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Abstract – As the amount of information accessible to
military intelligence continues to surge, operator assisted
surveillance becomes less tractable. To process the informa-
tion stream efficiently, automatic systems for threat detection
are called for. These systems must be sufficiently robust to
process incomplete or noisy data, and capable of dealing
with uncertainties and probabilities. For safety reasons and
accountability, it is imperative that the surveillance systems
are specified in a formal framework that allows for rigorous
mathematical verification. To this end, we demonstrate how
the unobstructed keyhole plan recognition problem can be
modelled within the framework of weighted unranked tree
automata, and outline a software system for recognition of
hostile behavior.

Keywords: plan recognition, activity recognition, weighted
unranked tree automata, impact assessment.

1 Introduction
Plan recognition is the task of inferring an agent’s plans

and goals, based on observations of the agent’s actions, or
the effects of those actions [10, 42]. Different fields refer
to plan recognition as goal-, intent-, behavior -, or activity
recognition. The latter term is common within medicine,
where it has important applications for, e.g., the rehabilita-
tion of patients suffering from dementia. Presently, exten-
sive efforts are directed towards the development of systems
that can aid elderly patients in their everyday routines, thus
empowering them and making them more self-reliant.

In this paper, we view plan recognition (PR) as a means
for automatic threat detection. Military intelligence typ-
ically receives information from a wide range of sources
such as field operatives, sensors, political delegators, public
news flows, surveillance, and administrative agencies. To
derive predictions about critical events from such heteroge-
nous data is as important as it is difficult. For this reason,
software systems have been developed to support human an-
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alysts in their task. One example is Impactorium, a collec-
tion of software tools for information fusion developed by
the Swedish Defense Research Agency (FOI) [20]. Our ob-
jective is to extend Impactorium with a component for PR-
based threat detection. To guarantee correctness and perfor-
mance, we first model PR in a formal framework, and then
translate the model into a software architecture.

In general, plan recognition relies on a plan library that
contains abstract descriptions of plans that can be executed
by the observed agent. The plan library is usually main-
tained by a human analyst and consists of a set of top-level
plans that are decomposed hierarchically. At the highest
level we find the ultimate goal that motivates a plan, and
at the lowest level, observations that indicate that the plan is
active. The remaining levels contain intermediate goals that
provide structure and simplify understanding. [3]

The plan recognition problem consists of deducing from
a set of observations which plans in a given library are be-
ing realized. Plan recognition problems can be classified
as intended, keyhole, or obstructed [27]. In intended plan
recognition it is assumed that agents are deliberately struc-
turing their activities to make their intentions clear, whereas
in keyhole plan recognition this is not the case. In obstructed
plan recognition, agents may even try to perform erroneous
plans [48] to confuse potential observers.

The abstract machinery used to solve this problem is
called a plan recognizer. As we will see in the section on
related work, the literature contains a variety of plan rec-
ognizers and theoretical frameworks geared for this pur-
pose. Two noticeable paradigms are symbolic plan recog-
nition [27, 3] and probabilistic plan recognition [30, 37].
The former focuses on the consistency of the plans in a plan
library, whereas the latter consists of computing the likeli-
hood of each plan when the observations are given as priors,
and then reporting those plans that scored the highest to the
user. Symbolic and probabilistic plan recognition can be
combined with decision-theoretic methodology [4], which
often involves maximizing a known utility function.

In this paper, we model the unobstructed keyhole plan
recognition problem within the framework of weighted un-
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ranked tree automata (wuta). Tree automata capture the hi-
erarchical structure nicely and bring a wealth of theoretical
results and algorithms to the table [7, 13, 14, 36, 46, 47, 40,
41]. In unranked as opposed to ranked tree automata, a node
in a tree (which is now analogous to an intermediate goal in a
plan), is allowed to have an unbounded number of children.
This makes it easier to express relations such as if we have
seen two or more swallows (up to an unbounded number),
then it is probably summer. By using weighted devices, we
can prioritize the plans in the library by impact factor, or by
likelihood of activation with respect to a given sequence of
observations. Our approach to the plan recognition problem
thus adheres to the probabilistic paradigm.

1.1 Related work
Let us now review previous efforts in the field. In [28],

plans and plan decompositions are represented as graphs
with top-level actions as root nodes and expansions of these
actions into unordered sets of child nodes. The method de-
scribed in [28] assumes that an agent only aims at accom-
plishing one goal at a time and the method does not take
into consideration the likelihood of the possible plans.

In [21], an abductive probabilistic algorithm for task
tracking/intent inference called PHATT is presented.
PHATT works in a a three-stage process. First it computes
the complete and covering set of possible explanations; sec-
ond it computes the probability of each of the explanations.
Third it computes the conditional probability of the given
goal on the basis of the probability of the explanations.

In [3], the focus is on matching observations with plans
efficiently. The authors use a hierarchical representation of
the plan library and present a method for efficiently match-
ing multi-feature observations to the library. To speed up the
process of matching observations to plans in the plan library
they use a Feature Decision Tree (FDT) that maps observa-
tions to matching nodes in the plan library. Ideally, each
leaf node of the FDT points to only one plan that matches
the conjunctive set of observations made.

Instead of matching observations to a given plan, a situ-
ation model is extracted from estimated track data in [35].
The situation model is used to obtain situation assessment
and it is valid for a finite time. During this time, the state
of the situation can be evaluated. Another grammar-based
approach towards situation and threat analysis is described
in [34]. In this paper situation trees are extracted from a
sequence set combinatory categorial grammar. A situation
tree is a formalism that can be used to represent the seman-
tics of a battle. A node in a situation tree contains informa-
tion about its duration, type and role.

An alternative approach to plan recognition is described
in [39]. Instead of using a plan library they use a domain
and the set of goals that explain a sequence of observations
given a domain theory is generated. The (unweighted) set of
all possible goals is generated.

2 Preliminaries
Before we continue, let us recall the theoretical funda-

ment of weighted unranked tree automata. A complete pre-
sentation is not possible within the scope of this paper, but
the reader will find a nice introduction to tree automata
in [12] and a survey of weighted automata in [17].

Sets, numbers, and relations. To cover the syntax and
semantics of weighted devices, we need an algebraic frame-
work. The set of all natural numbers including 0 is denoted
by N. The subset {1, 2, . . . , n} of N is abbreviated by [n].
Note that [0] = ∅. The permutations of [n], where n ∈ N, is
the set P([n]) of bijections from [n] onto [n].

Let V be a vector space over the carrier set K with di-
mensions indexed by the set S. For every s ∈ S, the vector
es : S → K is such that es(s) = 1, and es(s′) = 0 for every
s′ 6= s in S. In other words, es is a unit vector with a single
non-zero component; a one at the position indexed by s.

An alphabet Σ is a finite nonempty set of symbols. We
denote the empty string by ε and the length of a string w ∈
Σ∗ by |w|. Let w = f1 · · · fk with fi ∈ Σ for every i ∈ [k];
the label at position i ∈ [k] of w is w(i) = fi. The set
of shuffles of strings u, v ∈ Σ∗, denoted u � v, is defined
inductively: u� ε = ε� u = {u}, for every u ∈ Σ∗, and

σu� γv = {σw | w ∈ u� γv} ∪ {γw | w ∈ σu� v} ,
for every σ, γ ∈ Σ, and u, v ∈ Σ∗.

Algebraic structures. Let K be a nonempty set, and
let · be an associative binary operation on K. If K contains
an element 1 such that 1 · κ = κ = κ · 1 for every κ ∈ K,
then (K, ·) is a monoid with identity 1. A monoid (K, ·)
is commutative if the equation κ1 · κ2 = κ2 · κ1 holds for
every κ1, κ2 ∈ K. We henceforth adopt the convention of
identifying an algebraic structure with its carrier set.

By combining a pair of monoids that share the same car-
rier set and fulfill a number of additional criteria, we obtain
the semirings. Representatives of this algebraic structure are
often used as domains of weighted devices. The theory of
semirings is presented in [23].

A commutative semiring is a nonempty set K on which
a binary addition + and a binary multiplication · have been
defined, such that the following conditions are satisfied:
• (K,+) and (K, ·) are commutative monoids with iden-

tities 0 and 1, respectively;
• the operation · distributes over + from both sides; and
• 0 is absorbing (i.e., 0 · κ = 0 = κ · 0 for every κ ∈ K).

A semiring is zero-sum free if κ1, κ2 ∈ K \ {0} implies that
κ1 + κ2 ∈ K \ {0}. The support of a function f : S → K,
where K is a semiring, is the subset of S on which f is non-
zero, i.e., support(f) = {s ∈ S | f(s) 6= 0}. Henceforth,
we only consider commutative zero-sum free semirings, as
commutativity allows us to reorder factors freely, and zero-
sum freeness simplifies the problem.

Weighted string automata. In the unweighted or
Boolean setting, an unranked tree automaton classifies an
input tree (labelled with symbols in some alphabet Σ) as in-
side or outside a target language. In the weighted setting, it



associates a semiring element with the tree. In either case,
the automaton consists of component string automata, one
for each symbol in Σ. These string automata are a bit spe-
cial in that rather than just answering yes or no in response
to an input string, they produce an output state, taken from a
set P . If the automaton is nondeterministic, it may produce
a set of output states. The tree automata in this contribu-
tion process their input trees bottom-up, treating one node at
the time. When the computation reaches a node v labelled
σ, below which there are n subtrees that have already been
mapped to output states q1, . . . , qn, we execute the string
automaton associated with σ on the string q1 · · · qn, and as-
sociate the output state produced by this run with v. The
computation continues in this fashion, until the entire input
tree has been treated.

To properly define automata over unranked trees, we thus
need to define automata with P -output over strings. Already
at this point we include weights in the definition.

A weighted string automaton with P -output (abbreviated
P -wsa) [43, 18] is a tuple A = (Q,Σ,K, λ, µ, ν) where
• Q is an alphabet of states;
• Σ is an alphabet of input symbols;
• K is a semiring;
• µ : Σ → KQ×Q assigns a transition weight matrix to

each symbol;
• λ ∈ KQ is an initial weight vector; and
• ν ∈ KQ×P is a final weight vector.

The size of the wsa A, denoted by size(A), is n+m, where
n is the number of states and m is the total number of non-
zero entries in the transitions weight matrices. The map-
ping µ : Σ → KQ×Q uniquely extends to a monoid ho-
momorphism µ from (Σ∗, ·) to (KQ×Q, ·). The formal se-
ries S(A) : Σ∗ → KP recognized by A is defined for every
w ∈ Σ∗ by S(A)(w) = λ · µ(w) · ν.

Unranked trees and ranked trees. Let Σ be an alpha-
bet. The set UΣ of (unranked) trees over Σ is the smallest
subset of (Σ ∪ {[, ]} ∪ {,})∗ such that for every σ ∈ Σ,
k ∈ N, and t1, . . . , tk ∈ UΣ also σ[t1, . . . , tk] ∈ UΣ. To
improve readability, we henceforth identify σ[] with σ. An
(unranked) tree language (over Σ) is a subset of UΣ.

When we later use trees to represent plans, the nodes of
the tree (or positions) will come to represent intermediate
goals and observable activities. The set of positions in the
tree t, denoted by pos(t), is inductively defined for every
t = σ[t1, . . . , tk] ∈ UΣ by pos(t) = {ε} ∪ {iw | 1 ≤ i ≤
k and w ∈ pos(ti)}. The leaves of t is the set of positions
{v ∈ pos(t) | @u ∈ N∗s.t. vu ∈ pos(t)}.

The yield of a tree is the string of symbols that labels its
leaves, when read from left to right. More formally, the
yield of a tree t yield(t) is inductively defined for every
t = σ[t1, . . . , tk] ∈ UΣ by yield(t) = σ when k = 0,
and yield(t) = yield(t1) · · · yield(tk) otherwise. The yield
of a tree language L is {yield(t) | t ∈ L}.

Let t = σ[t1, . . . , tk] ∈ UΣ and w ∈ pos(t). The rank
of t atw and the label of t atw are denoted by rank t(w) and
t(w), respectively. They are defined as follows: rank t(ε) =

k and t(ε) = σ; and rank t(iv) = rank ti(v) and t(iv) =
ti(v), for every i ∈ [k] and v ∈ pos(ti).

A ranked alphabet is an alphabet Σ together with a map-
ping rk : Σ → N. The set TΣ of ranked trees over Σ is the
subset of UΣ that is given by

TΣ = {t ∈ UΣ | ∀w ∈ pos(t) : rankt(w) = rk(t(w))} .
A mapping S : U → K, where U ⊆ UΣ, is called an

(unranked) tree series. When U ⊆ TΣ we also say that S is
a ranked tree series.

Weighted (unranked) tree automata. A weighted un-
ranked tree automaton (wuta, when abbreviated) is a system
M = (Q,Σ,K, (Af )f∈Σ) where
• Q is a set of states;
• Σ is an alphabet of input symbols;
• K is a semiring; and
• Aσ = (Qσ, Q,K, λσ, µσ, νσ) is a wsa with Q-output

for every σ ∈ Σ.
Wuta are sometimes defined to include a root weight vector,
which we omit as it does not influence later constructions.

For the remainder of this section, let M be the wuta
(Q,Σ,K, (Aσ)σ∈Σ). The size of M is size(M) = |Q| +∑
σ∈Σ size(Aσ). For the sake of simplicity, we henceforth

assume, without loss of generality, that Qσ ∩ Qσ′ = ∅ and
Qσ ∩Q = ∅, for every σ, σ′ ∈ Σ such that σ 6= σ′.

We continue with the definition of the semantics. Let
t ∈ UΣ. A run r of M on t is a mapping r : pos(t) → Q,
and we denote by runsM(t) the set of all runs of M on t.
Furthermore, the weight of r is

weightM(r) =
∏

w∈pos(t)
k=rankt(w)

(S(At(w)), r(w1) · · · r(wk))r(w) .

The unranked tree series recognized by M is defined for
every t ∈ UΣ by

S(M)(t) =
∑

r∈runsM(t)

weightM(r) .

Using the yield mapping, we can associate every wuta
M over the alphabet Σ and semiring K with a string series
Ŝ(M) : Σ∗ → K. The series is defined as follows:

Ŝ(M)(w) =
∑
t∈UΣ

yield(t)=w

S(M)(t) .

Let us conclude with an informal discussion of weighted
tree automata and weighted context-free grammars. A
weighted tree automaton (wta) is a wuta in which the support
of the string series computed by every component tree au-
tomaton is finite. A weighted context-free grammar (wcfg)
is a context-free grammar G in which every rewrite rule has
an associated weight. A wcfg with alphabet Σ and weights
in the semiring K defines a mapping Ŝ(G) : Σ∗ → K. The
value of Ŝ(G)(w) is the sum of the weight of every deriva-
tion of w in G; the weight of a derivation d is the product of
the weights of the rewrite rules used in d. The two devices
are strongly related: for every wuta M , there is a wcfg G
such that Ŝ(M) = Ŝ(G), and vice versa.



3 Choice of framework
As mentioned in the introduction, we wish to construct

a software system for automatic threat detection, thus im-
plementing ideas and techniques from the field of proba-
bilistic plan recognition. To prove correctness and estimate
the computational efficiency of the system, it is necessary to
give precise definitions of data types and algorithms. In this
section, we argue why weighted unranked tree automata are
an appropriate formal framework for plan recognition.

Capable of modeling timed events. Plans, and the
observable activities that they suggest, are often expected to
be realized in a certain order. To keep the hypothesis space
small, we want to describe these time-related dependencies
using the mechanics of our formalism. Although Bayesian
networks provide a good representation for the probabilistic
interdependencies of events [38, 2, 32], they do not capture
sequential behavior well. Instead, when events are ordered
along a timeline, Markov models (mm) are a more common
choice [9, 8]. However, Markov models do not seem appro-
priate to represent plans as they fail to capture nested depen-
dencies: the support of the probability distribution computed
by a Markov model is a regular language, but the surface
language (or yield) of a hierarchical task network is context-
free, so there is a clear mismatch. One solution is to use
the more expressive recursive Markov model (rmm), i.e., a
set of component Markov models that can invoke each other
in a recursive manner. There are many resemblances be-
tween recursive Markov models and wuta, but in this work
we concentrate on wuta in order to emphasizes the hierar-
chical structure of plans.

Well-researched theory. Unranked tree automata are
a generalization of ranked tree automata, a formal device
that has a particularly extensive theory, see for example [7,
13, 14, 36, 46, 47, 40, 41]. As shown in [29], unranked
trees can be encoded as ranked trees, using a first-child-next-
sibling encoding. This result makes it possible to reduce
many problems from the unranked to the ranked setting. For
example, the parse problem for wuta can be reduced to that
for wta in quadratic time [11].

Extensive algorithmic toolbox. Both ranked and un-
ranked tree automata were originally motivated by practical
applications. Ranked tree automata were designed to model
linguistic theories and are now a standard component in
natural language processing (nlp). Unranked tree automata
were introduced to provide mathematical rigor to xml, a lan-
guage for structuring data, and this made them useful in
database theory. In light of this, it is not surprising that
efficient algorithms have been developed for a wide range
of automata-related tasks, including learning [16], minimiz-
ing [7, 33, 24], searching [44], querying [11, 31], and ana-
lyzing [19] tree automata. As pointed out in [22], it is de-
sirable that these algorithms should be transferred to, rather
than reinvented in, the field of plan recognition.

Formal verification. Regular model checking is a set
of techniques for analysis of transition systems [6, 26]. In

automata theory, these ideas were initially applied to string
automata, and later casted to tree automata [1, 15]. In au-
tomata theory, model checking can be used to determine
properties such as transitive closure and termination. A
property of immediate practical importance is that of reach-
ability. Given a set of goals, it is possible to calculate the
set of initial observations that are needed to reach the goals
using backward reachability. Similarly, forward reachability
can be used to decide if it is possible to reach a given goal,
starting from a set of initial observations. Reachability can
thus be used to verify that a proposed set of countermeasures
will prevent an actual threat from being realized.

4 Modelling plans
Let us now demonstrate how wuta can be used to model

the plan recognition problem. We begin by defining what
constitutes a well-formed plan, and then explain what is re-
quired to recognize a plan in a sequence of observations.

Syntax. For the remainder of this section, let Λ denote
a fixed but arbitrary alphabet of indicators. A plan is an un-
ranked tree in which indicators label leaves, and plan opera-
tion symbols label internal nodes. The indicators correspond
to (abstract classes of) observable activities, and the internal
nodes represent intermediate goals. Each internal node v
has an associated weight that reflects its importance or like-
lihood in the context of the overall plan. More formally:

Definition 4.1 (Plan). Let Θ = {∃,∀,∀} be the set of plan
operator symbols. The set PΛ,K of weighted plans over
the alphabet Λ and the semiring K is the smallest subset
of U(Θ∪Λ)×K such that (Λ × (K \ {0})) ⊆ PΛ,K , and if
(σ, κ) ∈ (Θ × (K \ {0})) and p1, . . . , pn ∈ PΛ,K , n ∈ N,
then (σ, k)[p1, . . . , pn] ∈ PΛ,K .

In practice, it is often useful annotate the subtrees of a
plan with descriptive names that explain what intermediate
goals they are to accomplish. This has for example been
done in Figure 1 to aid understanding. Since the names do
not affect the formal semantics of a plan, they are omitted in
the mathematical part of the presentation.

Semantics. A plan that consists in a single pair
(σ, κ) ∈ Λ × K is realized by the observation σ. A more
complex plan can typically be realized in a number of differ-
ent ways, depending on the operator symbols that label its
internal nodes. If a plan p is of the form (∃, κ)[p1, . . . , pn],
then p is realized if at least one of p1, . . . , pn is realized. If
p = (∀, κ)[p1, . . . , pn], then p is realized if all of p1, . . . , pn
are realized, in any order. Finally, if p = (∀, κ)[p1, . . . , pn],
then p is realized if all of p1, . . . , pn are realized, in that
particular order.

To simplify the formal definition of the semantics, we
need the following technicality: For every number i ∈ N
and tree t = v[t1, . . . , tn] ∈ UN∗ , we denote by i · t the tree
iv[i · t1, . . . , i · tn].

Definition 4.2 (Realizations). The set of realizations of a
plan p = (σ, κ)[p1, . . . , pn] ∈ PΛ,K (denoted L(p)) is the
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Bomb attack towards
Stockholm concert hall

∀
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∃

Obtain device
∃

Deliver
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Tuesday, March 2, 2010

Figure 1: A plan describing how a hostile group may proceed when targeting the Stockholm concert hall. The sym-
bols ∃,∀ and ∀ that can label an internal node n indicate when the plan associated with n is active, in terms of the activation
of the subplans below n. To save space and improve readability, we give the labels of the leaves as text in Example 1.

subset of Upos(p), defined by the following table:

σ L(p)
∈ Λ {ε}
∃ {ε[i · t] | i ∈ [n] and t ∈ L(pi)}
∀ {ε[1 · t1, . . . , n · tn] | ti ∈ L(pi), i ∈ [n]}
∀ {ε[1 · t1, . . . , n · tn] | f ∈ P([n]) and

ti ∈ L(pf(i))}

To illustrate Definitions 4.1 and 4.2, consider Example 1.

Example 1. This year, Winston Smith, the author of sev-
eral controversial books about Ideas, was awarded the No-
bel prize in literature. On December 10, the Nobel Prize
Award Ceremony and the Nobel Banquet in Stockholm take
place and the author arrives to Stockholm the same day as
the ceremony. The Swedish government has received several
threats directed towards Mr Smith and they are worried that
an attack may be directed towards the award ceremony. The
ceremony takes place in Stockholm concert hall which is lo-
cated in the heart of the city, so it is extremely important to
detect and prevent any kind of explosive attack.

To help surveillance, a human analyst draws up a set of
threat models, i.e., plans. Each plan describes one course of
action that an adversary group may take in order to attack
the concert hall. Given the above scenario, the analyst’s
work could for instance include (a more elaborated version
of) the plan in Figure 1. For the sake of readability, we give
the observable activities as text. The leaves of the plan in
Figure 1 are thus as follows.

1. Increased activity in activist forums.
2. Video clips containing explicit threats appear online.
3. Blueprints of the concert hall are solicited from the mu-

nicipal office.

4. Inquiries are made regarding the accommodation of
Mr Smith during the festivities.

5. Theft of explosive materials from construction sites.
6. Purchases of large quantities of synthetical fertilizers.
7. Last-minute replacements of personnel.
8. Parked cars by the concert hall entrance.
Sequences of observations that correspond to realizations

of the plan include e.g. (2, 5, 6, 8, 1, 3) and (1, 3, 6, 5, 8, 7),
but not (2, 5, 6, 8, 1) since it does not realize the interme-
diate goal of assessing the venue, nor (1, 3, 8, 6) since the
explosive device must be obtained before it can be delivered.

To estimate the impact of a plan being realized in a cer-
tain way, we multiply the weights of the intermediate goals
accomplished during this particular realization.

Definition 4.3 (Computed tree series, weight). The tree se-
ries S(p) : L(p)→ K computed by p ∈ PΛ is given by

S(p)(t) =
∏

v∈pos(t)

wgt(p(t(v))) ,

where wgt : Σ×K → K is defined by wgt((σ, κ)) = κ, for
every (σ, κ) ∈ Σ×K. The tree series S(p) is extended from
L(p) to UN∗ by letting S(p)(t) = 0 for every t 6∈ L(p). The
weight of a tree t ∈ UN∗ with respect to p ∈ PΛ is S(p)(t).

Computation. The problem can now be restated as:

Definition 4.4 (The plan recognition problem). Given a set
of plans P ⊆ PΛ with weights in K and a string of obser-
vations w ∈ Λ∗, find

arg max
t∈L(P )∩yield−1(w)

(S(p)(t)) ,

where L(P ) = ∪p∈PL(p).



Thus expressed, the plan recognition problem consists in
finding the realization of a plan in P that best explains w.
To solve an instance (P,w) of the problem, we translate
every p ∈ P into a wuta Mp, such that S(p) = S(Mp).
The construction of Mp from p is given below. Due to
the closure properties of wuta, we can derive a wuta M
with S(M)(t) =

∑
p∈P S(Mp)(t) in linear time. The

wuta M can then be translated into a wcfg G such that
Ŝ(M) = Ŝ(G) in quadratic time. Finally, the k realizations
in L(P )∩ yield−1(w) that have the greatest weight with re-
spect to G can be computed in time O(mn log k), where m
and n are the number of production rules and the number of
nonterminals, respectively, of G [25].

Definition 4.5 (Automata representation). The wuta rep-
resentation Mp of a plan p = (σ, κ)[p1, . . . , pn] over the
semiring K is the wuta Mp = (Q,Σ,K, (Av)v∈pos(p)),
where Q = Σ = pos(p), and Aiv is obtained from Av in
Mpi by replacing every occurrence of u ∈ pos(pi) in the
definition of Av with iu. Finally, the wsa Aε depends on
(σ, κ) as follows.

If σ ∈ Λ (so n = 0) then Aε = ({q0}, Q,K, eq0 , µ, ν),
where µq is a zero matrix of dimensions 1 × 1 for every
q ∈ Q; and ν(q0, ε) = κ.

If σ = ∃ then Aε = ({q0, . . . , qn}, Q,K, eq0 , µ, ν),
where µj(qi, qj) = 1 for every i, j ∈ {0, . . . , n} s.t. i < j,
and 0 otherwise; and ν(qi, ε) = κ for every i ∈ [n] and 0
otherwise.

If σ = ∀ then Aε = ({q0, . . . , qn}, Q,K, eq0 , µ, ν),
where µi(qi−1, qi) = 1 for every i ∈ [n] and 0 otherwise;
and ν(qn, ε) = κ and 0 otherwise.

If σ = ∀ then Aε = (P,Q,K, λ, µ, ν), where
• P = {q(f,i) | f ∈ P([n]), i ∈ {0} ∪ [n]};
• λ(q(f,0)) = 1 for every f ∈ P([n]) and 0 otherwise;
• µf(i)(q(f,i−1), q(f,i)) = 1 for every i ∈ [n], f ∈ P([n])

and 0 otherwise; and
• ν(q(f,n), ε) = κ for every f ∈ P([n]) and 0 otherwise.

By the construction in Definition 4.5, the wuta Mp com-
putes the semantics of p.

Proposition 4.6. S(Mp) = S(p) for every p ∈ PΛ,K .

5 Implementation
The formal model presented in Section 4 can be used

to draft a software system for automatic threat detection.
Figure 2 shows an outline. The core components of the
system are an xml-based modeling tool, a plan library, a
chart parser, and an information engine. Plans are created
and edited by a human analyst using the modeling tool,
and stored in the plan library, which is typically a rela-
tional database. For each plan, the analyst specifies a pair
of weights that express the impact of the plan being active,
and an a priori likelihood that the plan will be recognized.
Weights can also be associated with intermediate goals to
express their importance for the fulfillment the overall plan.
To perform threat detection, the plan library is compiled into
a wuta, which is then turned into a wta/wcfg. Later additions

and changes to the library only require incremental updates
of the wcfg to guarantee correctness, although a complete
re-compilation will often yield a smaller wcfg. The input to
the system is a stream of observations provided by the in-
formation engine. Each observation is equipped with a time
stamp and a weight reflecting its reliability.

The chart parser searches the input stream for realiza-
tions of the plans in the plan library. For efficiency rea-
sons, it maintains a table of partial parses that can be reused
throughout the computation [45]. Since the plan library is
expected to be of considerate size, it is likely that many real-
izations can be identified simultaneously in the input stream.
To help the operator prioritize between them, the system
computes the k realizations that are most relevant with re-
spect to the input stream w. The relevance of a realization t
with yield w of the plan p is the product of p’s impact- and
probability-weights, as assigned by the analyst, and S(p)(t).

In practice, the input stream is likely to contain incom-
plete as well as superfluous information, so the chart parser
must be revised to reflect this. For instance, since sev-
eral plans can be active at once it would be useful to
parse for shuffles of words. That is, given plans p1, . . . , pk
and an observation stream w ∈ Λ∗, we search for ui ∈
support(Ŝ(pi)), i ∈ [k], and a v ∈ Λ∗ such that w ∈
u1 � · · · � uk � v. As shown in [5], this problem is NP-
complete unless k is bounded, or further restrictions are
added. One possibility is to require that no distinct plans
predict overlapping sets of observations. This is severe, but
when the condition is met, we avoid the surge in complexity.

As the input to the system is a stream of observations
rather than a string, old observations will eventually be con-
sidered irrelevant, and new observations will be appended to
the stream. In the parsing algorithm, this is handled by delet-
ing obsolete sections of the table when observations time-
out, and adding new sections when additional observations
are made (see Figure 3). Thanks to the dynamic nature of
chart parsers, the contents of new sections are fairly cheap
to compute based on previous results.

6 Future work
In Section 4, we interpreted plan recognition in the frame-

work of wuta theory. A natural continuation of this effort is
to compile an inventory over algorithms for wuta and wta
in xml and nlp, and evaluate which of these are meaning-
ful to translate to the field of plan recognition. For instance,
algorithms for learning, querying and EM training wuta are
probably of instrumental value also for plan recognition.

The set of plan operators considered in this paper is sim-
plistic, but it suffices to illustrate the interaction between
syntax, semantics, and computation within the wuta frame-
work. A richer set is needed for practical usage, and this
goes beyond syntactic sugar. With the present set of opera-
tors, the analyst modeling a plan can only express that two
intermediate goals can be realized in any order, but not that
they can be realized in parallel with interleaved observation
sequences. Expressiveness thus increases if a shuffle oper-
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Figure 2: The user works with a modeling tool to create and edit plans. The plans are stored in a plan library and compiled
upon demand into a wuta. The wuta can the be used to parse observations streams and produce a list of the k plans that are
most likely to be active in a given moment.

ation is added the operator set, but this makes parsing com-
putationally expensive and must be balanced by restrictions
on the plan library. It holds generally that every addition to
the operator set is best proceeded by an investigation of its
effect on parsing complexity.

After the algorithmic toolkit and set of plan operators
have been decided upon, implementation of an Impactorium
component based on the outline in Figure 2 can commence.
Tests will be conducted for military intelligence as well as
for supply chain security and point security scenarios.

Chart parsing,
e.g. CYK parsing

Compute new
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Discard old
 chart section
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Figure 3: Traditional chart parsing can be adapted to process
a stream of observations, by adding chart sections when new
observations are made, and discarding chart sections when
observations become obsolete.
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