
13th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications

Statemachine Matching in BOM based model Composition

Imran Mahmood,

Rassul Ayani,

Vladimir Vlassov
Royal Institute of Technology (KTH),

Stockholm, Sweden

{imahmood, ayani, vladv}@kth.se

Farshad Moradi
Swedish Defense Research

Agency (FOI),

Stockholm, Sweden
farshad@foi.se

Abstract

Base Object Model (BOM) is a component-based standard

designed to support reusability and Composability. Reusability

helps in reducing time and cost of the development of a simulation

process. Composing predefined components such as BOMs is a

well known approach to achieve reusability. However, there is a

need for a matching mechanism to identify whether a set of

components are composable or not. Although BOM provides good

model representation, it lacks capability to express semantic and

behavioral matching.

 In this paper we propose an approach for matching

behavior of BOM components by matching their statemachines.

Our proposed process includes a static and a dynamic matching

phase. In the static matching phase, we apply a set of rules to

validate the structure of statemachines. In the dynamic matching

phase, we execute the statemachines together at an abstract level

on our proposed execution framework. We have developed this

framework using the State Chart Extensible Markup Language

(SCXML), which is a W3C compliant standard. If the execution

terminates successfully (i.e. reaches specified final states) we

conclude that there is a positive match and the behavior of these

BOMs is composable. We describe the matching process and the

implementation of our runtime environment in detail and present a

case study as proof of concept.

Keywords: Statemachine matching; BOM Composition; SCXML;

Abstract Level Execution;

1. Introduction

The ability to compose reusable simulation components

in a simulation environment efficiently and effectively is a

key need recognized by the Modeling and Simulation

(M&S) community. The basic requirement for this is a set

of meaningfully composable components that can be

coupled together to model and develop interoperable

simulations [1]. In order to be able to reuse the simulation

components, we have to first check whether they are

composable or not. In this section, we will discuss basic

factors involved in the composition of simulation

components.

In a previous work [2], a rule-based seven step process

was proposed. It was suggested that a set of BOM

components can be passed through this process in order to

match them and analyze their Composability degree. With

the help of this process a simulation modeler can evaluate

the syntactic, static semantic and dynamic semantic

composability of a set of input BOMs. These three

composability properties are the different perspectives of a

composition. As the name suggests syntactic composition is

concerned with the matching of syntactic information, such

as message name, mode of action and number of

parameters. Static semantic checks the entity and data types

and their meaningful interconnection, while dynamic

semantic handles matching of the components behaviors,

i.e. state machines [7].

In this paper, we have mainly focused on the Dynamic

Semantic Matching part of the composition as this problem

needs to be addressed further. Basically this part of the

composition deals with the behaviors and involves a deeper

study of statemachines. It also demands a suitable platform

for the implementation.

Although an approach for statemachine matching was

mentioned in the previous work [2]; however, based on our

current research, we propose a different approach using a

World Wide Web Consortium (W3C) standard and

introduce a new process to perform dynamic statemachine

matching of BOM components. Our proposed approach

divides the matching process of BOM components into two

main parts. In the first part, each statemachine of the BOM

is validated against a set of rules to ensure that they adhere

to a finite statemachine (FSM) standard as prescribed by

automata theory [3]. This part helps to check that all the

participating statemachines meet a given criteria for

execution. In the second part, statemachines are executed at

an abstract level using our statemachine runtime

environment. This environment is built using the State Chart

language (SCXML) and an execution engine, which is a

W3C standard [10]. The purpose of the abstract level

execution is to check if all the statemachines actually

behave as they were intended by traversing through their

states on exchanging events and finally reach the finish

state. If the execution is terminated successfully we can

assert that the statemachines have a positive match. The rest

of the paper is organized as follows. In section 2, we review

some related material, including SCXML. In section 3, we

http://www.kth.se/
mailto:imahmood,%20ayani,%20vladv%7d@kth.se
mailto:farshad@foi.se

detail our proposed approach in its implementation. In

section 4, we present a case study and section 5 concludes

our work.

2. Background

Before we discuss our main contribution and elaborate

our solution for the dynamic matching of BOM

components, we will cover a brief background of different

concepts and technologies involved in this research.

2.1 Composability

The key element of this work is the term

Composability, which is defined by Mikel D. Petty in theory

of Composability [4] as follows:

“Composability is the capability to select and assemble

simulation components in various combinations into

simulation systems to satisfy specific user requirements”

Composability is further divided into three different

categories: i) Syntactic Composability, ii) Semantic

Composability and iii) Pragmatic Composability[7].

Syntactic Composability means that the components fit

together, whereas the Semantic Composability means that

the components work together in a meaningful way [4].

Moreover Syntactic Composability is concerned with the

compatibility of implementation details, such as parameter

passing mechanisms, external data accesses, and timing

mechanisms [4]. In simpler words Syntactic Composability

determines whether the components can be connected or not

whereas Semantic Composability is concerned with the

behavioral validity of the composition. The latter refers to a

composition where combined coupling of two or more

simulation components is considered meaningful and

computationally valid [6]. Pragmatic composability is yet

another type which is concerned with the context of the

simulation, and that whether the composed simulation meets

the intended purpose of the modeler [7].

There have been some significant development in

syntactic Composability both within software engineering

industry and Simulation communities, but Semantic

Composability is still an open ended problem and has

inspired many researchers to contribute theoretical and

experimental research in this regard [7].

2.2 Base Object Model (BOM)

BOM is a SISO standard [8] defined in form of an

XML document. It encapsulates information needed to

describe a simulation component. BOM has four main parts:

i) Model Identification ii) Conceptual Model iii) Model

Mapping and iv) HLA Object Model. The first part is meant

to store the metadata of the component, which is basically

the general metadata information about the component

itself. The second part is the Conceptual Model, which

contains information about the pattern of interplay,

statemachine, entities and the events of the component.

Entities and Events represent data about the real world

object models and their interaction in form of Entity types

and Event Types [8] whereas the pattern of interplay and

statemachine collectively represents the dynamic behavior

of the component. The other two parts Model Mapping and

HLA Object Model relate to the BOM HLA assembly.

Figure 1 represents the Conceptual Model of a BOM:

Figure 1 BOM Conceptual Model (Courtesy to [9])

Pattern of interplay describes the type and sequence of

events and actions that take place among components.

Statemachine defines the behavior model of a component

and represents the dynamic element of BOM component.

The BOM Statemachine provides means to formalize the

change in the state of an entity with respect to its

corresponding actions, thus in a way it depicts the abstract

model of the behavior of the BOM towards each action. Our

main focus in this work is indeed the statemachines. A

typical BOM Statemachine refers to a particular entity and

lists all possible states of that entity, and the exit conditions.

An exit condition must be satisfied in order to exit a current

state and enter the next state as specified in a state transition

table. Each entry in the table is a triple identifying current

state, exit condition and next state.

 BOM statemachines are basically event driven as

they iterate through the states by sending or receiving

events. When a statemachine transits to a new state, it

performs an action. Each action correlates to a particular

event specified in the event type group of the conceptual

model. An example of a BOM statemachine is described in

Figure 2:

<stateMachine>

<name>NAME</name>

<conceptualEntity>ENTITY</conceptualEntity>

<state>

<name>STATE</name>

<exitCondition>

<exitAction>ACTION</exitAction>

<nextState>NEXT STATE</nextState>

</exitCondition>

</state>

</stateMachine>

Figure 2: BOM Statemachine

2.3 State Chart Extensible Markup Language
The State Chart Extensible Markup Language

(SCXML) is a W3C compliant standard [10] which provides

a generic statemachine execution environment [5]. SCXML

is a general purpose event-based statemachine language and

can be used as a standard statemachine framework. SCXML

is an extension to CCXML (Call Control Extensible Markup

Language) and it was initially designed for voice

applications however its usage is open to a wide range of

problems. Especially it offers a clean and well-thought out

semantics for sophisticated constructs representing finite

statemachines [10]. The SCXML Java API implementation

consists of the following components:

i) SCXML Document

A typical SCXML document represents the basic

structure of a given statemachine. This document is used to

input a statemachine model in the runtime environment for

an abstract level execution [11]. Figure 3 illustrates the

XML structure of this document:

Figure 3: SCXML Format

ii) SCXML Parser

Apache Common’s SCXML also provides an

implementation of an XML Parser that can parse SCXML

documents into Object Model. This Object model is

required by yet another component called SCXML

Executor, which is the core component of the runtime

environment. This parser not only parses the elements of

SCXML document but also validates its syntax and

structure, thus proves to be very useful tool for validating

any statemachine according to the given standard [11].

iii) SCXML Engine

Java SCXML engine is capable of executing

statemachines defined by SCXML documents, while

abstracting out the environment interfaces. The most

important of all is the Executor which is mainly responsible

for initiating the engine. SCXML Engine also provides an

Event Dispatcher interface for wiring the behavior of

SCXML <send> actions so as to receive callback

implementation provided to the executor. SCXML also

provides an implementation of Listener to be registered

within the engine, which is informed about the progress of

the statemachine via notifications when transitions are

followed. This listener is useful to carry out statemachine

execution, by triggering events (time based or using input

consoles). A TriggerEvent class is responsible for firing

events. The Error Reporter interface is used by the engine

for reporting errors to the host environment or logger. The

SCXML Engine specification further allows

implementations to support multiple expression languages

so that SCXML documents can be used in varying

environments. Apache’s Commons SCXML currently

supports different expression languages for expression

evaluation, which proves to be very useful for evaluating

conditions during the statemachine transactions. [11]

Once the SCXML engine has been initialized, the

statemachine progress is based on the events that are fired

on it. When an event is fired, if the current set of states has

transitions waiting for that event, the statemachine is said to

"follow" that transition, which may possibly yield a new set

of current states. Most statemachines will ultimately reach a

"final" state, wherein the statemachine has said to have

executed to completion. Moreover the received events are

also logged using Commons Logging. [11]

3. Statemachine Matching

In this section, we will discuss our main contribution

and implementation of the proposed solution for the

statemachine matching of BOM components.

We define Statemachine Matching of BOMs as: A

process by which we can identify that the statemachines of a

given set of component models (with a given set of initial

states) can correctly interact with each other to perform a

joint activity

Statemachine matching provides means to ensure the

causality order of events in the composed model [7]. If we

find a positive match among a group of state-machines in

question, we can say that their pertinent BOMs are

dynamically composable It should be noted that the

matching of an abstract model is a necessary condition and

not a sufficient condition for BOM composition.

In our proposal for matching the statemachines of

various interoperating BOM components, we define a

process which is divided into four steps:

Figure 4 Overview of statemachine matching process

This four step process takes BOM XML document as

an input. In the first step, we parse the BOM xml and collect

statemachine objects. In the next step, we subject these

<SCXML initialstate= STATE1>

<state id = STATE1 final = True>

<transistion event=EVENT NAME

 target=STATE2/>

</state>

<state id = STATE2 final = false>

<transistion event=EVENT NAME

 target=STATE1/>

</state>

</SCXML>

Parsing
Static

Matching

SCXML → BOM

Transformation

Dynamic Matching

(Execution)

Step 1 Step 2 Step 3

Step 4

statemachines to a set of static rules. When all the rules are

sequentially validated, we apply a transformation procedure

to convert BOM XML to SCXML format. Then in the last

step, we finally execute the SCXML statemachines and infer

the results from its executing.

Step 1: BOM Parsing

In this step, a BOM XML document is parsed and its

corresponding Java objects are generated. Classes of these

objects are shown in Figure 5

Figure 5: Classes of Java Objects generated by the parser

A StateInfo object represents data of a single state. It has a

state name and a string array of Exit Conditions. Each Exit

Condition is stored in the following format:

Exit Condition = {Exit Action: Next State}

A StatemachineInfo object stores the metadata of a

statemachine such as Name and the Corresponding BOM

Entity and a collection of states. An ActionInfo object

represents the data structure of the actions involved in the

transitions of the states.

Getters() and Setters() functions are used to set or retrieve

the data like in Java Beans.

The states are parsed from BOM’s statemachine and

stored in StateInfo objects. An Array List of StateInfo

objects is then stored in StatemachineInfo object. The

actions are parsed from BOM’s pattern of interplay

separately and each action is stored in ActionInfo object, an

ArrayList of which is maintained to lookup for sender and

receiver of each action.

Step 2: Static Statemachine Matching

In the next step, the statemachine objects are

sequentially passed through a set of rules. We call them

Static Matching Rules. These rules are used to check

whether a particular state-machine fits for the matching

process. If a statemachine is passed by these rules, only

then the matching process can continue otherwise the

composition becomes invalid for the given set of

components.

Following is the proposed set of rules:

RULE 1: Existence of Exit Condition

All states in a statemachine must have an exit

condition.

This rule ensures that a statemachine cannot enter into a

state and stay there forever.

The exit condition in Rule 1 is either a send action or a

receive action. According to BOM specification [8],

“Actions” are responsible to trigger exit conditions in the

statemachines. An action is described in the pattern of

interplay block. Each action is mapped to an event described

in the EventType block.

RULE 2: Existence of a send action for each

receive action

In any of the participating statemachines for every

receive action, which causes an exit condition of a

state, there must exist a state that has the

corresponding send action.

For all those states in a statemachine, whose exit

conditions are based on actions that are expected to be

received (called Receive actions) from some other

participating statemachines, there must exist a

corresponding state in any of other statemachines, that has

the same action which is of type Send (called Send action).

If both Send and Receive actions are matched then the

statemachines can inter-operate otherwise there will be a

situation when a statemachine enters a state and waits

endlessly for an event to receive whose sender is absent in

the composition. The satisfaction of this rule ensures, that

there is no state present in any of the participating

statemachines, that is depended on an event (Receive

action), which will never occur because there is no sender.

We have termed the pair of two actions (Receive action &

Send action) as Couple.

RULE 3: Terminal Condition

There must exist at least one state marked as final in

at least one statemachine among all the participants,

such that at least one exit condition leads the

statemachine to this finish state.

If there is no final state, we cannot be certain that a

joint activity has been completed; instead there is a

possibility that statemachines are switching their states in an

infinite loop and are stuck in a live lock. Hence reaching to

a final state can only tell that an activity has been completed

StateInfo

 - state : string

 - exitCond: string[]

 - final: boolean

 + getters()

 + setters()

StatemachineInfo

 - name : string

 - entity : string

 - states : ArrayList

 + getters()

 + setters()

ActionInfo

 - sequence : int
 - name : string
 - event : string
 - sender : string
 - receiver : string

 + getters()

 + setters()

successfully. The problem with the BOM is that there is no

provision to mark a final state, as current BOM specification

[8] does not support any XML Tag for marking final states.

Tough the SCXML specification requires that the final state

should be declared. So one way to resolve this problem

would be to allow the modeler to select a final state during

the matching process and another option would be to

compute it by looking at the last action in pattern of

interplay and retrieve its corresponding state thus we can

assume that state to be the final state.

Rule 1 & 3 are necessary to be fulfilled as they comply

with the statemachine standard given by SCXML

specification. Whereas Rule 2 ensures that each receiver has

a corresponding sender. When all the rules are validated, we

can continue to the next step.

STEP 3: Transformation

In this step, the statemachine objects are transformed to

SCXML format. Each statemachine will be transformed to a

separate SCXML document. The term transform refers to

the fact that the statemachines are transformed from BOM

to SCXML

STEP 4: Dynamic Statemachine Matching

This step deals with an abstract level execution of the

statemachines. We will discuss the internal details of the

structure of our proposed runtime environment in this

section. Our runtime environment is using SCXML

Executor API as an underlying layer for execution. We have

extended this layer, by implementing a multi-threaded

synchronization of executor instances, each initialized by

inputting the SCXML document. Also we have introduced a

mutually exclusive shared variable for simulating send and

receive of actions. The purpose of this execution is to

initialize all the statemachines to their initial states and

simulate the send and receive of events to observe the

transaction of the statemachines until they reach their final

state. This will tell us that all the statemachines have valid

and ordered inter communication and thus match each other.

In this step all SCXML documents collected in step 3

are dispatched to the run-time environment for execution.

Each document represents a statemachine and carries

internal information about its states, their transitional

conditions and next states as prescribed by the SCXML

structure. Each SCXML document is parsed, and the

runtime spawns an Executor thread to execute the

statemachine described by the corresponding SCXML

document. The Executer instance is initialized by the

SCXML Engine. Multiple Executor threads (one thread per

statemachine) are our proposed multithreaded

implementation of statemachine execution on top of the

SCXML executor interface. Using multiple threads our

runtime environment allows concurrently executing and

synchronizing instances of different statemachines. Each

Executor thread is responsible for the dynamics of the

statemachine associated with it, i.e., it performs state

transitions, sends and receives events according to the

model of the statemachine executed by the Executer.

Another component in our execution framework is the

Event Controller, which is meant to simulate

communication of events between the statemachines.

Events are passed via a synchronized shared object Action

which represents a FIFO event channel. The Action object is

accessed by Executers (statemachines) by means of

synchronized Put() and Get() methods to send and receive

events passed over the channel, respectively. Figure 6

represents our proposed statemachine matching process:

Figure 6: Statemachine Matching Process

BOM

XML

Parser

SM

object 1

SM

object 2

SM

object n
...

RULE VALIDATION

Rule 1 Rule 2 Rule 3

Pass

No

Yes

SM

object 1

SM

object 2

SM

object n

BOM → SCXML

TRANSFORMATION

...

Stop

SCXML

1

SCXML

2

SCXML

n

...

Action

Lookup

Table

No

Yes

Action

Event Controller

Executor

 2

Executor

1
Executor

n

Put() Get() Get() Get() Put() Put()

IsFinal(

)

Stop

When the execution begins, each Executor computes its

next expected event (either send or receive) by considering

the Exit_Actions of the current state. If the Exit Action is of

type “Send” then the Executor will fire a corresponding

event in the Engine internally and move on to next state. It

will also execute the Put() method to pass the event to the

Event Controller (as if it was actually sent by the BOM

component). If the Exit Action is of type “Receive” then the

Executer will wait until some other Executer (statemachine)

sends the expected event, i.e. puts the event in the Event

Controller.

This is how each the Executor will simulate send and

receive events and cycle through its corresponding states.

Each time a state is traversed, it is checked against IsFinal()

and if the final state is reached then that particular Executor

thread will stop the execution and report the successful

dynamic match.

In Step 4, all the participating statemachines execute

simultaneously. They traverse through their internal states

by sending or receiving events and transit to their next

states. If any of the statemachine reaches the marked final

state, we can conclude that there is a positive match. The

execution framework allows detecting deadlocks. A set of

statemachines is deadlocked when each statemachine in the

set is waiting for an event which can only be caused by

another statemachine in that set. The statemachines

executed in our framework are in a (total) deadlock when all

statemachines Executors are executing the Receive exit

action (i.e. waiting for an event) and the Event Controller

channel is empty. This will essentially help us to determine

the problem and help the modeler to resolve the deadlock by

modifying the statemachine model.

4. CASE STUDIES

In order to test our matching approach, we have

considered a Case Study with two scenarios. One will

represent a successful scenario while the other will represent

a scenario where even though the statemachines will pass

the static matching phase, but they will face deadlock during

the execution. These case studies are simulation of a

Restaurant.

4.1 SCENARIO A:

The basic theme of this scenario in the Case Study is

that customers arrive to a restaurant, order food, eat pay

their bills and then leave. There are five entities in this

scenario: Customer, Waiter, Queue, Table and Chef. A

sequence diagram in Figure 7 represents the pattern of

interplay between these entities. The purpose of this figure

is to give an overview of the interaction between the

entities.

Join

JoinAck

TakeSeat

Occupy

RequestMenu

GiveMenu

OrderFood

ServeFood

RequestBill

GiveBill

PayByCash

Release

CleanTable

ConveyOrder

FoodReady

RecieveCash

TableCleaned

TableReady

Customer Waiter Table Queue Chef

Figure 7 Sequence Diagram

All of the statemachines are developed in a Restaurant

BOM. This BOM was subjected to our Statemachine

matching process. In step 1, the BOM was parsed and the

objects (StatemachineInfo, ActionInfo and StateInfo) were

populated in a data collection. Each StateInfo is a triple

consisting of current state, exit condition and next state.

Whereas each ActionInfo is a triple consisting of Event

name, Sender and Receiver.

ServeFoodFinishEatingRequestBill

Join Join Ack TakeSeat

Ready WaitforAck Waiting Walking

Seated

OrderingEatingFinishedFood

Paying

Leaving

SelectingFood

Waiting
Waiting

ForMenu

Waiting

ForBill

GiveMenu

Occupy

RequestMenu

OrderFood
GiveBill

PayByCash

RecieveCash

Release

Figure 8 Customer Statemachine

BringingMenu

TakingPayment

ServingFood

PreparingBill

TakingOrder

CleaningTable Ready

GiveMenu

RequestBill

PayByCash

RecieveCash

CleanTable

TableCleaned

OrderFood

ConveyOrder

GiveBill

RequestMenu

ServeFood

FoodReady

Figure 9 Waiter Statemachine

Cleaned

Occupied Dirty

GettingCleaned

Ready
TableReady ↑

CleanTable ↑

TableCleaned ↓

Occupy ↓

Released ↓

Figure 10 Table Statemachine

QueuingCustomer

Allocating

Join

JoinAck

TakeSeat

TableReady

Ready

Figure 11 Queue Statemachine

Ready

Cooking

ConveyOrder↓

FoodReady↑

Figure 12 Chef Statemachine

Figure 8-12 represent the individual statemachines of

each entity involved in the scenario. Here ↑ arrow means

Sent Event where as ↓represents a received event.

In step 2 the corresponding data was then injected to

Rule Validation Module, which checked all the three rules

on the five statemachines. Since each statemachine contains

valid exit actions, so they all passed Rule 1. Then all the

Receive actions were compared to their respective senders

and as they exist, so they also passed Rule 2. For Rule 3,

we manually assigned Customer’s Leaving state to be the

final state of the scenario, as when Customer leaves the

restaurant, we can say that the scenario is successful. When

all three rules were passed the BOM was qualified to be

transformed to SCXML documents. In step 3 five SCXML

documents were generated, each representing the

corresponding statemachine of the components.

In step 4, each SCXML document was then executed in

our runtime environment. When the threads were initialized,

each statemachine was reset to its initial state. Then they

identified their next action. The first thread which was

responsible to put() an action in the Event controller was

Customer and the action was Join. (See pattern of interplay

in Figure 7). So the customer proceeds to its next state by

firing Join in its internal statemachine and place that action

in the event controller. This simulated the sending of an

action. This sent action was expected only by the Queue

statemachine, so when the Queue got a chance to

synchronize get(), it picked the event fired the event in its

internal statemachine and then proceeded to the next state.

This simulated the receiving of an event. This is how all the

statemachine exchange the actions and proceed to their next

states. In each transaction of a state, we are comparing if the

current state is a Finial state or not. In the latter case we

continue the execution and in the former case we terminate

the loop and a message is printed out by the event logger

which shows that the BOM statemachine were matched.

4.2 SCENARIO B:

This scenario is similar to the previous one, but the only

difference is that we have introduced a different waiter

component. The behavior of this waiter is such that he takes

order from a customer and then waits for the customer to

pay. Only when the customer has paid, he serves food. Now

this waiter component will pass the static matching phase

because it fulfills all the requirements. However during the

dynamic execution, there will be a deadlock because the

customer orders food and wait for it whereas the waiter

expects the customer to pay before he eats his food. When

the execution will reach the state TakingOrder the waiter

will give bill to the customer and wait for the payment. But

on the other hand the customer will wait for the waiter to

ServeFood (See figure 8), so there will be a deadlock. Thus

the statemachines do not match. Figure 13 represents the

statemachine of the modified waiter

BringingMenu

TakingPayment

ServingFood

TakingOrder

CleaningTable Ready
GiveMenu

PayByCash

CleanTable

TableCleaned RequestMenu

WaitingForPayment

GiveBill

OrderFoodConveyOrder

RecieveCash

ConveyingOrder

FoodReady ServeFood

Figure 13 Modified Waiter Statemachine

4 Conclusions and future work

In this paper, we have defined statemachine matching and

proposed a process that includes a static and a dynamic

matching phase. In the static phase, we apply a set of rules

to validate the structure of statemachines. The purpose of

static matching is to detect possible structural problems in

the participating statemachines. If a statemachine fulfills

these rules, we transform it to a standard W3C SCXML

format. In the second phase, we execute all the participating

statemachines in the runtime execution environment that we

have built on top of SCXML. The purpose of dynamic

matching is to execute statemachines at an abstract level and

detect possible deadlock. If the execution terminates

successfully we conclude that the statemachines match each

other. It should be noted that the matching of an abstract

model is a necessary but not a sufficient condition for BOM

composition. We have also discussed a case study to support

our proposed method.

This matching approach will execute the statemachines

in our runtime environment, help us to analyze the

behavioral composition of BOMs and detect possible

deadlock in the composed model.

This work has several limitations. First, it considers

deterministic state machines only. Second, for simplicity,

we have only considered single instance execution of each

component participating in the composition i.e., in our case

study we have only used one instance of customer, waiter,

table, queue and chef. However in future we will extend our

solution by introducing parallel execution of multiple

instances of all participants in the composition and

reevaluate our matching approach. Third, in our

implementation we have not considered expression

evaluation which is normally coupled with the transition

rules of statemachine to model complex behaviors e.g., a

customer may only join a queue when it is not full. So

evaluating expressions along with the exit rules will be more

realistic abstraction of the statemachines. There is a

provision of different expression evaluation languages in

SCXML framework which we intend to exploit to improve

our matching technique.

5 References

[1] P. Gustavson, T. Chase, “Using XML and BOMS to rapidly

compose simulations and simulation environments”,

Proceedings of the 2004 Winter Simulation Conference.

[2] F. Moradi, R Ayani, S. Mokarizadeh, G. H. Shahmirzadi, G.

Tan, “A Rule-based Approach to Syntactic and Semantic

Composition of BOMs”, 11th IEEE Symposium on

Distributed Simulation and Real-Time Applications, October,

2007.

[3] A. Gill, Introduction to the theory of finite state-machines,

Book, McGraw Hill, 1961 New York.

[4] M. D. Petty, E. W. Weisel, R. R. Mielke, “Overview of Theory

of Composability”, Virginia Modeling Analysis & Simulation

Center, Old Dominion University, 2004.

[5] J.L. Martin, S. Mittal, B. Zeigler, J. Manuel, “From UML

Statecharts to DEVS State Machines using XML”,

IEEE/ACM conference on Multi-paradigm Modeling and

Simulation, Nashville, September 2007.

[6] Yong Meng Teo , C. Szabo, CODES: An Integrated Approach

to Composable Modeling and Simulation; 41st Annual

Simulation Symposium, Ottawa Canada, 2008

[7] F. Moradi, “Framework for Component Based Modeling and

Simulation using BOMs and Semantic Web Technology”,

PhD Thesis, KTH/ICT/ECS AVH-08/05—SE, 2008

[8] Base Object Model (BOM) Specification, SISO-STD-003-

2006, Prepared by: SISO Base Object Model Product

Development Group. http://www.boms.info/standards.htm

(Last visited May, 2009).

[9] Guide for Base Object Model (BOM) Use and Implementation,

Simulation Interoperability Standard Organizations (SISO),

31 March 2006.

[10]State Chart XML (SCXML), A Statemachine Notation for

Control Abstraction, http://www.w3.org/TR/scxml (Last

visited May, 2009)

[11]State Chart XML (SCXML),

http://commons.apache.org/scxml/ (Last visited May, 2009)

http://www.boms.info/standards.htm
http://www.w3.org/TR/scxml
http://commons.apache.org/scxml/

