particular parameter ranges 

of importance. On the right of Figure 8, we have parameters that did not turn out to be decisive for the outcome 

of the simulations. 

4.2.5 An Example of Skewed Distribution Analysis 

The previous subsection outlines the general procedure for how to work with skewed distributions. Let us 

exemplify this by looking at actual parameters and values of Figure 7 and Figure 8.  

We start by looking at the minimum normalized joint entropy for k-tuples in Figure 7. We find an initial sharp 

decrease in normalized joint entropy but only small improvements from tuples of size eight or so. In this case, 

the 1-tuple with the minimum normalized joint entropy is Rforce2; the 2-tuple with the minimum joint entropy 

consists of the parameters BStrf90PI and BPI, as shown in Figure 8. As the normalized joint entropy reflects how 

decisive a k-tuple is, we might want to select k-tuples with low normalized joint entropy but with as small a k as 

possible, as a large k means a more complex tuple to address and a longer time to generate it. 

Looking at the 1-tuples in Figure 8, if those are the commander’s choice, we see that the first three (Rforce2, RPI 

and Rforce1; row 1) have similar normalized joint entropies. They are therefore of roughly equal importance.  

If the result of the simulations should be understood from just one parameter, here are the options. In the case of 

Rforce2, we can see that a majority of the best simulation outcomes have values in the range of six to ten 

(colored green). 

For 1-tuples, the first three consist of input parameters for the simulation regarding the red force. The 2-tuples in 

Figure 8 show that the most preferred parameters for 1-tuples may not necessarily be included in the preferred 

tuples when the tuple size is increased to two. For 2-tuples, the tuple with the minimum normalized joint entropy 

includes two parameters for the blue force. 
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The best 1-tuple and the best 2-tuple are two alternative ways of explaining how the MOEs can be optimized. 

Either Rforce2 assumes an optimum value, or alternatively both BStrf90PI and BPI assumes optimum values 

simultaneously. All other 1-tuples and 2-tuples are also possible explanations for how to optimize the MOEs, but 

to a lesser degree as the have higher entropies. In general, a k-tuple with low k is preferred unless a more 

complicated way of optimizing the MOEs by an m-tuple (𝑘 < 𝑚) is more cost efficient. 

5.0 CONCLUSIONS 

We have presented a decision support methodology for a Commander’s Overview that presents a big-picture 

overview of simulation results, describing which parameters are important for success and within what ranges 

these parameters must lie to achieve success in operation planning. We consider this methodology, together with 

the previously developed Analyst View [9] and Commander’s Specific Questions [10], to be a first step towards 

taking the data farming methodology from its traditional analytical view and applying it in an operation-planning 

context and a decision-making mode. 
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