FOI-D--0184--SE
November 2004

Simon Ahlberg, Pontus Horling, Christian Martenson, Goran Neider, Hedvig
Sldenbladh, Pontus Svenson, Per Svensson, Johan Walter

System Documentation on the FOI Information Fusion
Demonstrator 03 (IFD03)

Ledningssystem
SE-581 11 Linkdping

TOTALFORSVARETS FORSKNINGSINSTITUT FOI-D--0184--SE

Ledningssystem
Box 1165
581 11 Link&ping

November 2004

Simon Ahlberg, Pontus Horling, Christian Martenson, Goran Neider, Hedvig
Sldenbladh, Pontus Svenson, Per Svensson, Johan Walter

System Documentation on the FOI Information Fusion
Demonstrator 03 (IFD03)

FOI1005 Utgdva 12 2002.11 www.signon.se Sign On AB

Utgivare

Totalforsvarets Forskningsinstitut - FOI
Ledningssystem

Box 1165

581 11 Linkdping

Rapportnummer, ISRN
FOI-D--0184--SE

Forskningsomrade

4. Ledning, informationsteknink och sensorer

Manad, ar Projektnummer
November 2004 E 7097
Delomréde

41 Ledning med samband och telekom och IT-

Delomréade 2

Forfattare/redaktor
Per Svensson
Johan Walter

Simon Ahlberg
Pontus Horling
Christian Martenson
Goran Neider
Hedvig Sldenbladh
Pontus Svenson

Projektledare
Per Svensson

Godkéand av
Johan Martensson

Uppdragsgivare/kundbeteckning
FM

Tekniskt och/eller vetenskapligt ansvarig
Per Svensson

Rapportens titel

System Documentation on the FOI Information Fusion Demonstrator 03 (IFD03)

Sammanfattning (hégst 200 ord)

Denna rapport innehaller systemdokumentation éver informationsfusionsdemonstratorn IFD03. Bakgrunden till
utvecklingen av demonstratorn beskrivs kortfattat, foljt av kapitel om utvecklingsmiljon och hur man visualiserar

resultaten fran demonstratorn. Terrangmodulen, simuleringsmodeller i Flames och analysmetoderna dokumenteras

hér och pa den medféljande CD-n.

Nyckelord

Ovriga bibliografiska uppgifter

Sprak Engelska

Antal sidor: 86 s.

System Documentation on the FOI Information
Fusion Demonstrator 03 (IFD03)

Simon Ahlberg, Pontus Horling, Christian Martenson, Géran Neider,
Hedvig Sidenbladh, Pontus Svenson, Per Svensson, Johan Walter

(November 2004)
TABLE OF CONTENTS
READING GUIDE ..ottt ettt e ettt s e e et e e s et e e s s sab e e e s enbaeessaneeesssnreneean 1
1.1 TOBE ABLE TO PERFORM A DEMONSTRATION USING FLASHcvviiiiiiei e eeirreeeee e 1
1.2 TOBEABLE TORUN |FDO3 AND GENERATE NEW DATA .evitiiiiiiiiirrieeeeeseeiirreeeeeessesnssseeeseseenns 1
1.3 TOBE ABLE TO MAKE CHANGES TO THE SCENARIOcuvtiiiieeeiiieiieriiee e e s sesisreeeessssssssssseseasseens 1
14 TOBE ABLE TO ADD NEW SENSORS ...vvviiieiiiiutierieeeeeisissssiessesssssnns 2
15 TOBE ABLE TO ADD NEW OR CHANGE OLD ANALYSISMODULES.....ccccciiiitiiiieeeeeeesirieeeee e 2
1.6 MAP OF LOGICAL CONNECTIONS OF FUSION NODE AND SIMULATOR ..cceeeeiiiiiiieeieeeeeesivneeeeass 3
ARTICLESDIRECTLY RELEVANT FOR IFDOS.......ctteiiiiiieeiieeeee et 5
(272N 1 (€1 L@ 10 1| 6
31 WHY BUILD AN INFORMATION FUSION DEMONSTRATOR? ..vveviieiiiiiiiieeieeeeeesirrereeeesessnassnseeeens 7
3.2 RESEARCH GOALS AND ISSUESciiiiiiiitttieeteeeieeiitreeeeesssasssssseesssesssssssseesssssssssssssessssssssssseeess 7
33 CONCEPTUAL OVERVIEW ..cciiiiiiittiieeieeeseeiatieeeeesssesistsssessssesssssssssssssssssssssssessssssnsssssssssssssnsssnses 9
34 DEMONSTRATOR OBJECTIVES .1vvieiieiiiiittieeeeeeseeiutreeeeesssasssssseesssesssssssssesssssssssssssesssesssssssseeess 9
35 U SE CASES ..ttiiiiiiii ittt ee e e ettt e et e e e e e e s bb e e e et e e e e ee bbb b e et eeessaaabbe et eeeseassabbsaeeaeeeesasbbsaeeesessansnrnns 10
3.6 EVOLUTIONARY DEVELOPMENT AND ITSENVIRONMENT ...uuvtiiiieiiiiiirireieeeeessiisrseeesesssssnnnns 10
3.7 COMBINING CAND MATLAB ..ottt e e s eeaaenes 11
38 CODE VERSIONING AND DOCUMENTATION ...ceiiiiiiettetieeeeeseestseeessessssssssessssssssssssssssssssssssssnns 11
SCENARIO AND BACK GROUNDooi ittt ettt ee ettt a e e sarae e e s e s s senanees 13
4.1 ORGANISATION, MOTION AND COMMUNICATION MODELS OF "RED" FORCEScceveeeiieiunnnes 15
HOW TO DEVELOP DEMOQO3 USING CVS.....oiiiee ettt ee e 16
51 STORING COMMON DATA FILES . uuttiiiiiiiiiititrieeeeeieeittrteeeeesssssassseesssssssssssseessssssasssssessesssnssnsnns 17
52 PROFILING IFDOS ...ttt ettt ettt e e e e et et e e e s e e s aabb s s e e e e e e e saabbsseeesesssnsnnrnns 18
53 ENVIRONMENT VARIABLES TO RUN FIRE AND FLASHcoooittriiiieeeeiiirireeeeeeeessnrsseeesesssnnnnnes 19
THE IFDO3 VISUALIZER ..ottt ettt et s et e s st e s s entae s s snnaeessnnaeeeean 20
6.1 HOW TO VISUALIZE ITFDO3B..... .ottt ettt ettt e e s e et a e e e s e e e ssaabase e e e e e s snnnnnnes 20
6.2 PROGRAM DOCUMENTATION FOR THE IFDO3 VISUALIZER.....cciiiiiiiiiiirieeee e eecirreeee e e eeennnnes 20
6.3 DOCUMENTATION FOR MATLAB VIZUALIZER MODULE IN IFDO3.......ouveieiiiiiiiiiieee s 21
IFDO3 SYSTEM AND TERRAIN ...ttt e s et e e s s e sabr e e e e e e e eans 23
7.1 INTRODUGCTION ...uuuuuuutuuuunsnsssusssnns 23
7.2 DOCUMENTATION ON THE TERRAIN MODEL IN IFDO3.......outiiiiiiiiietieieeee e 23
IFDO3 SIMULATOR ettt ettt s et et e e e s e et e e e e e s s se bbb e eeeaseessasbbseeeaesesans 28
8.1 FLAMES FUSIONNODE IMODEL .vvviiiiiiiiititieeeeeeieeiiitseeeeesssessssssesssssessssssssessssssssssssssessssssnsnsnes 28
8.2 INSTRUCTIONS ON SENDING REPORTSIN IFDO3.......co oottt 34
83 SENSOR MANAGER MODEL.......uuttiiiiiiiiiiitiiieie e e s eeititteee e e s s esissseeeeesssssssseeseesssassssseessessenssnsnns 35
8.4 IV ESSAGE MODELS .. .uttiiiieiiiiiiitteeieeeeeiisitbseeeeseeseessssseessesssassstrssssesseassssssseesssessassssssessesssnssssns 37
84.1 FOIFMSIREPORT MOEcceeiiiitieiiciece et te e e e nnees 37
8.4.2 FOIIFMSgSENSOr SatuUS MOEcccveiieiiciecie et e e e 37

8.4.3 FOIIFMsgRequestSensor Satus MOE!cocviiriciiineiieeeeee e 37

8.4.4 FOIIFMsgComintReveal Message MOdEcccovveiievecii e 38

845 FOIIFMsgComintFuse Message MOEccoveeiieieiieee e 38
85 OBJECT HIERARCHY DESCRIPTION...cccciiittttrrteeeeeiiaittrseeesesssassssseesssssssssssesssesssassssssessesssnssnsnes 39
8.6 ID LIBRARY DATAPROCESSOR IMODELuuuuuuuuruuirursrassrsss 40
8.7 SIGNATURE MODELSttttiiieiiiittttieee e e s setasetesseessabbaseessesssssssssessssssasssssesssesssasssssssssessssssssnns 41

8.7.1 Visual signature Signature MOOEL...........coeiiiriciiireereese e 41

8.7.2 AcOUSLIC SGNALUre MOE..........coiiiiiie e 42
8.8 IMAGE SENSOR EQUIPMENT MODELcciuviiiiieiiteecteesteesteestessseesnsessseesssessseesnsessnsessnsenn 42
89 GROUND SENSOR NETWORK MODELuuutiiiiiiiiiiiiriieee e e seeiireees e e s s ssissseeeeessssssssssesssssssssnsnns 49
8.10 SOLDIER SENSOR IMODELccoiuttiiieeeeeiiiitineeeeeeesseitssseeesesssssssseessssssssssssesssssssasssssessesssnssssnns 52

811 FOIIFCOMINTINTERCEPTOR COMMUNICATION INTELLIGENCE INTERCEPTOR EQUIPMENT
MODEL 55

8.12 COMMUNICATION INTELLIGENCE COGNITIVE MODEL ...ccccvviieiiiieeeeiiee e cieeeessivee e e e 56
8.12.1 OVEIVIBWottt ettt e e e e st e st e e st e e s ae e e sbeeesaeeesabeesseeesbeeeaseeesbeeenseessseeenneeenns 56
8.12.2 FOITFCOMINTFUSE.ccvii ittt ettt e e te e s ere e sabe e sbeesabeesaseesareesnneesanas 58
8.12.3 FOIHFCOMINTFUSESIAITUD ...ttt 59
8.124 FOIHFCOMINIPIrOCESSFUSE ... 59
8.125 FOIIFCOMINIPIrOCESSREVEAoeeeuveeitieeiee ettt ettt et ste s sreesnre e sneesanas 59
8.12.6 FOIFCOMINIPIOCESSTAIKveiitieciee ettt et et re e e sreesare e sneeeanas 60
8.12.7 FOIFCOMINIREVEAccveeevie ettt ettt ettt re e eabe e sreesnre e snneesaeas 60
8.12.8 FOIFCOMINIREVEAISLAIMTUD ...ttt 61
8.12.9 FOITFCOMINITAIK.....eecctiiiciieciee ettt ettt et e sae e sare e snneesanas 61
8.12.10 FOITFCOMINITAIKINILccveeciieccee ettt s sare e s neeeanas 62
8.12.11 FOIHFCOMINTTAIKSIAItUD ... eeveevecie ettt aeenee s 62

8.13 DETAILED DESCRIPTION OF THE RADIO COMMUNICATION INTELLIGENCE FUNCTIONALITY .. 63
[FDO3 FUSIONNODE.......co ettt ettt st tee e te e s tee s be e s steeebee e baeebeessbaeenneessseeenneeenns 68

9.1 DOCUMENTATION FOR CONTROL MODULE INIFDO3oooiiiieceee et 69

9.2 DOCUMENTATION FOR THE REPORT FORMAT IN IFDO3.......oooiiieee e 70

9.3 INSTRUCTIONS ON SENDING REPORTSIN IFDO3 ..o 72
9.3.1 Sending rePortSin FIAMES......cc.ciiiiciree e 72
9.3.2 EXample SCript COOE IN FOMQE......coiiiiiiiirieiiiteect ettt 72

9.4 DOCUMENTATION FOR LOG MODULE INIFDO3.........oeiiiieeeeeeeeeee e 73

9.5 DOCUMENTATION FOR AGGREGATION MODULE IN IFDO3........oooiiieieeee e 74
9.5.1 Adefinition of teMPIALES........c.cceeiiece e e 77

9.6 DOCUMENTATION FOR TRACKING MODULE IN IFDO3........cooiiieeecieee et 80
0.6.1 PHD-particle filtering:ccoeoe ettt nnees 80
0.6.2 IMPIEMENLALION.....cueiiieiieiie et e e e te e e e e s e e s se e seenaeenteeneeeseenreensenn 80
9.6.3 Taking sensor POSItiONS INtO ACCOUNLccuereereerieerieesieeeeseeseesreesseeeeeeesseesraesreeneens 82

9.7 DOCUMENTATION FOR SENSOR MANAGEMENT MODULE INIFDO3.........ccoeeiiieieieeeeiee. 83

9.8 DISPLAY MODULEuttiiiieeie ettt ee e e e e ettt e e e e e e e ettt e e e e e e e sasantseeeeaaeessntssseeeaeeesasssseessasssnnnnnnns 84

99 DOCUMENTATION ON MISCELLANEOUS FUNCTIONSIN IFDO3.......coccieiieeee e 84

System documentation | FD 03

The IFD03 uses a combination of methods and program to show a conceptual view of
how an information fusion system might work in the future.

1 Reading guide

This document is based on alinearised version of the online Web documentation for
IFDO3. The Web documentation is also available on the accompanying CD. It has
been edited somewhat, but all duplications, omissions or formatting errors may not
have been found. For the more detailed version (which includes documented source-
code and call-graphs), see the html-version currently at

\\Flamma\lnfofusion\IFD03_frozen documentation

Section 2 lists papers that are directly relevant for IFD03. Sections 3 and 4 contain
background information on IFD0O3 and some information on the scenario that is used.
Section 5 describes how to get source-code and compile the system, while section 6
has instructions on how to use the Visualizer to look at the output of IFDO3. This
section a'so contains information on how to devel op the Visualizer. The detailed
workings of the IFDO3 are described in sections 7-9, which list and describe all
Flames modules, the analysis modul es implemented in Matlab and the connections
between the C and Matlab parts of the code. The online version of section 9 also lists
all the Matlab source code.

Therest of this section consists of suggested reading for different possible uses. It is

strongly suggested that this document be used only as a starting point for getting to
know the system —please refer to the html-version for details and cross-references.

1.1 To beableto perform ademonstration using
Flash

Skim sections 3 and 4 to understand some of the background of 1FDO3.

Read sections 5.3 and 6.1 and make sure that you can run the visualizer.

1.2 Tobeabletorun IFDO3 and generate new data

Skim sections 3 and 4 to understand some of the background of 1FDO3.

Read section 5 and make sure that you can compile and profile the system. Note in
particular the instructions for setting environment variables in section 5.3.

Read section 6.1 and make sure that you can run the visualizer.

1.3 To be ableto make changesto the scenario

IFD 03 System documentation 1

Skim sections 3 and 4 to understand some of the background of 1FDO3.

Read section 5 and make sure that you can compile and profile the system. Note in
particular the instructions for setting environment variables in section 5.3.

Read section 6.1 and make sure that you can run the visualizer.

Read Flames documentation to understand how to use Forge to change the scenario.

1.4 To be ableto add new sensors

Skim sections 3 and 4 to understand some of the background of 1FDO3.

Read section 5 and make sure that you can compile and profile the system. Note
section 5.1 for information on how to store data files needed for your sensor and the
instructions for setting environment variablesin section 5.3.

Read section 6.1 and make sure that you can run the visualizer.

Read section 7. Note section 7.2 on terrain data.

Read sections 8.1-4 to understand how to interface your module to FusionNode. Read
relevant sections on how to communicate with the FusionNode Flames module.

Read other material from section 8 as necessary to understand how to write your
Sensor.

1.5 To beableto add new or change old analysis
modules

Skim sections 3 and 4 to understand some of the background of 1FDO3.

Read section 5 and make sure that you can compile and profile the system. Note in
particular the instructions for setting environment variables in section 5.3.

Read section 6.1 and make sure that you can run the visualizer.

If your method requires “3" screen” output, read section 6.3. Read section 6.2, 7.1
and 7 to understand how to provide output from your module to the visualizer.

Read section 7.2 to understand how to use terrain data, if thisis necessary for your
module.

Read sections 9.1-4 to understand how to interface your module to Control.

Read other material in section 9 and paper A from section 2 to get background
information on current analysis modules.

IFD 03 System documentation 2

1.6 Map of logical connections of fusion node and
simulator

IFDO3 consists of a number of executable files. Forge is the modified Flames-
program used to build a scenario. Scenario, sensor and analysis modules are linked
into the fire program which runs the simulation and produces output data. Output is
inserted into a SQL -database using a set of program described in the section on
Visualization. That section also describes the modification we have made to the
Flames visualization program flash. Terrain information is created by the Terravista
program. Its output is stored in the Flames database.

The following image gives a conceptual overview of IFDO3:

Scenario

[

Fusion node

Actors

[Piations]
l Sensors l Communication

I Visualizer

Flames (C) | Matlab

IFD 03 System documentation

The following figure aims to give aview of the relationships between different
components used in IFDO3. It can be used to determine which other components are
affected by changesin one of the commercial software products used to develop
IFDO3. Note thatlFD03 uses modified versions of Forge, Fire, and Flash.

Terravista Forge

Flames database

i \

Matlab

FlaSh /

MySaL

A view of thedataflow in IFDO3 is

Forge
Note that IFD03 a'so relies on configuration files and
Y parameters that are set in the initialization routines of
Scenario files Fire. Configuration files are used for defining parts of the
scenario and for defining sensor characteristics; see the
¥ corresponding documentation.
Fire

-«—

Log files

-—

Fre-processar

-—

SCL database

-«—

Flash

IFD 03 System documentation 4

2 Articlesdirectly relevant for IFDO3

A.

Schubert, J., Martenson, C., Sidenbladh, H., Svenson, P. and Walter, J.
Methods and System Design of the IFDO3 I nfor mation Fusion
Demonstrator

In Proceedings of the Ninth International Command and Control Research
and Technology Symposium, Copenhagen, Denmark, 14-16 September
2004, US Department of Defence CCRP, Washington, DC, 2004.

Ahlberg, S., Horling, P., Jored, K., Neider, G., Martenson, C., Schubert, J.,
Sidenbladh, H., Svenson, P., Svensson, P., Undén, K., and Walter, J.
ThelFDO3 Information Fusion Demonstrator

In Proceedings of the Seventh International Conference on Information
Fusion (FUSION 2004), Stockholm, Sweden, 28 June-1 July, 2004.
International Society of Information Fusion, 2004.

Schubert, J.

Clustering belief functions based on attracting and conflicting
metalevel evidence using Potts spin mean field theory
Information Fusion Vol 5, No 4, 2004.

Sidenbladh, H.

Multi-tar get particlefiltering for the probability hypothesis density
In Proceedings of the Sixth International Conference on Information
Fusion (FUSION 2003), Cairns, Australia, 8-11 July 2003. International
Society of Information Fusion, 2003, pp. 800-806.

Schubert, J.

Evidential Force Aggregation

In Proceedings of the Sixth International Conference on Information
Fusion (FUSION 2003), Cairns, Australia, 8-11 July 2003. International
Society of Information Fusion, 2003, pp. 1223-1229.

IFD 03 System documentation 5

3 Background

Excerpts from papers describing and motivating the design of IFDO3:

Our project aims to compl ete the devel opment of a demonstrator system for tactical
information fusion applied to simple ground warfare scenarios, and to perform a
demonstration using this system in the Fall of 2003. The system will be called
Infofusion demonstrator 03 (IFD 03). In the information fusion area there does not
yet exist ascientific basis for the development of integrated systems which could be
put to practical use after restructuring for robustness, security certification etc. The
main purpose of the demonstrator project isto provide aresearch platform for
experimentation with specific research issues, in particular the interplay between
different modeling techniques used to address subtopics in this research area, as well
asto create a means of spreading knowledge to interested parties about the current
state of research in information fusion.

IFD 03 will integrate methods related to different fusion "levels”, specifically
multisensor-multitarget tracking, force aggregation, and multisensor management. It
will exchange datain simulated real time in both directions between the scenario
simulator and the fusion system. It will have three closely associated main
capabilities: to provide atest bed for new methodology in information fusion, to
provide a supporting scenario simulator for the generation of adequately realistic
sensor and intelligence reports used as input to the fusion processes, and to offer
general -purpose software tools, terrain models, and other prerequisites for
visualization both of the development of the scenario over time and of selected
characteristics and effects of the fusion processes.

Over the past few years FOI has acquired a simulation devel opment platform, based
on the commercial simulation framework Flames™ , suitable for test, experimental
eva uation, evolutionary development, and demonstration of many kinds of event-
driven scenario-based simulations. To adapt the Flames framework to the needs of
information fusion research, advanced terrain modeling facilities were included,
allowing fully integrated ("correlated") topographical and thematical models of
geography to be used in the simulations. Recently, this platform was further extended
by allowing program modules, developed using the problem-solving environment
Matlab™ to betightly integrated. Thus, the resulting development platform allows
comprehensive reuse of commercially available software, as well as both program
modules and scenario specifications previously developed by our own group or by
other projects at FOI.

Key to achieving successful demonstrations will be appropriate visualization methods
which can render concrete and tangible concepts like scenario, fusion node, sensor
network, communication system, and doctrine. In future projects the demonstrator
system may be extended with methods for the solution of new problems, such as
generation and analysis of alternative forecasting and action options. The combined
Flames-Matlab development environment should significantly facilitate the
development and integration of such methods.

IFD 03 System documentation 6

3.1 Why build an infor mation fusion demonstrator ?

While any scientific approach to understanding specific aspects of reality will haveto
be based on abstraction and isolation of each aspect considered, on the other hand, in
the scenario-based forecasting models we want to build based on understanding
obtained by reductionist approaches, al significant complexities of the real system
need to be reflected. Thus, e. g., during the last half-century, weather forecasting has
gradually developed, not primarily by discoveries of new, meteorologically
significant physical phenomena, but by a combination of better mathematical models
of the underlying physics, improved algorithms for their evaluation, improved data
collection and exploitation in models, and last but not least, a gradually increased
complexity and sophistication of integrative, scenario-based forecasting models, made
possible by the exponential growth in computational capacity.

Granted that information fusion adds the serious complication of hidden, antagonistic
human decision-making to the purely physical processes of weather forecasting
models, the success of such modeling could anyway, we believe, provide some
inspiration for information fusion research, athough this research certainly has along
way to go before it can claim any comparable success. So when will information
fusion methodol ogy have progressed sufficiently to make meaningful use of synthetic
environment scenario simulators? Out of conviction that all necessary ingredients of
complex forecasting models need to evolve together, we argue here that thisis aready
the case.

The above-mentioned concept of reactive multisensor management requires that
sensor control messages based on fusion results can be fed back to the sensorsin
(smulated) real time. This suggests an architecture where the entire multisensor data
acquisition and fusion processis an integrated part of the scenario, in the guise of an
acquisition management and information fusion function of asimulated C2 centre.
Such an architectureis employed in IFDO3.

We view the new demonstrator system as an extensible research and demonstration
platform, where new methodological ideas can be realized, evaluated and
demonstrated, and where various aspects of increasingly complex network-based
information fusion systems can be tested in complex and reasonably readlistic
scenarios. Whereas our previous information fusion projects have focused on method
and algorithm development for various specific problems, in particular clustering,
aggregation, and classification of force units and sensor management , the
development tools associated with the new platform are intended to support
substantial reuse, including evolutionary extension and rewrite, of both software and
simulation scenario descriptions.

3.2 Resear ch goals and issues

In line with recent meta-models of multisensor-multitarget fusion, we view Level 2
information fusion as the interpretation of aflow of observationsin terms of amodel
of aphysical processin space and time. This process describes the stochastic
interaction between an observation system, acomplex target system (such asa
hierarchically organized enemy unit) and a complex environment. According to this

IFD 03 System documentation 7

view, what distinguishes Level 2 from Level 1 fusion is mainly the much higher
complexity of the target and environment models, involving imperfectly known
doctrines which influence the behaviour of the target system in away that needs to be
stochastically modeled.

The purpose of the interpretation processis partly to estimate current and near-future
values of a set of possibly unobserved behavioural parameters of the target system,
partly to improve the estimates of measured parameter values. In IFD 03, no attempt
is made to estimate other doctrinal parameters than force structure. In the not too
distant future, however, it may become feasible to estimate alarger set of behavioural
parameters, such as for example, our belief in the proposition "the enemy is aware he
has been detected”.

In information fusion applications based on complex ground scenarios involving
interaction between several, partially antagonistic complex systems, scenario-based
simulation is often the only methodology available for systematic characterization and
analysis of system behaviour. This methodology permits experimentation according
to atop-down approach with various methods, configurations, and parameter values,
evaluation of the effectiveness and efficiency of agorithms and modeling methods in
relation to areasonably realistic approximation of the final application environment,
aswell as verification that all problem-relevant components have been included and
modelled on an adequate level of resolution. Also, it supports the establishing of a
balanced system design, by allowing the discovery and early elimination of vague
concepts and unsolved or inadequately treated subproblems, as well as system
performance bottlenecks. Design proposals which do not work even in asimplified
synthetic environment can be identified and quickly eliminated, while methods which
seem to be promising can be selected for a deeper analysis.

The IFD 03 project rests on asmall number of basic methodology principles, i.e.,
cooperation between methods on fusion levels 1, 2, and 4 in the JDL model, atight
coupling between a qualified synthetic environment and models of sensor behaviour,
target force behaviour, and communication.

The project focuses on analysis, evaluation, and presentation of new methodology for
acollection of important subproblems in automatic information fusion, i.e., ground
target and group target tracking, force aggregation, multisensor management, and
short term situation prediction.

Successively for various scenarios, in the future we also expect to create by this
approach the capability to address various effectiveness issues, which might be
generically described as:

» what improvement in effectiveness (measured, perhaps, as increased
information quality, or information gain) of various aspects of situation
modeling can be expected from specified information fusion methods?

» what improvement in effectiveness can be expected from a network-based
defence technol ogy, with and without information fusion methods?

* how do delays and "inertia" of various kinds, arising from, e.g., information
transmission or information processing, influence expected improvementsin
effectiveness?

IFD 03 System documentation 8

3.3 Conceptual overview

The FOI project Information fusion in the command and control system of the future
network-based defence recently completed the development of areusable information
fusion demonstrator system, the Infofusion demonstrator 03 (IFD03). In IFDO3, level
2 information fusion is treated as the interpretation of aflow of observations, realized
as a scenario-based simulation of aphysical processin space and time. This
simulation describes the stochastic interaction between an observation system, a
complex target system, in this case a hierarchically organized enemy unit, and a
complex environment.

Information is transmitted from simulated sensors to a simulated Command and
Control, C2, site. At the C2 site information is fused and interpreted. Some of these
interpretations are then used by the C2 site as basis for issuing control messages
intended to improve sensor utilization in relation to a predefined surveillance
objective. A key component of the demonstrator is the visualizer, which provides a
movie-like, interactively controllable multi-screen playback display of a set of parallel
views of the prerecorded simulation.

The IFD03 system was used to perform a demonstration in mid-December 2003,
based on a simple battalion-level ground force attack scenario.

The devel opment methodology that was partly reused, partly developed by our project
in order to facilitate the construction of the demonstrator proved to be very cost-
effective although far from problem-free.

The demonstrator implementation is based on three large development environments,
the problem solving environment MATLABTMthe simulation framework
FLAMESTM and the terrain modelling system TerraVista Pro BuilderTM. In the
project, FLAMES and MATLAB weretightly integrated, and FLAMES' new
handling of advanced terrain models, generated by TerraVista, was specified and at
least partly financed. Finally, the FLAMES software for visualization of simulation
results using the new terrain modelling feature was restructured and both functionally
and computationally substantially improved.

3.4 Demonstrator objectives

The demonstrator is not a design and certainly not a prototype of a deployable system.
To create a prototype, asignificant additional R&D effort would be required. Our
primary purpose has been, instead, to investigate how IF methods can be combined
into a system and work together in the context of that system. We also wanted to
create and exercise an effective mechanism whereby information fusion concepts can
be communicated to our customers and other interested parties. Finally, we wanted to
create a basis for discussions with customers and prospective users about how
research in the IF area should be prioritized.

We chose to build our demonstration on the assumption that “Moore’s law”, stating

roughly that the capacity of computers doubles at |east every 24 months, will be valid
until 2015, the year when our scenario is presumed to take place. However, since key

IFD 03 System documentation 9

algorithms can easily be parallelized, the computational performance of the methods
employed in the demonstrator should be sufficient for real time use even today, if
large (but still reasonably affordable) computer clusters were employed.

3.5 Use cases

The major use cases we had in mind when creating the system were:

(1) performing a demonstration addressing a possibly “infofusion-naive”
audience. Thisis communication, not research, but could be developed into a
methodology to present, visualize, and later analyze in detail properties of new
components and subsystems,

(2) performing studies and experiments with sensor models, terrain and other
environment models, fusion methods, doctrine models, scenario assumptions,
etc, in various combinations, to test different hypotheses about possibilities
and limitations related to Network-Based Defence (NBD) and information
fusion (IF),

(3) developing and testing methodology and models for IF, i.e., specification,
development, and test of new concrete methods and fusion concepts. The size
and complexity of ademonstrator can be a severe drawback here, at least early
in the research and devel opment process, which leads to the question: how
could detail studiesin a separate test environment best be combined with
system tests involving the demonstrator platform? The demonstrator provides
at least a partial answer to that question.

Potential advantages from using such a simulation-based R& D process include:

- shorter turn-around time and lower cost for the modelling activity; this can be
exploited to create a better dialog with prospective users/customers,

« higher quality through such a dialog and improved opportunities to pre-test a
proposed system in synthetic but increasingly realistic and perhaps ultimately
dangerous situations,
improved basis for the estimation of total system construction costs.

3.6 Evolutionary development and its environment

In general terms, evolutionary system design and development may be described as a
methodology where large devel opment projects are partitioned into an organized
collection of separately agreed subprojects or phases. Each phase is devel oped
according to a predefined design contract, which can and must be operationally
verified by aset of “users’ representing the “customer” organization. Originally, the
main rationale of evolutionary design and development isto facilitate close customer
and end-user involvement in the development process. But asimilar iterative design
and development processis also well suited to the needs of a research group which
devel ops comprehensive software while striving to retain much individual
responsibility for design and work planning.This was also our experience in the
IFDO3 project.

IFD 03 System documentation 10

3.7 Combining C and MATLAB

The decision to use MATLAB instead of C or some other language (CommonLisp
was a seriously advocated alternative) for developing the FusionNode was taken
because we wanted to spend as little time as possible devel oping and debugging the
implementation of our algorithms, and focus our work instead on algorithm design.
The fact that most of our group has significantly more experience in the use of
MATLAB than of C influenced this choice. The decision was made easier by the
availability of the MATLAB Compiler software, which generates C or C++ code from
MATLAB code, enabling usto easily integrate FusionNode code into the FLAMES
framework. In summary, the decision proved successful, contributing significantly to
the productivity of the project.

Using MATLAB had both positive and negative consequences. On the pro side, new
ideas may be quickly implemented using MATLAB’ srich variety of built-in
functions. MATLAB agorithms could often be conveniently debugged by loading
input data, previously generated and then saved during execution of the compiled
system, into an interactive MATLAB session. Also, test code could very easily be
added, such as plotting the input or output of a function.

On the con side, MATLAB provides neither low-level handling of memory allocation
nor compl ete automatic garbage collection. Instead, the MATLAB system handles
allocation and deallocation of memory for objects automatically, using a heap
mechanism where objects that are no longer used are released. Storageis
automatically re-allocated when an object grows. This caused severe memory
fragmentation problems. To diagnose and fix such problems, MS WindowsTM
functions had to be used to obtain information on memory availability. Ultimately, the
cause of these problems may be found in aMATLAB programming style not adjusted
to the development requirements of large systems. MATLAB allows preallocation of
matrices that will contain a large number of data. Thisisthe style to be preferred
when developing large systemsin MATLAB.

MATLAB, designed as an interactive environment, will not catch many errors when
using the MATLAB Compiler. Even simple things like misspelling a function or
variable will cause run-time errors. However, MATLAB Compiler doesissue
compilation warnings for many errors like these. Thus, MATLAB Compiler messages
should be closely watched.

The large size of our terrain database meant that we ran close to the Windows upper
limit of 2 GB per process memory size. Using alarger terrain database size would
thus not be possible using current technology. Conceivable solutions of this problem
include switching to a computer system with 64 bit address space, or changing the
terrain database part of FLAMES to use a disk-stored database. In a short term
perspective, both approaches seem unredistic.

3.8 Codeversioning and documentation

The CV'S (Concurrent Versions System) configuration manager played an essential
part in our system devel opment process. While the use of CV S requires considerable

IFD 03 System documentation 11

discipline from developers (e. g., not committing untested code, writing proper
change logs), we would probably not have been able to interface the different parts of
the system without using it, or some similar system. We are currently investigating
aternativesto CV S for source-code management. We would, for instance, like to be
ableuse MS Visua StudioTM for controlling also the MATLAB Comepiler. Visual
SourcesafeTM might then be aviable alternative to CVS.

Since the project became quite hectic as the date for the demonstration drew closer,
comprehensive system documentation had to postponed. Since severa problems
would likely have been avoided if a previous research project had properly
documented its detailed procedures, we were brusquely reminded that such
documentation is indispensable a so in small-to-medium-scale computational research
work.

IFD 03 System documentation 12

4 Scenario and background

The scenario isimagined to take place in May 2015. Tension in the Baltic Sea area
has grown gradually over severa years and the state of aert of the Swedish defence
has been raised. At the outbreak of the war a number of concurrent events occur. Of
these, a"trojan horse" enemy landing at the ferry harbour at Kapellskér isjudged to
constitute the greatest threat. If the enemy is allowed to move further inland towards
the town of Norrtélje and occupy the lake passes there, he will be difficult to defeat
with available own resources.

When the defending batallion commander has received his action orders he wants to
obtain as fast as possible a detailed picture of the enemy's size, composition, and
activity in order to be able to judge the enemy's action options and decide his own.
The only intelligence sources available at the time of the landing are four Home
Guard patrols deployed at strategic points along the enemy advance routes. The
battalion's UAV group is ordered to immediately direct two UAV s for reconnai ssance
above R&dmanso, to obtain as quickly as possible a more detailed picture of the
enemy situation. Figure 2 shows the situation at 18:45. The two UAVsdirected to
Radmanst have by then delivered a number of reports which have contributed to the
rather detailed situation picture. The chief intelligence officer is able to state that the
enemy force consists of a mechanized batallion reinforced by antiaircraft and artillery
units, advancing along two roads towards Norrtélje. However, since the bridge across
Akerofjarden was demolished by the Home Guard at 18:30, the enemy advance along
the main road has been decisively delayed.

IFD 03 System documentation 13

L

| Bergaviksadgt)
o : ,J‘\

i

e Vg i §
i //_-_q Horthalian |
' . P
sl
- . vamm'ng\wak@r_’ -
o o Lidon

(| Rirnhohrer

) e T = : # e
- it im;_} Oﬂdzen SR - e B !
e —NDVTI/[EVMBH Kebussdran _* - é 6”’3 e Kbt g
i e
_égmam o H ﬁsmmmnev Citmiciden Q
: Preiea inger

Nomangarma 59

Tjoct

% =Bﬂ'r\"a's.vl!n‘a
5 ? 5“‘ Tieoks i
Sl

Tornhalniam-«
&2

! i e
L o
X, Sharingen
& Osrer

GRS
\Hédmwwiren / ‘%r

' Humlagardsiaroat [w5

Trchlperger
12,55

842

zftﬁ@my o
uadmansﬁuﬁ\ Sytoin

X, ST A
f»‘i%mw s {)‘

o
@{;Wﬂ?ﬂ /\f"\‘@ farf,

It uﬂhji n[

L O

e Bty

%"“‘:‘ﬁ}“ 50 Fdm
e ‘Qﬁe@mmm 58

s
; nﬂ‘? /J‘ e Firhc

e

: 40 g.?{/.&w‘upe\\k?’ i
toug)

kS [ptarbuolien
.@Q I fhten B
| } Ekbaclen ﬁ
== 4 13 e Magticien
581" L \g o
Hapalsedasshirat
Kapellskir
ks
20
44
Vart]
Chelig
gagt U 9
AsHeen =
e Ashten
e Mduligts 2 i
o .
. HsJ er,b, e ; D z(/iqm;, Srww
TR 5 o
et 3 & Sitbomegriagst - i / Stors Fallen
L B lrckirer: z Lk P i
o Lackivimein L |
uysfmsnn o (_/ € I: SIS fpisains \ .
i -) s o +
semg, ¢ R ot e \B Cosunct
Sonansanr 5 ?
ik Gmr. =N s e e i
JitAswenl < | Tibargsiren ol ¢ - |
7, = R et o i i
Osmmnen SrGlgyes g — : -
S Lo {/ £ i Z Wistsheimsawndet Titmidmn
Bl ineafSeIans. notlimsoan ot R = |

Figure 1 Information collection situation at R&dmanso 18:00.
Four Home Guard (HV) patrols are located at critical points aong the enemy's
approach route.

IFD 03 System documentation 14

«lIsteruaden / N
L (R A ndgrs- ; o
iy Norrsjn\nken Laaro \“} skoge \ ‘ Jarg en - .
Nerrsjan™~¥" J6rdn Ma y /] l}[’lmm@ ‘&J £
: re o = !
= Z = Bijtirk :
e gédg . Flesham) jor 0‘5’19” Et

dafanpy |

B Bl

27

Dsterangarﬁa S
- orrdngarna ¢

) /Eoghgeksanden .J-'lv"—n—“—' !

e o R el

B % Mglarangen o 5
yﬂm@an . J
ek o Oster

g

u@?/—) S N - pasd S i~ B Kn Hablpa | Ler ¢ 4 R

: .] . Humleg&rdstorpet y. < ,\ 1 %}H ! 1 5 . Hissahar

Lo $O rsviks Troifberget Loy el o N - ey

=4 : 4,62 a Qa)/ i b il 37 % L. :
Staken - o N ot : ‘ e %

“Samsty pet e
Hribsst e

ey
b
b us\avs‘mqqi,r s 5 e

N 79

g i U -8
i e
L sk

Pl T
“Skalldper ¢ :
P g S
0 ke 7 Vi
; < : sew

2@

|afsn

Akaru!/ '
Jiickie

S m

+ Tuistn
i = Kpeski
L Kapeliski
20

:
b i o 5 4 £oSidmshiong oe t
; ! etholme. [Vasiarnas --'_ Qi fnia Sy 25 Aski
; S [ERL ipigigskatan 5 Ak
Iubbcda k v ; ; DA : 3t Marduddee? o gz
‘ | . i g A e "‘"\, £Osternds €9 vt - 7z
- S =0 & L ‘Shioimen 70 oY . & Lpsionare ¥ Q &ngot
S o 500 24 J\/Jﬁ/,\ b e - e ;@ Stors Falen
. ? =
17 ARt v
% R e

%, o v L -a" i - Lilla Failer
- holmen - Y
q;ﬁi spansen iz L o P Stangoren 7 Engelmane & 2

Figure 2 Situation picture at 18:45.

4.1 Organisation, motion and communication models
of "red" forces

The model describes the behaviour and motion of enemy ground forces according to
their doctrine (i.e., the set of tactical rulesthat is expected to guide the behaviour of
the opponent's army). This includes telecommunication and transportation along a
road network of mechanized forces in hostile territory. Ground force objects, which
consist of behaviourally connected object models, are able to move along the road
network, guided by alimited number of parameters, including destination, road
names, starting time, marching speed.

« ground units move autonomously aong the road network

+ guided by parameters including formation and preferred roads

- aforceunit can march in formation, make route choices autonomously or
according to prespecified instructions by the user, avoid obstacles by changing
route, detect enemies, and replace lost commanders

« using Dijkstra's shortest route algorithm, the model calculates those parts of
the route which were not prespecified by the user

IFD 03 System documentation 15

5 How to develop Demo03 using CVS

Procedure for getting source to edit:

1. Setdl relevant environment variables so that you can use Flamesand CVS
with CVSROOQOT = \\Flammal\lnfofusion\cvsrepository
2. Create aworking directory in you own home area on Flammaor your own
computer and copy the contents of the folder "Necessary filesto run
demonstrator” from \\Flamma\lnfofusion to this workdir.
Explanation of the directory structure:
a. make -- contains M S studio workspace files that should be copied to
the Simulation subdirectory.
bin -- contains executables in Debug and Release subdirs
temp -- contains objects files
Scenar io -- contains scenario files
run_dir -- contains some input files needed for matlab. output files
will be stored here.
NB: Make sure that you COPY the files and don't MOV E them. The
directory iswrite-protected, this means that if you try to copy (left-
click and drag) you will get asked if you're sure. Click Cancel and
move (right-click and drag, choose move in menu) the files instead.
Y ou will have to remove the write-protection for some of your files.
The directoriesrun_dir, temp, and bin must be write-enabled; it is
probably easiest to write-enable your entire working directory. A quick
way to do thisisto first write-protect everything, click yes when
Windows asks if the change should be applied to al subfolders. Then
remove the write-protection and again click yes when Windows asks
whether to apply it to subfolders.
3. Start ashell session, cd to your workdir.
4. runthe command
cvs checkout Demo03
A directory named Demo03 should be created, containing the source codein
subdirectories Simulation and FusionNode
5. movethefilesthat are related to the Visua workspace from the Make
subdirectory of Necessary files... or your workdir to the Simulation directory.
The files that represent the workspace are those with .dsp and .dsw extensions.
If you add any c-files to your workspace, you need to update the filesin
Necessary files...\Make to reflect this. Thisis done simply by copying the
make-files that build a complete demonstrator to Necessary files.... Make sure
that you have compiled and tested several scenarios before you do this! Ask
Christian Martenson or Pontus Svenson if you are unsure what files need
to be copied.
In Simulation, double-click make.dsw to load it into Visual Studio.
Select
Project settings -> Link -> Input
and add
;..\..\bin\Debug;
to "Additiona Library Path". Don't forget to save your workspace after doing
this!

Popo

~No

IFD 03 System documentation 16

Note 031030: you may not need to do this any longer. Note that it may be
necessary to change default project to fire instead of forge.

8. Buildfire.

9. Start matlab in FusionNode and run compile.m.

10. Build fire again from Visua Studio.

11. Runfire.

When you are ready to commit your changes to the CV S repository, make sure that
your changes don’t break someone else' s code!

Note that not all modified files should be checked in. If you have changed some other

person'sfilein order to debug your code, you shouldn't check that filein!
Note that you can either delete your workdir and do another checkout to continue
work later, or you can use cvs update. cvs update is probably better.

Suggestion

Before checking in files, another person should review the changes that you have
made. Thiswould make it easier for us to catch bugs and minimize the risk of files
containing simple mistakes that cause compile-time errors to be checked in.

5.1 Storing common data files

Some data used for the sensor modelsis stored in text files. In order to access these
files, the following code-excerpt can be used:

#i nclude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude FVH_USE

#i ncl ude FVARI ABLEMANAGER USE

FILE *fp;

char *pathptr, buf[128],*fullfilenaneg;
buf = FVari abl eManager Get St ri ngVal ue ("Dat aFil esPath");
i f(buf == NULL) {
strcpy(buf,”"Confusion matri x | oad error: DataFil esPath
scenario variable not found.");
FMHAnnounce(O0 , 0, buf);
return(**FELTYP**);
}
pat hpt r =get env(buf) ;
i f(pathptr == NULL) {
strcpy(buf, " Confusion nmatrix | oad error
Dat aFi | esPat h scenari o variabl e contai ns nonexisting
envi ronnent variable.");
FMHAnnounce(O0 , 0, buf);
return(**FELTYP**);
}
strcpy(buf, pathptr);
strcat (buf,"\\");
fullfil enane=strcat (buf,fil enane);
fp = fopen(absol utepath, "r");

IFD 03 System documentation

17

The code requires a scenario variable to be set in forge: DataFilesPath should be set to
the environment variable FLAMES Datadirectory. This variable in turn must point to
the proper directory.

5.2 Profiling IFDO3

In order to find the most time-consuming parts of IFD03, follow this guideline:
Preparation mcc:

+ Inaterminal window, run "mbuild —setup”. This creates the file needed for
the next step. Ignore any error messages relating to uninstallable add-ins.

« Copy thefile compopts.bat from: C:/Documents and Settings/<user
name>/Application DatalMathWorkssMATLAB/R13 to the directory
containing compile.m (the file that creates fusionnode.dll).

- Edit compopts.bat: append the flag /PROFILE to any of the lines starting with
"SET LINKFLAGS’

« (If you're using mex-files, do the same for mexopts.bat, for thiscase it isalso
necessary to remove the line et POSTLINK_CMDS=del
"%OUTDIR%%MEX_NAME%.map")

Preparation fire:

« Rebuild fire with " Generate debug info”, " Generate mapfile” and " Enable
profiling” active, and with ”/FIXED:NO” appended to the text in ” Project
options’. All options can be found in ” Settings->Link->General” in visual
studio.

« Copy fire.map from /temp/obj-debug to /bin/Debug.

Preparation fusionnode.dll:
« Run compile.m with the modified compopts.bat from above in the same
directory.
« CD tol /bin/debug and execute in a console window: ”"PREP /OM /FT fire.exe

fusionnode.dll”. This prepares fire and fusionnode for profiling, creating a
number of datafiles.

Run:
« CD torun_dir and execute: "PROFILE ../bin/Debug/fire.exe <Scenariofile>".
Analysis:

« CD to/bin/Debug and run:
o "PREP/M fire’ followed by:

IFD 03 System documentation 18

o "PLIST /STC fire > outfile’

Statistics can now be found in outfile.

5.3 Environment variablestorun fire and flash

In order to be able to run IFDO3 or visuadlize the results, a number of windows
environmental variables need to be set. These variables relate to either Flames or
M atlab.

The system path needs to be augmented with the directory where the run-time matlab
libraries are installed.

In order to run fire, FLAMES DATADIRECTORY needs to be set to the directory
where parameter files used for the sensor modules are stored. Current valueis
\\Flammal\lnfofusion\datafiles , but this could change if you want to test other
datéfiles.

Flames requires severa variables.

» FLAMES DATABASE should point to the flames database directory. Thisis
the directory information on platforms and icons are stored. Current valueis
\\Flamma\dfs\DB\Main.

* FLAMES RELEASE needsto be set so that Flames can find its licencefiles.
Current value is \\Flamma\Flames_installation .

* FLAMES PROTO can be set to adirectory containing a prototype file. Thisis
needed to run forge; most often the prototype fileis stored in the same
directory as the working copy of forge, so this variable can often be ignored.

In order to run Flash without connections to the FOI network, a dongle needs to be
installed in Suttung and an additional licence installed on Kvaser. Such licences can
be obtained from Ternion. The file ternion.lic on both computers also needs to be
changed, so that it does not refer to Flamma but instead uses either the dongle or the
temporary license. In addition, the environment variables that refer to Flamma need to
be changed to point to the computer's local installation of Flames. The database
directory also need to be copied from Flammaand the FLAMES DATABASE
variable changed accordingly.

IFD 03 System documentation 19

6 Thel FDO3 visualizer

The IFDO3 Visuadizer isatool for visualizing the simulation output from Fire. Itisa
strongly modified version of the Flames original visualizer Flash aimed at illustrating
the functionality of the IFDO3 Fusionnode. The simulation results can be visualized
synchronously in multiple parallell visualizers, making it possible to use many
computers and screens simultaneously. New views can easily be created and
customized. Currently the visualizer includes the following views:

« Ground truth
« Sensor reports
« Vehicle, platoon and company aggregates

« Particlefilter histograms for vehicles
Matlab view

6.1 How to visualize | FDO3

This section describes how to run Flash to show the demo.
First go to the directory containing the fire output files and scenario you wish to show.

The scenario can be run using Forge, see Flames documentation. To run Flash two
programs must be run:

Playbackcontrol .exe control the timing of the demonstration. Run it and open the
scenario you want to show.

Flash.exe must be run on al computers that participate in the demonstration. After
opening it, you must load terrain and connect to the scenario loaded by
Playbackcontrol program.

Various views can be opened in Flash. For best effect, use several screens. The 3
screen Matlab view can be opened on the same computer as Playbackcontrol isrun
on.

Use the buttons in the Playbackcontrol window to start, stop, pause, and single-step
through the scenario.

A set of macro-files are available to run the demonstration automatically using
MacroToolworks.

6.2 Program documentation for the IFDO3 Visualizer

The IFDO3 Visualizing system is originally designed and implemented by Bjdrn
Lindstrom. It consists of four entities, out of which three are executable applications.

IFD 03 System documentation 20

« Thedatabase, handled by a MySQL database manager stores simulation
result data to be visualized. Do not confuse this database with the FLAMES
database.

« The Postprocessor application isresponsible for creating tablesin the
database and for converting and transferring simulation result datainto the
database. It is a Windows consol e application, meaning it has no graphical
user interface, and is suitable for execution inside batch scripts.

- ThePlayback Control application is responsible for synchronizing the
playback of the scenario across the different connected visualizers. The user
controls the playback of the scenario from this application. The user can move
freely in scenario time and the clients will be updated accordingly. The
application works as a server to which the visualizers, clients, can connect.

« Themodified FLASH application is responsible for the actual visualizing of
the data. The different kinds of data are visualized in views and FLASH
connects to the playback control as a client and fetches the data to be
visuaized from the database.

The design is based on the FORMA/Anabasis Post analysistool. The viewsin FLASH
are based on the example view code provided by Ternion. For detailed descriptions of
the different components and for instructions on how to add new viewsin FLASH,
see VisualizerDesign.doc in the html-documentation. Output from the IFDO3 in two
separate forms are used in the visualizer. The matlab view uses data saved in a matlab
file, while the other views rely on a SQL database. The PostProcessor must be run on
the .data-files written by IFDO3 in order to add them to this database. For a
description on how the simulation output islogged, see the Log Modulein the
Fusionnode documentation.

For most of the views only minor modifications have been made. The exception is the
"third view", implemented in Matlab. For a description of this, see

6.3 Documentation for M atlab vizualizer modulein
| FDO3

The"third view" is a Matlab vizualization of

» thereport stream

» the estimated number of vehicles and units from the aggregation module
» theestimated number of vehicles and units from the tracking module

» the selected path in the sensor management module

During execution of the simulation, the analysis methods save parametersin the files
matlabplot_sensor_adaption.mat, matlabplot_track.mat and
matlabplot_aggregate.mat. Before visualization the files have to be moved from the
Demo03/run_dir directory to the Visualizer/Matlabview directory. Thefiles are
during visualization loaded by the "third view" matlab module.

Implementation

IFD 03 System documentation 21

Thelist shows the call structure.

* init_matlabview, calls
* convert_time_to_julian
e draw_matlabview, draws the parameters.

init_matlabview

L oads the reports from the file matlabplot_track.mat generated by the tracking
module. Rewites them as strings suitable for display and saves them in another
(smaller) .mat file. Thisfunction is called by the Visualizer once at the start of a
Visualizer session.

convert_time to_julian

Converts seconds, minutes, hours, days etc. to date and time in a certain string format.
I nput: year, month, day, hour, minute, second.
Ooutput: Julian time string.

draw_matlabview

Loads the reports saved in init_matlabview, displays the few latest reports. Loads the
estimated number of vehicles and units saved in .mat files by the aggregation and
tracking modules, displays the latest minutes of estimated number of vehicles and
units. A acertain visualization time, loads the selected UAV track saved in a.mat file
by the sensor adaption module during simulation, displays the selection. This function
iscaled by the Visualizer once every 10 seconds.

Input: Visualization time.

IFD 03 System documentation 22

/ |FDO3 system and terrain

7.1 Introduction

The IFDO3 consists of severa programs, each of which is documented in subpages.
Flamesis used to simulate the scenario, while all of the analysisis donein Matlab
code that is compiled to C and linked to fire (the generator part of Flames).

Sensor reports are generated by Flames-cognitive-models that send them to a Control
module in Flames. This trandates the reports into Matlab format and send them to a
Matlab function. This function only stores the reports. Anaysisis performed
whenever the Matlab function Flames_Analyze is called from the Control modulein
Flames.

Flames_analyze dispatches the report to the various submodules; see the subpage on
the fusion node.

The Flames modul es and the FusionNode are compiled into the fire program. Running
thiswill produce a number of output datafiles:

« SQL-datafilesthat should be inserted into the SQL data base using the
PostProcessor from Visualizer. (* .data-files)
A matlabplot_aggregate.mat file containing datafor the Matlab view in
Visualizer.
A rapport_loggade.mat file containing all reports that have been received by
the fusion node.

7.2 Documentation on the Terrain Model in IFDO3

The geographical source data used in the R&dmanso scenario comes from the Swedish
Land Survey. In order for Flames to import the data it has to be converted to shape-
files. For this process the TerraVista Pro Builder is used.

Terrain Modelsfor FLAMES EFO and CFO
Description of the development process
Sour ce data
The source data for this terrain model consisted of conventional off-the-shelf
geographic data from the Swedish Land Survey. Source data used in the project come
from GSD (Geographical Data of Sweden). The following categories are used:
» Topographic information — elevation map (50 m post spacing)
» Thematic mapping / terrain classification (vector)
* Road networks
Sour ce data preparation
In some cases the source data had to be pre-processed in order for FLAMES to be

able to process these correctly. As an example, FLAMES requires road segments to
be continuous and tagged with a name, otherwise the line topology function in

IFD 03 System documentation 23

FLAMESwill fail. Thisis amajor drawback, since we would like to be able to use
the source data“as-is’, without the need for pre-processing. In this way, only the
major roads will be present in the resulting terrain model, which probably wouldn’t
yield satisfactory results or indeed realism.

Terrain database generation tools

We used TerraVista Pro Builder by TerrEx, inc. for the terrain database generation.
TerraVista Pro Builder is the software of choice for creating terrain databases for
FLAMES CFO and EFO. TerraVista can handle alarge number of source data types
and is able to generate output in a variety of formats.

Tool setup

TerraVista had to be extended to include specific processing passes for GSD feature
data. Thiswas accomplished using the scripting functionality of TerraVista

Gaming Area

East 1687500
West 1642500
North 6635000
South 6615000
Block Size 5000m
Tile Size 5000m

Output polygon attribution

For FLAMES to consume TerraVista polygon output, the polygons needed to be
attributed with specific fields as described below.
* FLAMES COD
o Specifieswhich feature class the terrain area belongs to, eg.
"landregion” or ”road”
* FLAMES RGB
o Colour for visualisation in FORGE (in the format "xRRGGBB”)
* FLAMES NAM
0 Feature name, eg. road name..
* FLAMES SID
0 Maindriving side of road
* FLAMES WD1
o Inner width of road
FLAMES WD2
0 Outer width of road
These fields are added to the output process using TerraVista' s scripting functionality.

Featuretypes and processing passes

The table below shows how the different feature classesin GSD are processed in
TerraVista

IFD 03 System documentation 24

LM-kod Name Comment

1 Vattenyta (Body of | Ared
Water)

2 Barr/blandskog Areadl, canopy
(ConiferousMixed
forest)

3 -

4 Aker (Cropland) Areal

5 Annan 6ppen mark | Ared
(Grassland)

6 Hygge (Clear-cut | Ared
area)

7 Fruktodling (Fruit | Aredl
Farm)

8 Kalfjal (Bare N/A
mountain Region)

9 -

10 Fjalbjorkskog Areadl, canopy
(Mountain Birch)

11 -

12 Sluten bebyggelse | Areal, canopy
(Urban area)

13 Hog bebyggelse Areadl, canopy
(High rise urban
area)

14 L &g bebyggelse Areal, canopy
(Low suburban
area)

15 Industriomrade Areadl, canopy
(Industrial Area)

16 Fritidsbebyggelse | Areal, canopy
(Recreational areq)

17 Annan 6ppen mark | Areal
utan skogskontur
(Open land)

18 Vattenyta med Ared
diffus strandlinje
(Water surface)

19 Lovskog Aredl, canopy
(Hardwood forest)

20 Ej karterat omrade
(Uncharted area)

>5000 Végar (Roads) Major named roads

>700 Byggnader Points, specific models for each building
(Buildings) type

>300 Vattendrag
((Water)

IFD 03 System documentation

25

Output

Severa different output formats were generated for use in FLAMES and for 3D
visualization. TerraVista ensures that all output is correlated. The output formats are
listed below.

o Vector files (ESRI Shapefiles)

» 2D orthophoto (grayscale)

* Topographic mode (TIN, ESRI Shapefile)

» Terrain model for real-time visualization (OpenFlight)

Coordinates
FLAMES uses WGS84
Problems and issues

Several issues were encountered during the devel opment process, |eading to support
notifications and testing of unofficial versions of TerraVista

Empty (non-attributed) polygons (1)

By default, TerraVista creates a 10m buffer around eg. water and forests. The buffer
polygons will be void of attribution and will use the standard material as defined in
Terrain Parameters. Thisis undesirable and has been disabled in the affected
processing passes.

Empty (non-attributed) polygons (2)

On rare occasions, the generated pol ygons can be void of attribution, even though
every GSD featureis processed in TerraVista. Thisis mostly evident in forest canopy
areas. Thisissueis yet to be resolved, and it has been reported to TerrEx as a serious
issue. Some of this can be worked around using different settings for
“polygons/block”.

ASL colouring

If the colouring of featuresis based on ASL (Above SeaLevel), small isands are
likely to disappear, since they only contain polygon nodes on their outer boundary.
Since the boundary is set to be at Sea Level (0m), the island polygons will be flat
(with no z coordinate above zero) and when coloured based on ASL they will be the
same colour as the surrounding water.

Large datasets

The Shapefile output for the area which is consumed by FLAMES exceeds 2.0 Gb.
Thistakes along time for FLAMES to consume. Most of the attribution in the
polygonsisinternal TerraVista-specific information which is not need for FLAMES.
It has been suggested to TerrEx that they allow the user to specify which attributes are
propagated down to the polygon outpui.

IFD 03 System documentation 26

Erroneous triangulation

On rare occasions, TerraVista striangulation engine will fail. Thisis probably due to
the fact that it isforced to create extremely long and thin triangles. This can occur eg.
when a small building footprint isintegrated into avery large flat terrain area, causing
the side of the building to be atriangle edge several magnitudes smaller than the other
edges. One quick way of eliminating thisis not to generate footprints for building
models that are too small.

IFD 03 System documentation 27

8 IFDO3 smulator

The simulator part of IFDO3 consists of C code and scenario files used with Flames.
Flames consists of three different parts. Forgeis where ascenario is created, fireis
used to run a scenario, and flash to visualise it. We use a custom-designed Flash,
described in section 6. The models described in this section are linked into fire.

8.1 Flames Fusionnode M odel

Overview

The FOIIFFusionnode is a Flames Cognitive Model that serves as an interface
between Flames and the internal Matlab functions in the FusionNode. The functions
of the model can be divided into the following categories:

1.

Analysis

When executing a scenario simulation in Fire the Flames Kernel serves asthe
simulation engine. At certain timeintervals the Kernel calls the control
module to determine if some or all analysis methods are to be performed. The
function called is FOlIIFFNAnayze and the frequency of the callsis set in the
Flames Prototype for FOIIFFNAnalyze.

M essage processing

The Control Module continuously recieves reports from the sensors in Flames.
The reports are processed in the FOIIFFusionnode model and tranglated to a
Matlab representation. Two types of reports are currently supported and
shipped to the Matlab modul e, target reports and reports on sensor status. For
a description on how to send reports to the Fusionnode, see Sending reports
in Flames.

Requesting Sensor Status

The Fusionnode sometimes needs to ask a sensor for its current status. To
handlethisit is possible to send a message to a specifik sensor (each sensor
has a unique ID). The sensor (hopefully) answers by sending a sensor status
report.

Sensor control

The Fusionnode has a Sensor M anagement function. The result of the sensor
management is a number (1-4) of the optimal path planned for aUAV. Each
number corresponds to a specifik airspace (planl-pland) predefined in the
scenario. The FOIIFFusionnode has a function that manages a devoted UAV
(named "UAV _controlled") to fly the chosen path. It also controls the
dropping of a Ground Sensor Network (" GroundSensorNetwork _dropped”) on
a spot hardcoded for each path.

Utility functions

The FOIIFFusionnode model includes a bunch of utility functions. Some are
called from Matlab to access information in Flames, such as the terrain or unit
positions. The FOIIFFusionnode mode! also includes alogging function for
time and truth data, see Log Module.

IFD 03 System documentation 28

Example Script

PERFORM STARTUP USI NG FA | FFusi onNodeSt art up;

PERFORM ANALYZE USI NG FA | FFusi onNodeAnal yze;

PERFORM SHUTDOWN USI NG FO | FFusi onNodeShut down;

PERFORM CONTROL_SENSOR USI NG FO | FFusi onNodeCont r ol Sensor ;

TRANSM T FO | FMsgRequest Sensor St at us AT REQUEST_SENSOR_STATUS;

RECEI VE FO | FMsgREPORT USI NG FO | FFusi onNodePr ocessREPORT;
RECEI VE FO | FMsgSensor St at us USI NG
FA | FFusi onNodePr ocessSensor St at us;

Cognitive Methods

+ FOIlIFFusionNodeStartup

« FOIIFFusionNodeShutdown

« FOIlIFFusionNodeAnalyze

« FOIIFFusionNodeProcessREPORT

« FOIIFFusionNodeProcessSensorStatus
« FOIIFFusionNodeControl Sensor

Methods called from Matlab

« FOIIFFNRequestSensor Status. Sends a request message for a sensor status
report to a specifik sensor, given its ID as input. The function is reached from
Matlab through Flames_Request_Sensor_Status.

« FOIIFFNExecuteSensor Plan. The FOIIFFNExecuteSensorPlan takes an
integer (1-4) asinput. The number corresponds to a specifik airspace (planl-
pland) predefined in the scenario, and FOIIFFNExecuteSensorPlan tells an
UAV ("UAV_controlled") to fly the chosen path. It then initiates
CONTROL_SENSOR so that FOIIFFusionNodeControl Sensor can handle the
dropping of a Ground Sensor Network (" GroundSensorNetwork_dropped”).

Utility functions

- faiiffn_mterrain.c contains two terrain utility functions used by the Terrain
Module:
o GetElevation isreached from Matlab through flames _get_elevation
o GetStringAttributeisreached through flames get_terrain_type.
- getBluePositions returns an mxArray with the positions of al blue units. It is
reached from Matlab through flames_get_blue_positions
« LogTimeAndTruthData Logs the scenario timeto file. Log unit truth data
for al active, alive, and present units in the scenario at the current sm time.

FOIIFFusionNodeStartup
Initializes the FOIIFFusionNode object. Must be executed before any other method of

this class. Initializes the matlab fusionnode dIl and calls matlab init file
Flames_Startup.

IFD 03 System documentation 29

« Intended Function

STARTUP

- Execution Mode
SINGLE

« Inputs
None

« Parameters
None

« Function Initiation Points
None

+ Message Generation Points
None

FOI I FFusionNodeShutdown
Cadlls Flames_Shutdown.

« Intended Function

SHUTDOWN

- Execution Mode
SINGLE

« Inputs
None

« Parameters
None

« Function Initiation Points
None

+ Message Generation Points
None

FOIlFFusionNodeAnalyze

Calls the matlab fusionnode function Flames_Analyze. The function is executed
continuously with timestep given in the FLAMES prototype. It also calls the utility
function LogTimeAndTruthData.

« Intended Function

ANALYZE

- Execution Mode
SINGLE

« Inputs
None

« Parameters
None

« Function Initiation Points
None

« Message Generation Points
None

IFD 03 System documentation

FOI I FFusionNodeProcessREPORT

Processes atarget report message. The report is transformed into a Matlab format and
shipped to Flames_Report.

M essage
FOIIFMsgREPORT
Execution Mode
SINGLE

I nputs

The message attributes currently recognized by the Fusionnode
(FOlFFusionNodeProcessReport) are listed in the table below. Note that for
the target position error only one of TARGET _POS _ERR and
TARGET_POS ERR_NSWEROT should be used.

Variable Name Datatype Description
Sensor position in
SENSOR_POS LLA FVectorType (It lon,alt)
SENSOR_POS ECR FVectorType | onSor positionin

ECR Coordinates

SENSOR_ID

FEquipmentIDTy
pe

The unique
Equipment ID of the
Sensor.

SENSOR_TYPE

char *

Name of the sensor
type.

SENSOR_CONTINUOUS TRAC
KING

FintegerType

Setto"1" it signals
that thetarget is
being tracked and
that areport
previously has been
sent. Currently not
used.

TARGET_CORRECT_NAME

char *

Thetrue target unit
name

NBR_OF TARGET FOCALS

FintegerType

The number of
argumentsin
TARGET_FOCALS
and
TARGET_PROBM
ASS

TARGET FOCALS

FMALObj

MAL with strings,
each representing a
subset of possible

targets. Use"," as
delimiter.

IFD 03 System documentation

31

MARGName
arbitrary.

TARGET_PROBMASS

FMALObj

MAL with the
probability masses
corresponding to
each hypothesisin
TARGET_FOCALS.
To connect the
correct prob. mass
with each hypothesis,
use the same
(arbitrary)
MARGName for
both.

TARGET_POS LLA

FVectorType

Target position in
(lat,lon,alt).

TARGET_POS ECR

FVectorType

Target position in
ECR Coordinates.

TARGET_POS ERR

FRead Type

Standard deviation of
the Gaussian target
positional error.

TARGET_POS ERR_NSWEROT

FVectorType

Elliptic error. X -
stddev north-south,
Y - stddev east-west,
Z - clockwise
rotation of ellipse.

TARGET_SPEED

FRead Type

Estimated target
speed (mM/s).

TARGET_HEADING

FRead Type

Estimated target
heading (rad).

TARGET_SPEED_ERR

FRead Type

Standard deviation of
the Gaussian target
Speed error.

TARGET_HEADING_ERR

FRead Type

Standard deviation of
the Gaussian target
heading error.

DETECTION_TIME

FdulianType

Time of detection.

Parameters

None

Function I nitiation Points
None

M essage Gener ation Points
None

IFD 03 System documentation

32

FOI I FFusionNodePr ocessSensor Status

Processes a sensor status message. The message is transformed into a Matlab format
and shipped to Flames_Sensor_Status.

M essage

FOI1FM sgSensorStatus
Execution Mode
SINGLE

I nputs

The message attributes currently recognized by the Fusionnode
(FOlIFFusionNodeProcessSensorStatus) are listed in the table below. Note
that for the sensor coverage either COVERAGE_POSITION +
COVERAGE _RANGE or NUMBER_OF VERTICES + VERTEXn should

be used.

Variable Name

Datatype

Description

The unique Equipment 1D

SENSOR_ID FEquipmentIDType of the Sensor.
SENSOR_TYPE char * Name of the sensor type.
STATUS TIME FlulianType Time of the status report.
Centerpoint of the current
COVERAGE_POSITION |FPositionType sensor coverage (ECR-
coordinates).
COVERAGE_RANGE |FRealType Radius of acircular
coverage.
Number of verticesin a
NUMBER_OF VERTICES |FIntegerType polygon describing a

coverage area

The coordinates of the
coverage areavertices. n

VERTEXn FCoordinateType |rangesfrom 1to
NUMBER_OF
VERTICES.

Parameters

None

Function Initiation Points

None

M essage Gener ation Points

None

IFD 03 System documentation

33

FOI | FFusionNodeContr ol Sensor

The CONTROL_SENSOR isinitialized from FOI I FFusionNodeExecuteSensorPlan,
which is called from matlab. It then continuously watches the position of the

UAYV _controlled. When the UAV flies over the predefined drop zone, the
FOIIFFusionNodeControl Sensor |aunches GroundSensorNetwork _droppped.

« Intended Function
CONTROL_SENSOR

» Execution Mode
CONTINUOUS until the Ground Sensor Network is dropped.

« Inputs
None

+ Parameters
None

« Function Initiation Points
None

« Message Generation Points
None

8.2 Instructions on Sending Reportsin IFDO3

Sending reportsin Flames

There are two types of reports a sensor can send to the fusionnode. One is the target
report containing information on a detected target, such as target position and
classification. The other isthe report of sensor status information, including
information on current sensor operability and coverage. The procedure to generate
both message types are identical, except for the included message attributes. For lists
of recognized attributes, see the documentation on the FOIIFFusionNode.

To send areport from a sensor model to the fusionnode you have to create two MALS
(Model Argument Lists). In the first, which you name "DATAMAL", you put all
attributes of the report that you want to include. Then you add the DATAMAL to a
second MAL, which you name "MSGMAL". Thisisthe MAL that you use as
argument when generating the message. The reason for using two MALsisto makeit
possible to add new report attributes without changing the message prototype. (In the
prototype for a message you have to specify its exact constituents, but with this
method it will always only contain asingle MAL, the DATAMAL).

Example code for a cognitive model sending (target) reports:

1. DATAMAL = FMALCreate();
2. FMALAdJdFMAL(DATAMAL,"TARGET _FOCALS',FOCALMAL);
3. FMALAdJJFMAL(DATAMAL,"TARGET_PROBMASS' PROBMASSMAL)

FMALAddFinteger(DATAMAL,"NBR_OF TARGET FOCALS',2):
etc.
MSGMAL = FMALCreate();

S CLE

IFD 03 System documentation 34

7. FMALAddFMAL(MSGMAL,"MSGDATA",DATAMAL);
8. FBEGenerateMessage ("REPORT",MSGMAL ,0,0,0);

NOTE: If generating the message from an equipment model
FBEGenerateM essageFromEquipment must be used instead of FBEGenerateM essage,
otherwise aruntime error will occurr!

Example script code in Forge
(Fusionnode)

« PERFORM STARTUP USING FOIlIFFusionNodeStartup;
+ RECEIVE FOIIFMsgREPORT USING FOIIFFusionNodeProcessREPORT;
« RECEIVE FOIIFMsgSensorStatus USING

FOIIFFusionNodeProcessSensor Status;

(Sensor unit)

« TRANSMIT FOIIFMsgREPORT AT REPORT;
« TRANSMIT FOIIFMsgSensorStatus AT SENSOR_STATUS;

8.3 Sensor Manager M odé€

Overview

The Sensor Manager Model serves as an interface between a unit and its sensors.
When a sensor makes a detection the Sensor Manager will transmit the detection data
as aFOIIFMsgREPORT message. The Sensor Manager also processes sensor status
regquests. Given an EquipmentID it queries the corresponding sensor for information
and transmits it as a FOI 1 FM sgSensor Status message.

Example Script

PERFORM STARTUP USI NG FO | FSensor Manager St art up;
PERFORM DETECT USI NG FO | FSensor Manager Report ;

TRANSM T FO | FMsgREPORT AT REPORT LOG
TRANSM T FO | FMsgSensor St at us AT SENSOR_STATUS;

RECEI VE FO | FMsgRequest Sensor St at us

USI NG FO | FSensor Manager ProcessRequest Sensor St at us
LCG
Cognitive Methods

« FOIIFSensorManagerStartup
« FOIIFSensorM anagerReport
+ FOIIFSensorM anagerProcessSensorRequest

IFD 03 System documentation 35

FOI 1l FSensor M anager Startup

FOIIFSensorManagerStartup isinitiated by the kernel at STARTUP and sends a
status report to the fusionnode for each sensor attached to the unit. The statusinfois
gueried from each sensor and passed on to the fusionnode with messages.

- Intended Function
STARTUP

- Execution Mode
SINGLE

« Inputs
None

« Parameters
None

« Function Initiation Points
None

« Message Generation Points
SENSOR_STATUS

FOI I FSensor M anager Report

FOIIFSensorM anagerReport takesa MAL asinput from a sensor and sends it as a
message to the fusionnode.

« Intended Function

DETECT

- Execution Mode
SINGLE

« Inputs

MSGDATA - MAL with the datato send
« Parameters

None

« Function Initiation Points
None

+ Message Generation Points
REPORT

FOI I FSensor M anager ProcessRequest Sensor Status

Processes a RequestSensorStatus M essage for the FOIIFSensorM anager cognitive
model. Queries sensor SENSOR_ID for status info and passes it to the fusionnodein a

message.

« Message
FOIIFM sgRequestSensor Status
« Execution Mode
SINGLE
- Inputs
SENSOR_ID - The ID of the sensor to ask for sensor status

IFD 03 System documentation 36

« Parameters
None

« Function Initiation Points
None

« Message Generation Points
SENSOR_STATUS

8.4 Message models
84.1 FOIIFMsgREPORT Model

The FOIIFMsgREPORT is used to send detection data from a sensor to the
Fusionnode.

Input

« MSGDATA (FMAL) In this you can put anything at will. It is up to the sender
and recelver to agree on content.

Content
« MsgData (FMALODj) A clone of the input MAL.
8.4.2 FOIIFMsgSensor Status Model

The FOIIFM sgSensorStatus is used to send sensor status data from a sensor to the
Fusionnode.

Input

« MSGDATA (FMAL) In this you can put anything at will. It is up to the sender
and receiver to agree on content.

Content

« MsgData (FMALODj) A clone of the input MAL.

8.4.3 FOIIFMsgRequestSensor Status M odel

The FOIIFM sgRequestSensorStatus is sent by the Fusionnode to ask a unit to return
sensor status information on a specific sensor.
Input

« SENSOR_ID (FEquipmentID) The ID of the sensor to ask for status info.

Content

« SensorlD (FEquipmentIDType) The ID of the sensor to ask for statusinfo.

IFD 03 System documentation 37

8.4.4 FOIIFMsgComlntReveal M essage M odel

The FOlIIFMsgComintReveal is sent by the process model FOIIFComIntTIkInit, and
the FOIIFComIntTlk loaded by units that should be able to reveal itself by initiating,
or answering on transmissions. This message is received by other similar units
(judging themselves if they should answer with the same message type) by including
RECEIVE FOlIFMsgComintReveal USING FOIIFComintProcessTak; in the unit
script. The message is also intercepted by also by Comint intercepting units that have
included EMPLOY COMDEVICE COMINTInterceptor; (the intercepting
ComDevice) and also RECEIVE FOIIFMsgComintRevea USING
FOIIFComlIntProcessRevedl; in their unit scripts.

Input

e TakNumber (FInteger)

* Receiver (FUNitID)

* AnswProb (FRedl)

Content

o TakNumber (FIntegerType) Number of message in a potential message

sequence. The unit initiating a conversation sets thisto one (1) in his message, then it
isincremented in each message generated in the conversation; Dialogue (ping-pong)
or broadcast type conversation

* Recever (FUnitIDType) Set to NULL if there should be no unique
receiver (thisis broadcast mode to next lower subordinates, they are resolved from the
Unit name of the sender), or to aunique receiver Unit whose nameis givenin this
parameter

e AnswProb (FRea Type) If < 1.0, thisisthe probability for an answer. In
Dialogue mode it can be >= 1, in which case it marks the number of messages to be

exchanged.

8.4.5 FOIIFMsgComlntFuse M essage Model

The FOIIFMsgComintFuse is sent within the process model FOIIFComintRevea by
the intercepting units to the fuser unit which push:es the message onto alist for
periodical processing.

Input
* Footpoint (FCoordinate)
e Bearing (FRedl)

IFD 03 System documentation 38

» BearingError (FRedl)

* ReveaedUnit (FUnitID)

* RevededTime (Fdulian)

Content

* Footpoint (FCoordinateType) Lat/Lon footpoint of intercepting unit
* Bearing (FReal Type) Estimated Bearing in radians clockwise from
north direction towards intercepted emitter

e BearingError (FReal Type) Estimated Bearing Error in radians

* RevealedUnit (FUnitIDType) ID of Unit carrying intercepted emitter

* RevededTime (FdulianType) Time for interception of emitter

8.5 Object hierarchy description

Overview

The hierarchy file, which is common for a whole Flames scenario, describes the
hierarchical structure of the object identities that carries FOIIF... type signatures.
These all depend on this hierarchy definition. Together with dataprocessors of type
FOIIFIDlibrary, this forms an environment where sensors detecting these signatures
can reason about the identity of objects carrying the signatures. How well an
identification is made depends on the signal level required in the signature set-up. The
signal level isthe “energy” strength (light in the case of avideo sensor, vibrationsin
the case of a seismic/acoustic sensor) that discerns the object from its background

and, hence, make it detectable. If the signal level from an object (say, an T-80U tank)
is not high enough for an identification of a T-80U, it might be high enough to imply
the presence of atank (the one step less detailed identity of the T-80U visual signature
definition). The precense of atank means that the object can be an Abrams,

Centurion, T-80, T-72, Leopard, Stridsvagn-S,... Thelist isin theory an enumeration
of all existing tank models ever built. In practice, the list only consists of the tanks
that areal sensor should be able to identify, given enough signal strength.

The hierarchy definition should be stored as a text document in adirectory pointed to
by an environment variable whose name is stored in the Flames Scenario Variable
(found in Forge under Scenario->Variables...) “DataFilesPath”. For instance, if
DataFilesPath is set to the text string “FLAMES Datadirectory” (must be set to be
valid for thefirst run pass), and the operating system environment variable

FLAMES Datadirctory is set to point on \\Kvaser\Infofusion\Datafiles, this directory
must contain the text file with the hierarchy definition. The name of the hierarchy file
isgiven in another Flames Scenario Variable with name “IDHierarchyFile’.

(NOTE: see html-documentation for exact contents of these files.)

IFD 03 System documentation 39

8.6 ID Library Dataprocessor Model

Overview

The confusion matrix is not aflames model, but a stand-alone datafile that has to be
present for the classification algorithm to work properly. The reason is that this
algorithm uses information from the signature carried by an object to determine if the
object is detectable and, if so, at which level (*T-80", a” tank”, a“tracked vehicle”,
or simply a*“vehicle”) it should be reported. The confusion matrix would not be
needed if the classification algorithm was content with this. But it is not. Thereisaso
aprobability (after the algorithm has decided at which level it should report, let’s say
itis“tracked vehicle”) to do a complete mistake, and “jump over” to another object
hierarchy and, in this case, report a“wheeled vehicle’. The probabilities (confusion or
mixing probabilities) are stored in the confusion matrix. Its functionality isthe
following: If the detection algorithm decides that it has enough signal from the object
to say that it has detected a, lets say, T80 tank. But in redlity, a classification can
always be wrong. The algorithm then asks the identification library of type IDlibrary
to check if there can be any misclassification. The IDlibrary enterstherow inits
matrix (see below) which has the same name as the detected Object classin the
signature table, in this case T-80. The matrix elementsin thisrow equal the
probability for confusion with the Object classin the top of corresponding column, so
that object name will be reported instead. Thisisthe case a “full confusion”. The
degree of confusion is actually depending linearly on arandom fuzziness parameter F
(uniform between 0 and 1). Fis 1 if the chosen classification was infinitely close to be
one step less precise. Fis 0 if the chosen classification was infinitely close to be one
step more precise. F varies linearly in between. If F=1 the confusion follows the
values of the confusion matrix (“full confusion”). If F=0 thereis no confusion at all.
The confusion is now done according to this scheme, and the resulting object class
name is expanded (if not itself a singleton) into atext string containing its comma-
delimited singletons, and returned as the focal el ement to which the sensor wants to
assign probability mass. The value of the probability mass assigned to is computed as
follows: If F=0, the probability massis 1.0. If F=1, the probability massis the same as
that for the diagonal element (i.e. correct identification) of the confusion matrix. The
probability density varies linearly in between. Finally before reporting, the probability
density is“smeared” within a Gauss bell with the width entered in the GUI. This can
of course be set to zero to inhibit this effect.

The confusion matrix should be stored as a tab-delimited text document in a directory
pointed to by an environment variable whose name is stored in the Flames Scenario
Variable (found in Forge under Scenario->Variables...) “DataFilesPath”. For
instance, if DataFilesPath is set to the text string “FLAMES_Datadirectory” (must be
set to be valid for the first run pass), and a operating system environment variable
FLAMES Datadirctory is set to point on \\Kvaser\Infofusion\Datafiles, this directory
must contain the text file with the confusion matrix.

To simplify the build of a confusion matrix, it can be built in an excel document and,
upon completion and storage as an excel worksheet, also be stored as a tab-delimited
text document in excel (File->Save as...->Text (Tab delimited)).

Parameters

IFD 03 System documentation 40

' Name | Unit | Description

Library filename - The name of the confusion matrix tab-
delimited text file used by this datapr ocessor

Stand dev of - Standard deviation smearing of reported

reported prob probability mass.

masses

Button “Check file” can be pressed to get an immediate check of the consistency of
the file confusion matrix in the file, so this can be done directly from Forge, and not
only during dataprocessor load of the FOIIFIDIibraryin Fire.

For an example of a confusion matrix, see HTML documentation.

8.7 Signature models

8.7.1 Visual signature signature Model
Overview

FOIIFVisualSignature is a signature description class for visual and IR relevant
signatures.

Parameters

Name Units Description Keyword

The length (the longest dimension) of the |

Apparent length - |meters | o't carry this signature

. The width (the intermediate sized
Apparentwidth - meters dimension) of the object i

The height (the smallest dimension) of

Apparent height | meters the object

The lower panel with columns denoted “Object class” and “Signal” isused as a
hierarchical literal description of the object carrying this signature, together with the
apparent strength of each class description. This latter value (* Signal”) can
conceptually be interpreted as an estimate of how “easy” it isfor atrained human, or
(rather) atrained machine to recognize an object to be of the corresponding

type “ Object class’. More precisely, “Signa” can, relying on the Johnson criterion, be
interpreted as the reciprocal of the number of double bars to be resolved over the
object’s minor projected dimension to be recognized as belonging to “ Object class’.

This table should be ordered, that is, with the most specific description at the top
(carrying the lowest value of “Signal”), and less exact (more general) description of
the object (with corresponding higher signal values) when traversing the table
downwards. The names of the objects must be the same as those described in the
confusion matrix which is apart of the IDlibrary dataprocessor. The most specific

IFD 03 System documentation 41

object at the top of the table must be the physical object itself that carries the
signature.

Example:

Object class Signal
T-80U 0.2
Tank 05
Tracked Vehicle 0.8
Vehicle 15

Here, “T-80U" isthe highest resolution of an object that the sensor measuring this
type of signature can discern. T-80U is a (singleton) subset of “Tank”, which could
also contain vehicles asthe T-72, Abrams, and Leopard tank types. These tanks
should then have signatures of their own, with the name (T-72, Abrams or Leopard) in
thefirst row of the table, with the corresponding signal strength. The rest of the table
should have the same names (Tank, Tracked Vehicle, Vehicle).

8.7.2 Acoustic Signature Model

The FOIIFAcoustic Signature contains alist of signature attributes ('Object class)
with corresponding signal strengths ('Signal’). To be recognized by a sensor the
attribute must be contained in the library of the sensor's dataprocessor. The top
attribute must always represent a single platform. The following attributes should be
names that in the dataprocessor library represent sets of platforms. These sets must
always include the elements of the preceding attribute.

Example:

Object Class | Signal

T-80U 0.00

Bandfordon |1.50

Fordon 2.20

8.8 Image Sensor Equipment Model
Overview

This sensor is designed to be used as a downwards-looking video sensor attached to
an airplane or aUAV. It is adevelopment of the Flames FQSGeometricSensor.

Parameters

IFD 03 System documentation 42

Name

Units

Description

Keyword

Library ID Data
Processor

Name of a Data Processor of the
FOIIFIDlibrary classto perform target
identification processing using a
signature description of the
FOIIFVisual Signature class

Max Range

meters

Maximum range within which a
detection can occur

Azimuth FOV

0to 360
degrees

Maximum angle of azimuth coverage
for arectangular FOV

Elevation FOV

0to 360
degrees

Maximum angle of elevation coverage
for arectangular FOV

Pointing Mode

Specifies whether the sensor will be
pointed relative to the frame of the
platform it is placed on (Relative) or
fixed in relation to the earth (Absolute).

Pointing
Azimuth

-180to 180
degrees

Azimuth of the boresight of the sensor

Pointing
Elevation

-90t0 90
degrees

Elevation of the boresight of the sensor

Detect Mode

If set to “Normal”, detection tests are
only done at each scenario time sample
increment.

If set to “Dense’, acheck isdone
whether the Scan Period is faster than
the scenario increment rate. If so, that
faster detection scheme is used in that
respect that the unit carrying this sensor
ismoved back along its negative
velocity vector to the position where it
should have been located at one scan
period after the previous scenario time
sample. Then, stepwise, the carrying
unit is moved forward, and detection
tests are done for each next scan time.
This scheme stops before next scan
time will occur in the future. Units
checked for detection are not moved
back in this manner; they are assumed
ground units moving slowly. Dense
mode could be applied when the sensor
is attached to an air plane, and being
combined with Sweeping Mode
“Sweeping” to simulate a fast back-

IFD 03 System documentation

43

and-forth side sweeping down-looking
reconnai ssance Sensor.

Sweeping Mode

If set to “Fixed, staring”, the boresight
of the sensor is fixed aong the settings
of Azimuth and Elevation FOV.

If set to “ Sweeping”, the boresight
sweeps back and forth in its azimuth
gimbal according to azimuth = Azimuth
FOV +/- Half Sweep Angle *
SIN(sweepphase).

Half Sweep
Angle

degrees

If “Detect Mode” is set to “Dense”:
One half of the total Sweep Angle of
sensor azimuth gimbal. Note that the
Elevation gimbal is closer to the
coordinate system of the unit to which
the sensor is attached. Thus the
sweeping will be aong atilted plane.

Number of scans
per sweep

If “Detect Mode” is set to “Dense’:
Number of detection testsin the FOV
per sensor sweep period. Thisisthe
way to set set the sweep period.

Scan Period
(Sec) / Matched
Mode

Sec

Number of detection testsin the FOV
per second. If the checkbox “Matched
mode” is checked, the sensor matches
the detection tests to the speed of the
unit to which it is attached, so it triesto
take “photos” of regions of the ground
as close to each other as possible, with
minimum or zero overlap. This option
can be used (and should only be used)
for cases where the sensor is looking
down from an aeria vehicle.

Detection
threshold

pixels

Targets whose images subtend less than
this amount of pixelsonthe“CCD
plate’ of the detector will not be
detected

No of pixelsin
Az FOV

Number of pixels along the Azimuth
(horizontal) direction of the“CCD
plate”. Number of pixels along the
Elevation (vertical) directionis
computed by multiplying this number
with the ratio "Elevation FOV” /
“Azimuth FOV”.

Used aver
wavel.

micrometers

Used wavelength for detection. This
number is currently only used for

IFD 03 System documentation

estimating the Rayleigh resolution
criterion.

Aperture Diameter of the objective. This number
(objective) meters is currently only used for estimating the |-
diameter Rayleigh resolution criterion.
A7 Err dearees Gaussian random error of measurement |
9 of azimuth direction to target
, Systematic error of measurement of i
Az Err Drift degrees azimuth direction to target
Elev Err dearees Gaussian random error of measurement |
€9 of elevation direction to target
. Systematic error of measurement of i
Elev Err Drift degrees elevation direction to target
Gaussian random error of position of
N-SErr meters carrying unit in North — South direction |
Systematic error (positive is towards
N-S Err Drift meters north) of position of carrying unitin -
North — South direction
Gaussian random error of position of
EWEm meters carrying unit in East — West direction |
Systematic error (positive is towards
E-W Err Drift meters west) of position of carrying unit in -
East - West direction
Alt Err meters Gaus_suan ra_ndom error of atitude of i
carrying unit
Alt Err Drift meters &/ste_matlc error (p_osutlvge is upwards)
of altitude of carrying unit
Size of memory of ground footprints;
Size of footprint footorint that isthe four corners given in Lat/Lon
memory P of the FOV on ground. A value of zero
inhibits storing of thisinformation.
Plot sweeosin Check if aMatlab plot window should
matlab eep - be opened to (in fire) show how the
footprints are distributed on ground
The scaling factor in the expression for
. . i target classifiability, Pger. Thisvaue
Sigmoid Scale divides the number-of-double-bars
before input in the expression
. : The exponent in the expression for
Sigmoid e
Ex - target classifiability. A value of 3.76
ponent

corresponds to the Johnson criterion (in

IFD 03 System documentation

45

that case, Sigmoid Scale = 1.0).

Check if the sensor should be able to
give reports about target velocity

Velocity reports

Velocity meas. Gaussian random error of velocity

bearing error degrees bearing measurement
Velocity meas. meters'second Gaussian random error of speed
Speed error measurement

Function Initiation Points

DETECT
Output Variable Datatype Description
SENSOR_ID FEquipment! DType | 1N Unique Equipment 1D of
this sensor.
SENSOR_TYPE char * Deliversthe string "Video".
TARGET_CORRECT_NAME |char * The true target unit name

The number of argumentsin
TARGET_FOCALS and
NBR_OF TARGET_FOCALS |FintegerType TARGET_PROBMASS.
Currently the sensor only
delivers one argument.

The MAL currently only
contains one string argument
(named "H1") representing a
subset of possible targets.

TARGET_FOCALS FMALODbj

The MAL currently only
contains one FReal argument
(named "H1") representing the
probability mass corresponding
to the single hypothesisin
TARGET_PROBMASS FMALODbj TARGET_FOCALS. That is,
the probability proposed by the
sensor that the real target type
will be found in the
TARGET_FOCALS ist of
singletons

TARGET_POS LLA FVectorType Target position in (lat,lon,alt)

Error ellipsoid sigma of
TARGET_POS NSWEROT |FVectorType reported target position. X:
Error in north — south direction

IFD 03 System documentation 46

(m). Y: Error in east — west
direction (m). Z: Clockwise
rotation of this ellipsoid
(degrees).

Estimated target speed (m/s).
TARGET_SPEED FRead Type (Only delivered if “Veocity
reports’ checkbox is checked)

Estimated target heading (rad)
clockwise from north direction.
(Only delivered if “Veocity
reports’ checkbox is checked)

TARGET_HEADING FReal Type

Standard deviation of the
Gaussian target speed error
TARGET_SPEED_ERR FRea Type (m/s). (Only delivered if
“Velocity reports’ checkbox is
checked)

Standard deviation of the
Gaussian target heading error
TARGET_HEADING ERR |FRedType (rad). (Only delivered if
“Velocity reports’ checkbox is
checked)

DETECTION_TIME FlulianType Time of detection.

Message Generation Points
None
Method Implementation

The Image Sensor recognizes the visual signature FOIIFVisual Signature. This
signature consists of alist of attributes with corresponding “normalized signa
strengths’ (actually corresponds to the inverse of the number of double bars over
target minimum projected dimension that have to be resolved) for detection at that
level. Each attribute represents a subset of all possible targets. The top attribute is the
correct target type alone and the following attributes always include the subset of the
preceding attribute. Each attribute of the signature is checked for detection, starting
with the most specific level. The detection probability Py for an attribute with signal
strength Sg is given by the sigmoid curve

Pae = (S9/0)°/ (1+ Sg/q))°

where g and e is the above mentioned Sigmoid Scale and Sigmoid Exponent,
respectively. Values q = 1, e = 3.76 corresponds to the so-called Johnson criterion for
atrained human to be able to detect/classify/identify an object.

The signal strength is computed with several checks for simple detection. That is,
checks that the received signal strength is larger than the minimum signal strength for

IFD 03 System documentation 47

detection at the most general level in the corresponding visual signature list. The
projected image of the object (approximated by an ellipsoid with the axis widths
given in the signature model) onto the “CCD plate” is computed. Now a check is done
to ensure that the number of pixels of the “CCD plate’ that are illuminated by the
projected image of the object is at |east as |arge as the number of pixels set in the
GUI. Then a check is done to ensure that the Rayleigh criterion (using the wavelength
and objective diameter set in the GUI) allows the object to be resolved with the
required number of double bars over the minor dimension of the projected image for
detection at the most general level. If any of these checksfail, there will be no
detection at al. The temperature difference (IR case) or light contrast (visible case)
“TD” isin the current code currently hard-wired to 0.2 degrees Celsius. A check is
done for the type of terrain where the object is positioned. The TD isreduced if the
object is watched through tree foliage. Ground grazing angles of the Line-of-sight are
unfavoured. Thetypical clutter level of theterrain isaso isinto merged into this
reduction. The more clutter, the larger reduction (lower probability to discern the
object). The effective number of resolvable double barsisfinally computed.

A uniform random number generator is sampled for values ranging between 0 and 1.

The sigmoid function, with the scaling factor and exponent given in the GUI, is now
used to estimate the probability of detection for the different classification levels,
using the effective number of resolvable bars as inpuit.

The first attribute that has a probability of detection higher than the random number
obtained from the random number generator will alone determine the target
classification and belief. It is chosen and shipped to the dataprocessor whereit is
expanded to its singletons and confused. The degree of confusion depends linearly on
arandom fuzziness parameter F (uniform between O and 1). Fis 1 if the chosen
classification was infinitely close to be one step less precise. F is 0 if the chosen
classification was infinitely close to be one step more precise. F varies linearly in
between. If F=1 the confusion follows the values of the confusion matrix. If F=0 there
isno confusion at all. The resultant probability mass equals the degree of confusion. If
none of the signature attributes is detected there will be no detection report.

The target position, speed and heading estimates are calculated from the position of
the unit carrying this sensor. First, fixed drift errors, as well as Gaussian random
errors are added to the North — South, East — West and Altitude position of the unit.
The unit is put in this “hypothetical position”. Then, in the same manner, errors are
added to the Azimuth and Elevation of the (correct) line-of-sight (LOS) towards the
target. The resulting LOA is now extended from the “hypothetical position” until it
intersects the ground. The latitude/longitude/el evation of that point will be reported as
the position of the target. The reported position error will be the ellipse on the ground
which isobtained if aelliptical-conical bundle of rays (extending from afocusin the
sensor) with azimuth and elevation widths equal to the Gaussian random errors of
those quantitiesis extended along the LOS.

Commands

None

IFD 03 System documentation 48

Query entities

The following Queries can be sent to the image sensor using the FEntityQuery
Kernel function in the C-API:

MEMORY DUMP returns the set of stored footprintsin the MAL:
* DUMPSIZE Number of scanned footprints to be delivered

For each footprint there is one MAL with name FPx, where x is footprintnumber, with
range 1 < footprintnumber < DUMPSIZE which contain:

0 SENSOR_ID Equipment ID of the instance of this sensor

o C1,C2,C3, C4four FCoordinateType Lat/Lon coordinates of the footprint
corners, ordered counter-clockwise

0 FOOTPRINT_TIME the simulation time when the footprint where scanned

o DETECTION_PROB the estimated detection probability of a“standard target”
(currently a BMP-3) located on the ground, oriented pointing towards north, and in
the boresight of the sensor

MEMORY SIZE returnsin the MAL:

* MEMORY SIZE Number of scanned footprints currently in memory
SENSOR_STATUS returns | ast scanned footprint in MAL:

e STATUS TIME Current simulation time when issuing the query

e SENSOR_ID Equipment ID of the instance of this sensor

* VERTEXL1, VERTEX2, VERTEXS3, VERTEX4 four FCoordinateType Lat/Lon
coordinates of the footprint corners, ordered counter-clockwise

* NUMBER_OF _VERTICESisaways4 for this sensor

 DETECTION_PROB the standard detection probability asin MEMORYDUMP
above

 SENSOR_TYPE iscurrently only “Video” for this sensor

8.9 Ground Sensor Network M odel

Overview

IFD 03 System documentation 49

The Ground Sensor Network (GSN) models a network of acoustic sensors. The model
is capable of detection and classification with probabilities dependent on target
signature strengths, the GSN model parameters and the confusion matrix of a
FOIIFIDlibrary dataprocessor. The nodes of the network are assumed to be placed in
such away that distance to target and terrain can be ignored inside the network range.
Outside, no detections are made. The position and velocity estimates are distorted and
delivered with error estimates.

To function with the Fusionnode the Soldier Sensor should be used together with the
Sensor Manager model.

Parameters
Name Units Description Keyword
. Name of dataprocessor to use for target
E';;agggr - classification. Should be of type -
- FOIIFIDlibrary.

Number of i number of sensing nodes in the sensor i
Nodes network.
Max Range meters Radius of a nodes detection area. -
per Node

The radius of the detection area for the
Max Rangefor | . whole network. Automatically calculated |
Total Network as [Max Range per Node * sgrt(Number

Of Nodes)].
Scan Period seconds Number of seconds between sensor scans. |-
Stddev meters The standard deviation of the target i
Position positional error (Gaussian).

The standard deviation of the error in
Stddev Speed | meters/second target speed (Gaussian). -
Stddev radians The standard deviation of the error in i
Heading target heading (Gaussian).
Detection Parameter used in the detection and
Sensitivit classification calculations. See the method |-

y implementation description of DETECT.
Detection Parameter used in the detection and
Inflection - classification calculations. See the method |-
Point implementation description of DETECT.
Function Initiation Points
DETECT
IFD 03 System documentation 50

Output Variable Datatype Description
SENSOR_POS ECR FVectorType (S:ir(‘)sr‘éfl r?a?:'on in ECR

The unique Equipment 1D of

SENSOR_ID FEquipmentIDType this sensor.
Deliversthe string
*
SENSOR_TYPE char "GroundSensorNetwork™.
TARGET_CORRECT_NAME |char * The true target unit name
The number of argumentsin
TARGET_FOCALS and
NBR_OF TARGET_FOCALS |FIntegerType TARGET_PROBMASS.
Currently the sensor only
delivers one argument.
The MAL currently only
TARGET_FOCALS FMAL Obj contains one Siring argument
(named "H1") representing a
subset of possible targets.
The MAL currently only
contains one FREAL argument
TARGET PROBMASS FMALObj (named "H1") representing the
probability mass corresponding
to the single hypothesisin
TARGET_FOCALS.
TARGET_POS LLA FVectorType Target position in (lat,lon,alt)
Standard deviation of the
TARGET_POS ERR FRead Type Gaussian target positional
error.
TARGET_SPEED FRead Type Estimated target speed (m/s).
TARGET_HEADING FRead Type Estimated target heading (rad).
Standard deviation of the
TARGET_SPEED _ERR FReal Type Gaussian target speed error.
Standard deviation of the
TARGET_HEADING _ERR FRead Type Gaussian target heading error.
DETECTION_TIME FdulianType Time of detection.
Message Generation Points
None

Method Implementation

DETECT

IFD 03 System documentation

51

The GSN recognizes the acoustic signature FOIIFAcousticSignature. The
FOIIFAcousticSignature consists of alist of attributes with corresponding signal
strengths. Each attribute represents a subset of all possible targets. The top attribute is
the target alone and the following attributes always include the subset of the
preceding attribute. Each attribute of the signature is checked for detection, starting
with the most specific level. The detection probability Py for an attribute with signal
strength Sgisgiven by

Pyger = 0.5+ 0.5 * tanh(Sg / DetectSensitivity - Detectl nflectionPoint)

where DetectSensitivity and DetectInflectionPoint are model parameters. The
distances between sensors and target are not accounted for except that units outside
the maximum range are ignored. The first attribute that is detected will alone
determine the target classification and belief. It is shipped to the dataprocessor where
it istransformed to singletons and confused. The degree of confusion depends linearly
on arandom fuzziness parameter F (uniform between 0 and 1). If F=0 the confusion
follows the values of the confusion matrix. If F=1 thereisno confusion at all. The
resultant probability mass equals the degree of confusion. If none of the signature
attributes is detected there will be no detection report.

Thetarget position, speed and heading estimates are calculated from the real positions
by adding an error. The error is drawn from Gaussian distributions defined by the user
specified GSN standard deviation parameters.

Commands

None

8.10 Soldier Sensor M odel

Overview

The Soldier Sensor so far only models the human as an intelligent visual sensor. The
model is capable of detection and classification with probabilities dependent on target
signature strengths, target distance, the model parameters and the confusion matrix of
aFOIIFIDlibrary dataprocessor. The position and velocity estimates are distorted and
delivered with error estimates. Outside the maximum range no detections are made.

To function with the Fusionnode the Soldier Sensor should be used together with the
Sensor Manager model.

Parameters
Name Units Description Keyword
. Name of dataprocessor to use for target
E‘;;agégr i classification. Should be of type i
= FOIIFIDlibrary.
Scan Period seconds Number of seconds between sensor scans. |-

IFD 03 System documentation 52

Max Range The standard deviation of the target
Stddev meters positional error at the maximum range -
Position (Gaussian).
Max Range The standard deviation of the error in

9 meters/second |target speed at the maximum range -
Stddev Speed .

(Gaussian).

Max Range The standard deviation of the error in
Stddev radians target heading at the maximum range -
Heading (Gaussian).
Detection Parameter used in the detection and
Sensitivit - classification calculations. See the method |-

y implementation description of DETECT.
Detection Parameter used in the detection and
Inflection - classification calculations. See the method |-
Point implementation description of DETECT.

Function Initiation Points

DETECT
Output Variable Datatype Description
SENSOR_POS ECR FVectorType gir(‘)sr‘éfl r?a?:'on in ECR

SENSOR_ID

FEquipmentIDType

The unique Equipment 1D of
this sensor.

SENSOR_TYPE

char *

Deliversthe string "Soldier".

TARGET_CORRECT_NAME

char *

The true target unit name

NBR_OF TARGET FOCALS

FintegerType

The number of argumentsin
TARGET_FOCALSand
TARGET_PROBMASS.
Currently the sensor only
delivers one argument.

TARGET FOCALS

FMALObj

The MAL currently only
contains one string argument
(named "H1") representing a
subset of possible targets.

TARGET_PROBMASS

FMALObj

The MAL currently only
contains one FREAL argument
(named "H1") representing the
probability mass corresponding
to the single hypothesisin
TARGET_FOCALS.

IFD 03 System documentation 53

TARGET_POS LLA FVectorType Target position in (lat,lon,alt)

Standard deviation of the

TARGET_POS ERR FRead Type Gaussian target positional
error.

TARGET_SPEED FRead Type Estimated target speed (m/s).

TARGET_HEADING FReal Type Estimated target heading (rad).
Standard deviation of the

TARGET_SPEED ERR FRead Type Gaussian target speed error.

Standard deviation of the

TARGET _HEADING ERR |FReal Type Gaussian target heading error.

DETECTION_TIME FulianType Time of detection.

Message Generation Points
None

Method Implementation
DETECT

The Soldier Sensor recognizes the visual signature FOIIFVisual Signature. The
FOIIFVisua Signature consists of alist of attributes with corresponding signal
strengths. Each attribute represents a subset of all possible targets. The top attribute is
the target alone and the following attributes always include the subset of the
preceding attribute. Each attribute of the signature is checked for detection, starting
with the most specific level. The detection probability Py for an attribute with signal
strength Sgisgiven by

Pyger = 0.5+ 0.5 * tanh(Sg / DetectSensitivity - Detectl nflectionPoint)

where DetectSensitivity and DetectlnflectionPoint are user specified model
parameters. It isthen lowered linearly with distance according to

Pdet = Poe * (1 - 0.5* distance _to_target / MaxRange)

(Pget = 0 outside the maximum range). The first attribute that is detected will aone
determine the target classification and belief. It is shipped to the dataprocessor where
it is transformed to singletons and confused. The degree of confusion depends linearly
on arandom fuzziness parameter F (uniform between 0 and 1). If F=0 the confusion
follows the values of the confusion matrix. If F=1 thereis no confusion at all. The
resultant probability mass equals the degree of confusion. If none of the signature
attributes is detected there will be no detection report.

The target position, speed and heading estimates are calculated from the real positions
by adding an error proportional to the target distance. The error is drawn from

IFD 03 System documentation 54

Gaussian distributions defined by the user specified GSN standard deviation
parameters and multiplied by (distance/MaxRange).

Commands

None

8.11 FOIIFComintlnter ceptor Communication
Intelligence I nter ceptor Equipment M odel

Overview

The Communication Intelligence Interceptor ComDevice intercepts messages sent by
an ordinary FQPSimpleRadio ComDevice with the settings described below. The
units carrying those radio ComDevices should |oad the FOIIFComIntTal ki nit
(initiates communication) or FOIIFComIntTalk (replies on messages) cognitives to
send messages. These messages (specially designed to be intercepted) are expected to
be of the FOIIFMsgComintReveal type, and be processed by the
FOIIFComlintProcessReveal message processing model that should be loaded by the
unit carrying this interceptor.

Parameters
Name Units |Description Keyword
Channel to listen on Radio channel to intercept messages on. If zero,

al channdls are searched.

100% intercept within Guaranteed intercept of all messages within this

meters -

range range from interceptor

Linear falloff to 0% at Intercept probability falls off linearly to zero in the

range meters |range interval between above parameter and this -
parameter

1-sigmaerror or intercept
bearing

Gaussian measurement error of the intercept
degrees) -
bearing

Function Initiation Points
None
Message Generation Points

None

IFD 03 System documentation 55

Method Implementation

When checking which radio emitters can be intercepted, the channel settings of them
are checked against the settings of the interceptor. Also, in order to be intercepted, a
radio emitter must be of the FQPSIimpleRadio class, and have the (sub) string
“Reveder” somewherein its name. Network and Network Type are arbitrary. For
each message that could potentially be intercepted, the distance to the emitter is
calculated. If within the 100% interception range, it is always received, or
“intercepted”. If it is between that distance and the 0% interception range, the
probability for a message to be intercepted falls off linearly to zero. Outside that
range, amessage is never intercepted.

Commands

None

8.12 Communication Intelligence Cognitive M odel
8.12.1 Overview

The Communication Intelligence cognitive model s can give the following three
abilities, or “set-ups’ to units:

1. Totransmit “radio messages’ with aradio (“emitter”) at certain geographical
regions using one of two simple schemes:
a. Broadcast (a commander sends an order, al subordinates replicate)
b. Dialogue“Ping-Pong” communication (a number of messages back
and forth between two units)
2. To intercept these messages, and to send sorted interceptsto alocal bearings
fuser unit
3. To fuse bearings using bearing-crossing methods to localize the emitter, and to
send a reports about positioned radio emitters

There can be an arbitrary amount of units that load the first type of cognitive. There
can be an arbitrary number of groups where one al but one unit in each group load
the second type of cognitive, and the last unit loads the third cognitive.Example Script
for point one above; units that should be able to transmit messages, and get “revealed’
by the interceptors:

Example Script for set-up scheme one above; units that should be able to transmit
messages, and get “revealed” by the interceptors:

A unit which wants to be able to start communication includes the following in its
script:

EMPLOY COVDEVI CE COM NTReveal er;

PERFORM STARTUP USI NG FO | FComl nt Tal kSt art up PARAMETER
(TALKREG ONSFI LE = "tal kpositions.txt");

PERFORM TALKI NI T USI NG FO | FComl nt Tal kIl ni t;

IFD 03 System documentation 56

PERFORM TALK USI NG FO | FCom nt Tal k;

TRANSM T FO | FMsgConl nt Reveal AT COM NT_REVEAL USI NG
COM NTReveal er;

RECEI VE FO | FMsgConl nt Reveal USI NG
FA | FCom nt ProcessTal k;

START . ..

| NI TI ATE ORDER;

while the rest of the communicating units only include the following:
EMPLOY COVDEVI CE COM NTReveal er;

PERFORM STARTUP USI NG FQO | FComl nt Tal kSt ar t up;
PERFORM TALK USI NG FO | FComl nt Tal k;

TRANSM T FO | FMsgConl nt Reveal AT COM NT_REVEAL USI NG
COM NTReveal er;

RECEI VE FO | FMsgComl nt Reveal USI NG
FA | FCom nt Pr ocessTal k;

Example script for set-up scheme two above; units (called “interceptors’)

that together should be able to intercept, localize, and report about
Intercepted emitters:

EMPLOY COVDEVI CE COM NTI nt er cept or;
EMPLOY COMDEVI CE R11_I NT_TO_FUS;

PERFORM STARTUP USI NG
FO | FCom nt Reveal St art up;

PERFORM TEST_FOR_FUSE USI NG
FA | FCom nt Reveal ;

RECElI VE FO | FMsgConl nt Reveal USI NG
FA | FCom nt Pr ocessReveal ;

TRANSM T FA | FMsgCom nt Fuse AT COM NT_FUSE USI NG
R11_I NT_TO_FUS;

IFD 03 System documentation

57

START . ..

| NI TI ATE TEST_FOR_FUSE;

Example script for set-up scheme three above; units that receives the interceptors
reports, localizes emitters by bearing-crossing methods, and report about the
estimated emitter position:

EMPLOY COVDEVI CE R11_| NT_TO FUS;

EMPLOY COMVDEVI CE Radi oNt oN PARAMETER (CHANNEL = 1);

PERFORM STARTUP USI NG

FO | FCom nt FuseSt art up;

PERFORM TEST_FOR_REPORT USI NG FO | FComl nt Fuse,
PERFORM DETECT USI NG

FO | FSensor Manager Report ;

RECEI VE FO | FMsgCom nt Fuse USI NG
FO | FConl nt Pr ocessFuse;

TRANSM T FO | FMsgREPORT AT REPORT USI NG Radi oNt oN,

START ...

| NI TI ATE TEST_FOR_REPORT;

8.12.2FOIIFComIntFuse

FOIlIFComintFuse periodically checksif bearings towards the same emitter have been
reported from its associated interceptor units. If so, the best bearings (see detailed
description on communication below) are combined in order to get an estimate of the
emitters position. The position together with an error ellipseisthen reported. Thisis
repeated for al emitters that can be localized.

« Intended Function
FUSE

« Execution Mode
CONTINUOUS

IFD 03 System documentation 58

« Inputs
None

« Parameters
None

« Function Initiation Points
DETECT

« Message Generation Points
None

8.12.3FOIIFComIntFuseStartup

FOIIFComlIntFuseStartup performs startup work for the fuser cognitive such as
initializing lists for received reports on intercepted emitters etc.

« Intended Function
STARTUP

+ Execution Mode
SINGLE

« Inputs
None

« Parameters
MEMSIZE, ERRORTOLERANCE, MAXTIMEDIFFERENCE, PURGEAGE

« Function Initiation Points
None

« Message Generation Points
None

8.12.4 FOII FComIntProcessFuse
Push:es reports from an interceptor onto alist for later bearings-crossing processing

« Inputs
A report from an interceptor to be put on alist

« Function Initiation Points
None

« Message Generation Points
None

8.12.5FOI I FComlntProcessReveal

IFD 03 System documentation

59

Push:es intercepted messages from arevealed unit onto alist for later judging if it
should be sent to the fuser for bearings-crossing processing.

« Inputs
An intercepted message from arevealed unit. The messageisto be put on alist

« Function Initiation Points
DETECT

« Message Generation Points
None

8.12.6 FOIIFComlIntProcessT alk

FOIIFComIintProcessTak processes all messages of the FOIIFMsgComintReveal
type that this unit receives. A decision ismade if the below FIP will beinitiated
depending on if the unit should answer the message. Thisisdepending oniif itisa
ping-pong, or a broadcast message. If it is a ping-pong message, answer if the unit
from which the message was received is the current “talk partner” of thisunit. If, on
the other hand, it is a broadcast message, and the unit from which the message was
received is the commander of this unit OR a subordinate within the same
organizatoria unit as this unit, an answer is transmitted. In the latter case, the
subordinate must then have a number one step under the number of this unit. See
html-documentation for a more detailed description.

« Inputs
The FOIIFM sgComintReveal message to be parsed.

« Function Initiation Points
DETECT

« Message Generation Points
None

8.12.7 FOlI FComIntReveal

FOIIFComintRevea periodically checksthelist of intercepted messages, and sends
reports (messages) about intercepted emitters to the fuser. These messages are
processed in the fuser unit by FOIIFComintProcessFuse.

« Intended Function
FUSE

« Execution Mode
CONTINUOUS

« Inputs
None

IFD 03 System documentation 60

o Parameters
None

« Function Initiation Points
DETECT

« Message Generation Points
None

8.12.8 FOII FComIntReveal Startup

FOIIFComlIntReveal Startup performs startup work for the interceptor cognitive such

asinitializing lists to push “measured” parameters of intercepted emitters on.

« Intended Function
STARTUP

+ Execution Mode
SINGLE

« Inputs
None

« Parameters
Memsize

« Function Initiation Points
None

« Message Generation Points
None

8.12.9FOIIFComIntTalk

« Intended Function
REVEAL

« Execution Mode
CONTINUOUS

« Inputs
None

o Parameters
None

« Function Initiation Points
DETECT

IFD 03 System documentation

61

« Message Generation Points
COMINT_FUSE

8.12.10 FOIIFComIntTalklnit

« Intended Function
FUSE

« Execution Mode
CONTINUOUS

« Inputs
None

« Parameters
None

« Function Initiation Points
DETECT

« Message Generation Points
None

8.12.11 FOIIFComIntTalkStartup

FOIIFComIntTalkStartup performs startup work for the units that should be able to
exchange messages that is to be intercepted by the interceptors. This includes reading
the file containing positions where to initiate communication, and their initiation
probability etc, see html-documentation.

« Intended Function
STARTUP

+ Execution Mode
SINGLE

« Inputs
None

« Parameters
MEMSIZE, ERRORTOLERANCE, MAXTIMEDIFFERENCE, PURGEAGE

« Function Initiation Points
None

« Message Generation Points
None

IFD 03 System documentation 62

8.13 Detailed description of the radio communication
intelligence functionality

All cognitives related to this functionality are found in the dataset FOIIFComint.
All messages related to this functionality are found in the dataset FOIIFCIM essages.

A unit can load (in a PERFORM statement, see example below) the cognitive models
FOIIFComintTakStartup and FOIIFComIntTalk to receive and send answers (but not
start a communication) on the “reveal” type radio messages. Those units that also load
athird cognitive, FOlIIFComIntTalkInit (as well as setting the parameter
TALKREGIONSFILE in the above mentioned FOIIFComIntTakStartup) are also
able to start a communication by sending a message in certain geographical regions
defined in a specific file, whose name should be given to the TALKREGIONSFILE
parameter. Thereis also a"base probability” to be set in thisfile, of initiating
messages irrespective of geographical position. This TALKPOSITIONS file should
be located in the directory pointed to by the environment variable whose name is
given by the DataFilesPath scenario variable. Two communication modes are
available; Dialogue and Broadcast. A dialogueis a ping-pong sending between two
units. Broadcast, on the other hand, means that a commander (no lowest-level units
can issue broadcasts) initiates a message, and his subordinates (one organizatorial
level below him) answer in number order. A commander has a name "R1B2C3P4_C"
meaning "Regiment 1, Battallion 2, Company 3, Platoon 4", and "_C" means
commander of the lowest (here platoon) level just beforethe™ C". Thus, “R1B1 C”
is the battalion commander of battalion 1 under regiment 1. Lowest subordinates
(“privates’, or Vehicles) have numbers like R1B2C3P4Vx. where the "x" number
corresponds to the vehicle number in the platoon (= 1,2,3,...). Normally, different
networks or channels are used within different organization levels to separate out
those units which should listen. Here, al units can use the sameradio, so al units can
listen to all “revea” messages. The name of the units gives their organization
position, and that name is checked by the message processing model to seeif a unit
should answer amessage. If the organization is large, this means that many links will
appear (maybe as many as the number of units squared if al of them should be able to
reveal themselves). This can affect memory and performance. If so, different
networks and channels should be used within lower organization units. The
interceptors can be set to listen to al reveal messages irrespective of network and
channel.

A unit which wants to be able to start communication include the following in its
script:

PERFORM STARTUP USI NG FO | FComl nt Tal kSt art up PARAMETER
(TALKREG ONSFI LE = "tal kpositions.txt");

PERFORM TALKI NI T USI NG FO | FCom nt Tal kil ni t;

PERFORM TALK USI NG FO | FCom nt Tal k;

IFD 03 System documentation 63

START . ..

I NI TI ATE ORDER;

while the rest of the communicating units only include the following:
PERFORM STARTUP USI NG FQO | FComl nt Tal kSt ar t up;
PERFORM TALK USI NG FQO | FConl nt Tal k;

A dialogue message is sent from an initiating sender to areceiver that answersto the
sender that answers again etc. There can be awell defined number of answers, or a
probability for an answer that is checked every time.

For the R1B2C3P4 platoon case, a broadcast type message from the platoon
commander R1B2C3P4 C will result in an answer from R1B2C3P4V 1.
R1B2C3P4V 2 waits until R1B2C3P4V 1 has answered before he answers himsalf.
R1B2C3P4V 3 waits for the answer from R1B2C3P4V 2 and so on until al unitsin the
platoon have answered. There is a probability that a unit will fail to answer, which
will lead to an interrupt of the propagation of this answering behaviour through the
organization level (here platoon). If abattalion commander R1B2_C broadcasts a
message, the company commanders R1B2C1_C, R1B2C2_C, ... will answer. Itis
possible to set a probability less than 1 that a subordinate will answer. If thisresultsin
afail to answer, none of the remaining subordinates with higher numbers will

answer.

The time difference between the transmitted message from the commander and the
answer from ...subordinate 1, or an answer from subordinate x and the answer from
subordinate x+1 is set in the prototype for the FOIIFComintTalk process method (the
delay with its delta). This method is the one that isinitiated upon receipt of a message
from the unit just before in this "message chain”.

As mentioned, only the process method FOIIFComIntTalklnit can initiate messages
from the beginning. This process method should be called repeatedly (set in the
prototype for FOIIFComintTalklnit, in the repeat field). Every timeitiscalled, a
check isdoneto seeif the unit executing it islocated within a defined geographical
"talk region” if so, amessage will be transmitted with the probability set in the
TALKREGIONSYile for that circular talkregion. A check is always done based on the
base probability if a message should be transmitted. If so happens, no check of
transmit based on geographical location will be done.

It is practical to store the above scripts as dictionary scripts that can be included by all
commanders or subordinates that want to communicate. If the intention is to intercept
only certain messages, the simplest way is to equip these units with the same type of
transmitter sending only on a certain channel (the channel to which the interceptors
listen to), for instance by equipping the unit with a RadioNtoN radio sending on a
fixed channel, and let the interceptors listen only on that channel. Currently, the

IFD 03 System documentation 64

interceptors listen on all networks at the same time. Furthermore, in order to be
intercepted, the Communication Device must be of the FQPSimpleRadio class, and
have the (sub) string “Revealer” somewhere in its name. Let's say that we equip our
units that should be revealed with an FQPSimpleRadio called COMINTRevedler,
being a RadioNtoN, all using channel 100.

So, the following should be added in the above unit scripts for both commanders and
subordinates:

EMPLOY COVDEVI CE COM NTReveal er;

What will happen when a unit initiates a communication, and when a subordinate
answers, is that a message of type FOlIFMsgComintReveal is sent.

Finally for the communicating units’ scripts, this means that the following should
also be included for both commanders and subordinates:

TRANSM T FO | FMsgCom nt Reveal AT COM NT_REVEAL USI NG
COM NTReveal er;

RECElI VE FO | FMsgConl nt Reveal USI NG
FA | FCom nt ProcessTal k;

Now, these FOIIFM sgComintReveal messages can a so be intercepted by the Comint
equipment. Comint interceptor units should equip themselves with an instance of the
class FOlIFComintInterceptor (subclass to FComDevice) to do this, let's say that we
equip our interceptor units with an interceptor equipment of this class called
COMINT Interceptor. These can be tuned to be able to intercept 100% of all messages
transmitted within a certain given radius from the interceptors position. Outside that
radius, it intercepts messages with a probability that is linearly falling from 100% to
0% between that radius, and another given wider radius. It can be set to give intercept
bearing reports with a set standard deviation. Furthermore, it can be set to listen to all
channels (channel number set to zero), or to certain channel numbers (channel
numbers > 0). Currently, as mentioned above, it listens on all networks.

The interceptor units should load the message processing method
FOIIFComIntProcessReveal . When an interceptor intercepts a message of type
FOIIFMsgComintRevedl, it pushesit onto alist. It goes on doing so aslong as it
lives. Furthermore, the interceptor unit should load the process method
FOIIFComIntReveal. That method should run in repeated mode. Thereis no need for
adelay or repeat delta. What happens when it isinitiated (with FIP

TEST_FOR _FUSE) isthat thelist of intercepted messages (pushed since the last
earlier initiation) islooked through, and the bearing of the first (most recently
intercepted) instance of arevealed unit (a unit from which the interceptor unit has
intercepted a message) is reported (as a message FOIIFM sgComintFuse generated at
the MGP COMINT_FUSE in FOIIFComintReveal) to the Comint fusion node which
fuses intercept bearings from the different interceptor units which report to it. Also,
the intercept time is reported. This behavior isrepeted for all different revealed units
found in the list. The script of an interceptor unit should contain the following:

IFD 03 System documentation 65

EMPLOY COVDEVI CE COM NTI nt er cept or;

EMPLOY COVDEVI CE R11_|I NT_TO FUS;

PERFORM STARTUP USI NG FO | FConl nt Reveal St art up;
PERFORM TEST_FOR_FUSE USI NG FO | FCom nt Reveal ;

RECElI VE FO | FMsgConl nt Reveal USI NG
FA | FCom nt Pr ocessReveal ;

TRANSM T FO | FMsgComi nt Fuse AT COM NT_FUSE US| NG
R11 | NT_TO FUS;

START . ..

| NI TI ATE TEST_FOR_FUSE;

Since only the last occurrence of an intercept from a certain unit is reported, there is
actually no need for pushing them on alist. Indeed, all older instances are deleted
from the list after the report. The reason for using alist isthat one might want to
rebuild the code so the bearing-estimation behavior of the Comint equipment can be
more realistically modelled by comparing several intercepts of arevealed unit, each
with different time of intercepts. Thisis not done in the current version.

Now, let's assume that we also have a unit which fuses the different bearings (and
checks for bearing crosses). To begin with, it should (aswell asall interceptor units
reporting to it, see the script above) be equipped with aradio transmitter/receiver of
type Radioltol, that ishere called R11 INT_TO_FUS. That radio is used only for
reports from the interceptors to the fuser. Channel number and network number
should here be set so only this group of interceptors and fuser can communicate
intercepts. This means that other groups of interceptors/fuser can be deployed in the
scenario, and not interfere with each other.

The fuser unit should load the message processing method FOIIFComIntProcessFuse.
When a FOIIFM sgComlntFuse message is received by this model, the messageis
pushed onto alist, in the same manner as in the interceptor units. Furthermore, the
fuser unit should load the process method FOIIFComIntFuse implementing the
function TEST_FOR_REPORT (that is, test for atarget report to the central fusion
node). Like the FOIIFMsgComIntReveal model of the interceptors, the
FOIIFComlintFuse model of the fuser should beinitiated repeatedly. There is no need
for adelay or repeat delta. When initiated, it goes through the list of al reports from
the interceptors. The current version of this process method goes through the list and
checks for "the best combination" of any two reported bearings (from a pair of two
different intercepting units of course) that have been reported as a consequence of a
message sent from one and the same revealed unit, and being intercepted by two
intercepting units. That is, the association is perfect in this version. Thereisno

IFD 03 System documentation 66

ambiguity about which revealed unit the interceptors actually intercepted. The
statement above about two bearings "The best combination” is currently defined as
the lowest product between three factors: (1) The cotangent of the angle between the
two bearings, but not lower than 0.25. (2) The maximum distance from any of the two
interceptors to the bearing cross position. (3) The sum of the bearing measurement
errors of the two interceptors. That is, bearing angles close to pi half, and short
distances between interceptors and revealed unit, and small intercept errors are
favoured. No hint of the distance to the revealed unit is assumed based upon "signal
strength” of the intercepted message or so. All information about the position of the
revealed unit is based upon crossings of the two best bearings (of course, more than
two bearings if more than two interceptors can intercept the signal could be fused, for
instance using Stansfield’ s algorithm). An error élipse in this geometric configuration
is then estimated (taking into account the measurement error in each of the interceptor
devices), and this error, together with the estimated position of the revealed object
(equal to the bearing cross position) and some more info is reported to the central
Fusion Node. This report isimplemented as a FIP called DETECT where the report
provided is transformed into a message of the standard type recognized by the central
fusion node. That message is typically sent using a RadioNtoN (as below), at some
specified channel (here 1) where the central fusion node listens.

In total, the bearing fusion unit should contain the following:
EMPLOY COVDEVI CE R11_| NT_TO FUS;

EMPLOY COMVDEVI CE Radi oNt oN PARAMETER (CHANNEL = 1);

PERFORM STARTUP USI NG

FO | FCom nt FuseSt art up;

PERFORM TEST_FOR_REPORT USI NG FO | FComl nt Fuse,
PERFORM DETECT USI NG

FO | FSensor Manager Report ;

RECElI VE FO | FMsgCom nt Fuse USI NG
FO | FConl nt Pr ocessFuse;

TRANSM T FO | FMsgREPORT AT REPORT USI NG Radi oNt oN,

START ...

| NI TI ATE TEST_FOR_REPORT;

Finally, there are a set of parameters that could be provided to the
FOIIFComintRevea Startup and the FOIIFComIntFuseStartup process methods:

IFD 03 System documentation 67

For FOIIFComIntReveal Startup:

MEMSIZE is the amount of pushed intercepted messages from the interceptors that
at a maximum should be stored in the interceptor. When that number is obtained, a
push-front of the latest message resultsin a pop-back of the oldest one (that is, pop-
and-forget).

SMOOTHTIMES is set to anon-zero value if one wants the interceptoirs to repeat
the time-of -intercept of intercepted messages “smoothed”. If not chosen, these times
will be discrete times with difference set by the smulation clock ticks. If chosen, the
time reported will be smeared out in a uniform distribution centered at the reported
time, and with width equal to the simulation clock tick. Thisis preferableif the
discreteness of timesis unsuitable for algorithms analyzing the time pattern of
intercepted messages.

For FOlIFComIntFuseStartup:

MEMSIZE is the amount of pushed messages from the interceptorsthat at a
maximum should be stored in the fuser. When that number is obtained, a push-front of
the latest message results in a pop-back of the oldest one (that is, pop-and-forget).

ERRORTOLERANCE is the multiple of the sums of the bearing errors of two
intercepting units that the bearing difference of a cross must exceed in order not to be
rejected immedeately. That is, if both intercepting devices have RMS errors of 5
degrees, and this multipleis set to 2, the difference of the bearing values measured by
the two interceptors must exceed 2* (5+5)=20 degrees to remain as a potentia report
in further computations based on "the best combination” as described above. If no
crosses on an intercepted unit exceed this value (20 in this example), there will be no
report at all sent to the central fusion node about that revealed unit.

MAXTIMEDIFFERENCE is the time in seconds that the difference in time for the
two intercepts must not exceed. That is, the time difference between the transmission
of the messages received by the currently checked pair of interceptors. Often, a
checked pair of reports concerns the same recelved message, so this time difference
is zero. If atransmitting vehicle moves fast, and intercepts from two interceptors have
alarge time difference, the position of the cross will be wrong. This can happen if the
revealed unit travels in an area beyond the 100% intercept probability radius of at
least one of the interceptors.

PURGEAGE isthe "age" of the reports from time-of-intercept after which they will
be purged from the memory of the fuser. Every periodic initiation of
FOIIFComlintFuse includes a test-for-purge pass in the end.

Reference: Stansfield, R., "Statistical Theory of DF Fixing", Journal |IEEE, Vol. 94
Part 3A, n 15, 1947, pp. 762-770.

9 IFDO03 FusionNode

IFD 03 System documentation 68

The FusionNode consists of a Control module (with partsin both Flames and Matlab),
a Logging module, and various analysis modules.

The Control module in Flames handles the interface between Flames models
representing sensors and units and Matlab.

The Control module in matlab has two entry points from Flames: Flames_report is
called whenever new reports are generated. It stores them (in the future, it could also
do some preprocessing).

Flames_Analyzeis called when an analysis should be performed. Currently thisis set
to be every 10th second, but this could be changed. It decides which anaysis modules
to call based on alist that gives the times when variour anal yses should be performed.
(NOTE: Track requiresthat it be called regularly after it has been initialised.
Changing this requires rewriting the code somewhat).

Some analysis module might require terrain information (currently just Track). THe
interface to the terrain database in Flamesis handled by the terrain module.
Dataislogged in two ways: in text-files that are later inserted into a SQL -database
and used by the Visualizer; and in Matlab .mat-files that are |oaded by the Matlab-part
of Visualizer.

Track isthe particle filter. It tracks on severa different aggregation levels, but
currently has no coupling between them. It relies on the output of the aggregation
module for input for higher levels.

Aggregation handles clustering and classification. It calculates a conflict matrix,
clusters the report (currently the last 200) and then classifies the generated clusters.
Thisis performed for all levels up to battalion.

Sensor management isimplemented in arudimentary version. It chooses between 4
hard-coded UAV -paths (including drop of IAM).

There isaso a Display module. Thiswas used initially to get visualization during
runtime, but was later replaced with the stand-alone Visualizer application. The run-
time plotting of particles was the cause of some memory-crashes, soitisnot usedin
the current version.

9.1 Documentation for Control Modulein IFDO0O3

The control module of the Fusionnode has two main purposes
1. It serves asinterface between the external Flames environment and the
internal methods of the Fusionnode (implemented in Matlab).
2. It manages the different fusion algorithms and their data flows.
The implementation of the Control Module can also be separated into two parts. The
interface functions are implemented directly in C as a Flames Cognitive Model and
the internal functions as a Matlab module.

The control module in IFD0O3 implements the control handling of which analysis
modulesto be called.

All reports, generated by Fire, is passed to the FusionNode by calling Flames_Report.

IFD 03 System documentation 69

Fire starts the FusionNode by calling Flames_Analyze, which calls the aggregation-,
tracking-, and sensorallocation module, in due time. The timeintervals for calling
these modules are set in Flames_Startup.

« Flames_Startup Thefunction is called from Fire at startup. The function
initializes all global variables.

+ Flames_Shutdown The function is called from Fire when the scenario has
terminated. The function closes opened files.

+ Flames_Report Thefunction is called from Fire every time anew report is
generated. The report is stored in the global variable 'all_reports.

« Flames_Analyze The function is called from Fire at arate set in Flames. The
function calls the analysis modules, in due time, do_aggregation, do_track
and do_sensor. The result is plotted on the screen and saved in the Flash
database.

« do_track Thisisthe module that performs the tracking using particlefilters.
The function callstimestep_track with al new reports about: vehicles,
platoons, companies, battalions, and negative sensor reports (ie, sensors that
haven't observed any object).

« do_sensor Thisisthe module that performs the sensor alocation. The
function returns a sensorplan that is passed on to
Flames Execute Sensor_Plan

« do_sensor_statuses Requests new sensor status from all sensorsin
all_sensor_statuses.

« save estimated_aggregate count Saves number of vehicles, number of
platoons and number of companies, with the current Juilan time, in the file
matlabplot_aggregate.

9.2 Documentation for thereport format in |[FD0O3

The report format is the matlab structure that defines the reports sent from Fireto
Flames_Report(report_format).

The format is amost identical to the structures Companies, Platoons and Vehicles,
only they also contain the field: ‘target_class explainstr' (string). And alist of the
unitsit contain.

report _format = struct(
"report_id', ID (nunmber, set by Flanes_Report),...

"sensor_id , ID (nunber),...

'sensor_pos', Position,..

'sensor_type', TYPE (string),...

"sensor_continuous_tracking', REPORT_NOT_TO CLUSTRI NG FLAG, ...

"target _class_focals', Cass_focals,...
"target _class_masses', C ass_nmsses,...

"target _pos', Position,..

"target _pos_err_type', TARGET_POS_ERR TYPE_FLAG,. ..
"target _pos_err', standard_deviation (meter), ...
"target _pos_err_nswerot', [a b theta],..

IFD 03 System documentation 70

"target _pos_err_pol ygon, <Nx2 matrix>,..

"target _heading', theta (-pi <= theta <= pi, 0 is north),...
"target _heading_err_type', TARGET_HEADI NG ERR TYPE FLAG, . ..
"target _heading_err', deltatheta (radi aner),...

"target _speed', speed (ms),...
"target _speed_err_type', TARGET_SPEED ERR TYPE_FLAG ...
"target _speed_err', deltav (nm's), ...

"target _correct_nane', NAME (string, only for debuggi ng and
eval uation), ...

"tinme_detected' , detection_time (string),...
"tine_detected_num, dtine (set by MtLab),...
"tine_received', recieved tine (string),...
"tinme_received_num, rtine (set by MtLab),...

)
Position

A 3-valued vector [LATITUD, LONGITUD, HEIGHT (meter)]
TARGET_POS ERR_TYPE_FLAG

0 =no poser

1 =circle, std dev in target_pos _err

2 = dlipse, mgjor and minor axis + rotation angle in target_pos_err_nswerot

3 = polygon, Nx2 matrix target_pos_err_polygon contains coordinates
Class focds

el i =Class focals{i} containsthei:th set of elements the vehicle can be.

el_i{j} containsthe j:th element the vehicle can be.

Thetype of & _i{j} isstring.
Class masses

Class_masses(i) is the mass of focal e ementsfocals{i}
TARGET_SPEED _ERR_TYPE_FLAG

0 =no speed error given

1 = stddev in target_speed err
TARGET_HEADING_ERR_TYPE_FLAG

0 = no heading error given

1 = stddev in target_heading_err

Before using target_pos_err, al routines must check target_pos_err_type. Thefield
target_pos_err, target_pos _err_nswerot, targe_pos_err_polygon will ONLY bevalid
if target_pos_err_typeis set to the corresponding value.

If size(target_speed) == 0, the report doesn't contain any speed and thus also no speed
error. Note that it could be possible for areport to have atarget_speed but no

target_speed err -- it isthe responsibility of Flames _report to make sure that a proper
valueisinserted into target_speed err in this case. (Note: thisis for future extensions.

If size(target_heading) == O -- see above, replacing speed with head

IFD 03 System documentation 71

9.3 Instructions on Sending Reportsin IFDO3
9.3.1 Sendingreportsin Flames

There are two types of reports a sensor can send to the fusionnode. One is the target
report containing information on a detected target, such as target position and
classification. The other isthe report of sensor status information, including
information on current sensor operability and coverage. The procedure to generate
both message types are identical, except for the included message attributes. For lists
of recognized attributes, see the documentation on the FOIIFFusionNode.

To send areport from a sensor model to the fusionnode you have to create two MALS
(Model Argument Lists). In the first, which you name "DATAMAL", you put al
attributes of the report that you want to include. Then you add the DATAMAL to a
second MAL, which you name "MSGMAL". Thisisthe MAL that you use as
argument when generating the message. The reason for using two MALsisto makeit
possible to add new report attributes without changing the message prototype. (In the
prototype for a message you have to specify its exact constituents, but with this
method it will aways only contain asingle MAL, the DATAMAL).

Example code for a cognitive model sending (target) reports:
DATAMAL = FMALCreate();

FMALAddFMAL(DATAMAL,"TARGET_FOCALS',FOCALMAL);
FMALAdJFMAL(DATAMAL,"TARGET_PROBMASS' PROBMASSMAL)

wh e

FMALAddFInteger(DATAMAL,"NBR_OF TARGET_FOCALS',2);
etc.

MSGMAL = FMAL Create();
FMALAdJJFMAL(MSGMAL,"MSGDATA" DATAMAL):
FBEGenerateM essage ("REPORT",MSGMAL ,0,0,0);

N O A

NOTE: If generating the message from an equipment model
FBEGenerateM essageFromEquipment must be used instead of FBEGenerateM essage,
otherwise aruntime error will occurr!

9.3.2 Examplescript codein Forge
(Fusionnode)
+ PERFORM STARTUP USING FOIIFFusionNodeStartup;
« RECEIVE FOIIFMsgREPORT USING FOIIFFusionNodeProcessREPORT;
« RECEIVE FOIIFMsgSensorStatus USING
FOIIFFusionNodeProcessSensor Status;
(Sensor unit)

« TRANSMIT FOIIFMsgREPORT AT REPORT;

IFD 03 System documentation 72

« TRANSMIT FOIIFMsgSensorStatus AT SENSOR_STATUS;

9.4 Documentation for Log Modulein IFDO3

The Log Moduleis responsible for logging simulation data to files. Two separate
procedures are used.

1. DATA-files. Formatted data can be written to textfiles (.data). After scenario
completion these files are parsed by the Postprocessor and the data is |oaded
into aMySQL database, from where it can be viewed in the IFD0O3 Visualizer.
The data logged and the corresponding log-files are listed in the table below
("scenario” isthe name of the ssmulated scenario). The logging to each file can
be individually switched on/off in Flames_Startup in the Control Module.

Data Filename
Report data scenario.senrep.data
Vehicle data scenario.vehicle.data
Platoon data scenario.platoon.data
Company data scenario.company.data

Vehicle particle histogram data | scenario.vehicle particles.data

Platoon particle histogram data | scenario.platoon_particles.data

Company particle histogram data | scenario.company_particles.data

2. MAT-files. Matlab data can be directly saved as binary MAT-files (.mat).
This data can only be read by Matlab code. The fusionnode logs in the
following mat-files:

o rapport_loggade.mat saved from Flames_Analyze contains
§ al_reports- Cell array containing all reports received by the
fusionnode.
§ al_negative reports - Cell array containing all negative reports
received by the fusionnode. OBSOLETE!
§ al_reports to_cluster - Cell array containing all reports used
for clustering.
o matlabplot_sensor_adaption.mat contains variables for visualization
in the Matlab-view
o matlabplot_track.mat contains variables for visualization in the
Matlab-view
o matlabplot_aggregate.mat contains variables for visualization in the
Matlab-view

For more detail s, see the html-documentation and the detailed list of functions below.

IFD 03 System documentation 73

« convert_time_to_julian Converts ordinary date to Flames compatible Julian
number.

« init_aggregate estimated_vehicle_count Initializes variables used to count
vehicles, platoons and companies.

« init_log Prepares logfiles for writing.

« log_companies Logs company data.

+ log_platoons Logs platoon data.

« log_report Logs report data. log_track Logs particle histogram data.

« log_vehicles Logs vehicle data.

- save estimated aggregate count Saves number of vehicles, number of
platoons and number of companies (MAT-file).

Note: in addition to logging data, it is also possible to display matlab graphics during
the run of fire. For examples of how to do this, see the source-code for the Display
module.

9.5 Documentation for Aggregation modulein IFDO3

The aggregation module in IFDO3 implements clustering and classification. It is
called from the Control module. The interface to aggregation consists of a number of
functions that handle the different aggregation levels:

+ reports_to_vehicles

« vehicles to_platoons

« platoons_to_companies
« companies _to_batalions

For each of these levels, a conflict matrix isfirst calculated. This gives the conflict (in
the Dempster-Shafer-sense) of putting two objects in the same super-object.
Clustering is then performed. In order to determine the correct number of clusters,
several tria clustering are done and the number of clustersto useis then determined
according to the procedure described below.

After clustering, each cluster is classified and the template superobject that best fitsit
isdetermined. If the fit here istoo bad, the superobject is removed.

For more details, see the local and global call graph in the html-documentation. For
details on how the number of clustersto use is determined and on data management
within the Aggregation module, see paper A from section 2.

« do_aggregation The function perform aggregation at all levels. From reports
to batalions.

« reports to_vehicles The function first decides the smallest, and the largest
number of platoons we have, using set_report_cluster_interval. We cauculate
the conflict matrix, using SetJreports2. We then call try_cluster. The resulting
vehicles are sent to vehicle record for storage.

« vehicles_to_platoons The function first decides the smallest, and the largest
number of platoons we have, using set_vehicle cluster_interval. We
caluculate the conflict matrix, using SetJvehicles. We then call try_cluster.

IFD 03 System documentation 74

platoons_to_companies The function first decides the smallest, and the
largest number of companies we have, using set_platoon_cluster_interval. We
caluculate the conflict matrix, using SetJplatoons. We then call try_cluster.
companies to_batalions The function first decides the smallest, and the
largest number of batalions we have, using set_company_cluster_interval. We
caluculate the conflict matrix, using SetJcompanies. We then call try_cluster.
vehicle_record The function keeps track of all vehicles after they don't leave
any reports. After a certain time they are kicked out.
set_report_cluster_interval The function uses doctrine datato give an
interval of how many vehicles that could have been observed.

set_vehicle _cluster_interval The function uses doctrine datato give an
interval of how many platoons that could have been observed.
set_platoon_cluster_interval The function uses doctrine datato give an
interval of how many companies that could have been observed.
set_company_cluster_interval The function uses doctrine datato give an
interval of how many batalions that could have been observed.

SetJreports2 The function calculates the report conflict matrix. The conflicts
are based on the geografical distance. The type conflict, using Dempstersrule
of combination. And difference in direction. The old SetJreports could cause
data fragmentation, since a new matrix was created at every call. SetJreports2,
instead moves data around in the same matrix.

SetJvehicles The function cal cul ates the vehicle conflict matrix. The conflicts
are based on the maximum geografical distance, two vehicle ever had, and the
type conflict. Each known platoon are defined by its vehicles and their
maximum distance in VehicleTypes. The conflict is calculated in
template_conflict.

SetJplatoons The function calcul ates the platoon conflict matrix. The
conflicts are based on the maximum geografical distance, between any
vehiclesin the platoon, and the type conflict. Each known compay are defined
by its platoons and their maximum distance in PlatoonTypes. The conflictis
calculated in template_conflict.

SetJcompanies The function calculates the company conflict matrix. The
conflicts are based on the maximum geografical distance, between any
vehicles in the company, and the type conflict. Each known battalion are
defined by its companies and their maximum distance in CompanyTypes. The
conflict is calculated in template_conflict.

template_conflict. Distance conflict depending on types of objects. See
papers for details.

try_cluster The function decides which cluster function to be used.
cluster_only oneor try_spin_cluster. Thisfile containsthe 'cluster hack'.
That is, if the number of objects are small enough, they are put in one cluster.
cluster_only_one If the conflict matrix only consists of 0 and MAX_C.
cluster_only_onewill try to find the smallest possible number of cluster, while
the total conflict is zero. The timecomplexity is O(n)

try_spin_cluster Wrapper for do_spin_cluster. It first decides the number of
cluster and then callsdo_spin_cluster.

find_plateau finds the plateau, between two given number of clusters, and
returns the clustering at the plateau.

IFD 03 System documentation 75

Dir AndDistVehicles This function cal cul ates the maximum differencein
direction, in degreas, and the largest distance, in meters, the two vehicles ever
had.

Dir AndDistPlatoons This function cal culates the maximum differencein
direction, in degreas, and the largest distance, in meters, between any two
vehicles, from the two platoons.

MAX_C A constant. The maximum value in the conflict matrix. Typicaly set
to 5.

correct_num_of_vehicles Returns the number of vehicles found in the last
'max_number_to_cluster' reportsin 'al_reports to_cluster'. For debugging use
only.

DistCoordErr The smallest distance, in meter, between two coordinates,
when considering the error.

make _vehicle reports Thisfunction calls make vehicle report for all
generated clusters of reports.

make _vehicle report Thisfunction triesto classify avehicle. It does not use
get_classification.

make_platoon_reports Calls make platoon_report for al clustered vehicles.
make_platoon_report This function uses get_classification and platoon-
templates to determine the type of a platoon. If the match to template istoo
bad, the cluster is removed. Note that this function must first add Thetato the
mass functions of the clustered vehicles!

make_company_reports Similar to make_platoon_reports, but for
companies.

make_company_report Also similar to platoon level.

make _bat_reports See platoon level.

make _bat_report See platoon level.

do_spin_cluster Wrapper function for da-clustering. Takes a number of
arguments that control how to do the clustering. These arguments are differens
for different levels, and are set in the appropriate function above. Arguments
that can be set include: maximum outer and inner loops in the da-algorithm,
allowed_conflict (the agorithm stops when this conflict has been reached),and
avector of different n_clustersto try. The function triesall n_clustersis has
been given until it has found a conflict below the maximun allowed. Alpha,
gamma, tau and epsilon are parameters for dacluster. Outputs are lists
mapping reports to clusters, giving al report indices in the clusters, the
conflict reached, the number of o uter and inner loops performed and an
errorstatus. Errorstatus should be STATUS.ok if everything went fine,
otherwise it indicates what went wrong. This output could be used to
dynamically change the parametersin order to get a correct clustering. Note
that some of the other output-argument MAY be valid even if errorstatusis not
OK; see source code documentation for details.

dacluster Implements the actual clustering code. Basically, this consists of
two loops. The outer is exited when the spins are sufficiently peaked, while
the inner exits when spin distribution has converged. The conflict matrix is
used to calculate amean field effective force on the spin distribution which
changes the spinsin the inner loop.

get_classification Thisfunction is given acluster and triesto classify it. Note
that the mass functions in the cluster must first be modified so that they
include Thetaexplicitly! The algorithm works by generating all possible

IFD 03 System documentation 76

combinations of typesin the clusters. The number of such combinations grows
exponentially with the size of the cluster. Each of these combinationsisthen
compared to all templates and two fitnesses are calculated. One of theseis
base on the match between total number of objectsin the cluster and the
template, the other also takes into account that types should be compatible.
The fitnesses are weigthed by the probability mass of the combination, and
total fitnesses for each template are calculated. If the fitness to the best
templateistoo low, aflag is set so that the cluster can be removed. An
additional output isthe explainstr, which could be used to give the user an
indication of why the system classified the cluster the way it did. Currently,
this output is used for giving the second best template.

- cdlequal Returnstrueif the given cell arrays are the same.

« getnumcompatible Given atemplate and a specific type, this function
calculates the number of objects in the template that are compatible with the

type.
9.5.1 A definition of templates

Templates are used to describe the organization of the enemy force. Their format
should be as follows.

Not at i on:

read "::=" as "consists of"

"l'ist of" means one or nore occurrences of

"(a,b)" means the tuple a and b

text within <> are termnals in the granmar

"a| b" means either a or b

tenplate ::= (tenplate_nane, list of (type, numnber))
tenpl ate_name ::= <string describing the unit>

nunber ::= <natural nunber >= 1>

type ::= list of object_type

obj ect _type ::= <vehicle_type> | tenplate_nane
Note that typeis currently just alist of one object_type, but it could be extended to be
alist of severa in the future. (Thisisthe reason for the doube {{ and }} in the matlab

code below. It also meansthat all code must use the somewhat awkward "{ 1} "
addition to type below.)

A future definition of template would include other information, eg

tenplate ::= (nane, list of (type, nunber), characteristic_size,
behavi our _pattern)

where characteristic_size and behaviour_pattern would describe other information

needed for the fusion node. This should be added as extra struct field in the matlab
code.

IFD 03 System documentation 77

9.5.1.1 Examplematlab code:

Note that the distinction between () and {} is VERY important. It is also necessary to
use double{{ and }} for type, in order to be able to easily extend the definition of
templ ates.

Note: Aswritten, it would be possible to just have one set of templates covering units
a al levelsin the hierarchy and containing an arbitrary number of other templates.
For efficiency, the fusion node will contain different lists of templates for different
leves: platoon_templates, company_templates, battalion_templates. But all code
should be written so that they don't rely on "knowing" what kind of object it classifies.
That is, it should work equally well if we replaceitslist of templates with the list
[platoon_templates; company_templates; battalion_templates]. This enables usto use
just one list of templatesfor all levels.

Exanpl e definition of sone tenplates:

(templ ates. m

% unit foo contains 2 T80 and 1 TGL3

unitl.type(1l) = {{'T80'}};
uni t 1. nunber (1) = 2;
unitl.type(2) = {{' TGL3' }};
unit1l. nunmber(2) =1

uni t 1. nane=' f oo';
unitl.size = 2;

% unit bar contains 1 T80, 2 LBIL and 1 TGl1

unit2.type(l) = {{'T80'}};
uni t 2. nunber (1) = 1;
unit2.type(2) = {{'LBIL"}};
uni t 2. nunmber (2) = 2;
unit2.type(3) = {{' TGL1' }};
uni t2. nunmber (3) =1

uni t 2. name=' bar"';
unit2.size = 3;

% unit fubar contains 3 LBIL and either 1 T80 or 1 TANK
% (tenmpl ates such as this are currently not needed,
% but we nmay need to support it in the future.)

unit3.type(1l) = {{'T80',' TANK' }};
uni t 3. number (1) = 1,
unit3.type(2) = {{'LBIL"}};

uni t 3. nunber (2) = 3;

uni t 3. name=' fubar' ;

unit3.size = 2;

unit_tenplatesl = [unitl; unit2; unit3];
% unit conpany contains 2 foo and either 2 bar or 2 fubar
unit4d.type(l) = {{' foo'}};

uni t4. number (1) = 2;
unit4.type(2) = {{' bar','fubar'}};

IFD 03 System documentation 78

uni t 4. number (2) = 2;
uni t4. name = 'conpany';
unit4.size 2;

unit_tenplates2 = [unit4];

Code that uses the templates. This code displays all templates; its purposeisto show

how to use the templates in matlab code.

NOTE: it is necessary to have the extra{ 1} after type in the innermost for-loop.

Matlab requiresthissincewe use{{ and }} in the definition of type.

functi on showt enpl ates(tenplate_|ist)

% 030805 ponsve

% di splays info on all tenplates in tenplate_li st
% al so shows how to access parts of a tenplate

for n=1:size(tenplate_list,1)
tenplate = tenplate_list(n);
nane = tenpl at e. naneg;
disp(sprintf('tenplate nr % contains %l types and is naned
%', n,tenpl ate. si ze, nane)) ;
for mel: tenpl ate. si ze
nunber = tenpl ate. nunber (m;
type = tenplate.type(m;
di sp(sprintf(’ type nr %d. the unit should have %
subunits which are one of', mnunber));
for b=1:length(type{1l})
di sp(sprintf(' %', type{1}{b}))
end;
end;
end;

Output from Matlab given code above:

>> show enpl at es(uni t _tenpl at esl)

tenplate nr 1 contains 2 types and is nanmed foo
type nr 1. the unit should have 2 subunits which are one of
T80
type nr 2. the unit should have 1 subunits which are one of
TGL3
tenplate nr 2 contains 3 types and is nanmed bar
type nr 1. the unit should have 1 subunits which are one of
T80
type nr 2. the unit should have 2 subunits which are one of
LBI L
type nr 3. the unit should have 1 subunits which are one of
TGL1

tenplate nr 3 contains 2 types and is naned fubar
type nr 1. the unit should have 1 subunits which are one of
T80
TANK
type nr 2. the unit should have 3 subunits which are one of
LBI'L

>>

IFD 03 System documentation

79

>> showt enpl at es(uni t _tenpl at es2)
template nr 1 contains 2 types and is naned conpany
type nr 1. the unit should have 2 subunits which are one of
f oo
type nr 2. the unit should have 2 subunits which are one of
bar
f ubar
>>

>> showt enpl ates([unit_tenplatesl;unit_tenplates2])
tenmplate nr 1 contains 2 types and is naned foo
type nr 1. the unit should have 2 subunits which are one of

T80

type nr 2. the unit should have 1 subunits which are one of
TGL3

template nr 2 contains 3 types and is naned bar

type nr 1. the unit should have 1 subunits which are one of
T80

type nr 2. the unit should have 2 subunits which are one of
LBI L

type nr 3. the unit should have 1 subunits which are one of
TGL1

tenplate nr 3 contains 2 types and is nanmed fubar
type nr 1. the unit should have 1 subunits which are one of
T80
TANK
type nr 2. the unit should have 3 subunits which are one of
LBI L
tenplate nr 4 contains 2 types and i s named conpany
type nr 1. the unit should have 2 subunits which are one of
foo
type nr 2. the unit should have 2 subunits which are one of
bar
f ubar

>>

9.6 Documentation for Tracking modulein IFDO3
9.6.1 PHD-particlefiltering:

The Tracking of IFDO03 is an implementation of the PHD particle filter described in
paper D, except that here sensor positions are taken account of (see below).

Tracking is implemented on three independent levels. vehicles, platoons, and
companies. Input for the vehicle tracking is observations from the sensors, while the
higher level trackers use the output of the Aggregation module.

Output is a histogram representing adiscretized 2D PHD over positions.

9.6.2 Implementation

The following list shows the call-structure. Thisis also visuaized in the call-graph in
the html-documentation.

« init_track initializes parameters used in the PHD filter

IFD 03 System documentation 80

« timestep_track, calls
o report_local_format, converts reports to internal format
o particles global_format, converts particles
o therearethreeinstances of tidssteg, that call
§ montecarloMotion
§ montecarloObs
§ likelihood
§ montecarlo

Tracking a so uses the terrain module.

« init_track
Called by the FusionNode once at start of execution.
Sétter (globala) konstanter fér PHD-filtren. Anropas av fusionsnoden en gang
innan simuleringen startar.
Parametersthat could be changed:
N — number of particles per estimated object. Large N gives a more accurate
estimation of the distribution. Recommended values: 100 - 1000.
TERRANG_V —weight for different kinds of terrain type. Theratio v1/v2
determines how much morelikely avehicleisto beinterrain type 1 thanin
type 2. It isavector with four elements: road, forest, field, water/house.
Recommended values: [10 0.1 1 10"-100] (vehicles amost always on roads),
[30.3110"-100] (vehicles often on roads, sometimesin forest), [2 0.5 1 10"
100] (slightly more likely to be in forest).

« timestep_track
Thisisthe main procedure in Track. It is called by the Fusion Node once per
time-step, currently every 5 seconds.
Callsreport_local_format to convert reports to internal forma. Then calls
tidssteg with reports, and if aggreagation has been performed aso calls
tidssteg with platoons and companies. The particles that are output from
tidssteg are converted into the Fusion Node format using
particles_globa format.
Input: Reports and output from Aggregation from the last time-step..
Output: Lists of particles for the different levels, and histograms representing
the PHD of vehicles, platoons, and companies.

« report_local_format
Transforms a report from the format used in the fusion node to an internal
format more suited for use in this module.
Input: Report in format used by Fusion Node.
Output: Report in local format.

« particles_global_format
Transform alist of particles from internal format to the format used in the
Fusion Node.
Input: List of particlesin local format.
Output: List of particlesin global format.

« Tidssteg
Propagates a PHD-filter one time-step. There are three separate PHD-particle
filters, so three different instantiations of tidssteg are used. Calls
montecarloM otion to propagate old particles one time-step, montecarloObs to

IFD 03 System documentation 81

create new particles based on old observations, likelihood to compute the
likelihood of each new particle given the new observations, and montecarlo to
do amonte carlo sampling.
Input: Reports on observed objects' s positions and vel ocities and their
uncertainties. The filter isindependent of the origin of the reports, but has
access to information on probability of detection, that is, how often the sensors
or Aggregation will fail to detect an object. The filter also uses information on
terrain when it propagates particles.
Output: List of particles and a2D histogram representing the PHD. The PHD
gives information on where objects are likely to be, and also on the expected
number of objects. It does not give information on object identities.

« montecarloMotion
Propagates particles one time-step, using terrain info.
Input: List of old particles, length of time-step.
Output: List of propagated particles.

« montecarloObs
Introduces new particles from an old observation and propagates them one
time-step using terrain info.
Input: Old observation, length of time-step
Output: Propagated particles..

+ likelihood
Computes the likelihood of each particle belonging to a given observation.
Input: List of particles, observation.
Output: likelihood for each particle.

« Montecarlo
Given alist of random seeds, this function finds the corresponding indices of a
cumulative distribution. It is used for monte carlo sampling of alist of
particles. The sampling entails the following steps.

- Normalize the probability distribution over thelist of particles. (The
normed probability for index i isthe probability that particlei is
selected in each sample.)

- Cdculate acumulative distribution, such that its last index has value 1.
(Particlei has alarge probability if the difference between indicesi-1
and i in the cumulative distribution is large.)

- Produce arandom number x between 0 and 1.

- Find (using this function) the first index in the cumulative distribution
whose value is larger than x.

Particlei has now been selected for the sample. Particles with large
probability will be selected more often since more values of x will lead
to their selection.

I nput: Cumulative distribution, random seeds uniformly distributed
between 0 and 1.

Output: List of indicesin the cumulative distribution.

9.6.3 Taking sensor positionsinto account
The PHD filter has a probability of not observing avehicle, p_FN. This probability

varies depending on whether there is a sensor that covers the position of the vehicle. If
there is no sensor that can seeit, p_FN = 1. If thereis a sensor that has the object in its

IFD 03 System documentation 82

field of view, p_FN varies depending on sensor type and how often it sendsin reports
to the fusion node. This represents what was previously called “negative reports”.

9.7 Documentation for Sensor M anagement module
in IFDO3

The aggregation module in IFDO3 implements a simple version sensor managenemt
based on random set simulation. It has not yet been described in any published work.
It is called from the Control module. The interface consists of the function
select_uav_plan which is called from do_sensor in the Control module. It isgiven a
list of unit positions asinput. The positions are converted to node adresses in the road
network that is hard-coded in the implementation.

The module then simulates several possible futures using a (also hard-coded)
transition matrix. It produces artificial observations of these futures and uses them to
simulate atracking filter. The difference between the filter and the "real” futureis
then used to determine the fitness of seveal (hard-coded) sensor control plans. Metrics
used are either local or global; global meansit uses positions at al times, while local
only use the end positions. Metrics can aso be either entropic (ie, we want to be as
sure as possible of the location, regardless of whether it is true or not) or they can be
simply the L1 distance between truth and filter.

The module returns the uav-flight-path that is best when the metrics are averaged over
anumber of possible futures. It also returns a quality, that is an indication of in how
many futures that the chosen sensor plan was best.

For more details, see the local and global call graph in the html-documentation and
the detailed list of functions below.

« sdlect_uav_plan Return which sensor control scheme (among a set of hard-
coded plans) to use. This function first maps the unit positions given to it to
nodes in the road-network (which is hard-coded in the subfunction
gets opassetdata -- change this function in ordet to use a different network). It
then calls select_sensor_scheme for each of the starting positions, and
determines which sensor scheme is best for that. The plan that is best in total is
returned and also saved in order to be plotted in the 3rd screen visualization.

« findnearestnode This function takes alat-lon position and alist of nodes and
returns the index for the node that is closest.

« select_sensor_scheme The major function in the sensor adaptation method.
This function creates a number of future historys of the system. For each of
these, the imaginary observations using a given sensor scheme s calculated
and used to propagate a simple filter. The fitness of each plan for each
aternative future is then calculated using 4 different metrics, and a matrix
giving the best plan for each future and metric is returned.

« calculatey Propagates the ssmulated filter using a set of observations.

- entropy Returns the entropy of the input vector.

« sumofcolumnentropies Given amatrix A, returns a vector giving entropies
for each columnin A.

+ Qetobservations Returns the set of observations of a given future that would
be made using a specified sensor plan.

IFD 03 System documentation 83

getpath Given atransition matrix, this function returns a possible future path
of aunit.
makepathtomatrix Converts a path given asalist to amatrix.

9.8 Display module

This module is used for devel opment and could be extended to be used for debugging.
See online source-code documentation for details.

9.9 Documentation on miscellaneous functionsin
| FDO3

« print_time provides controlled debugging output. It prints the current time,
memory information, and an optional message.

« dprint isafunction that can be used for debugging. It evaluates and prints two
expressions.

« get_globa_mem_status finds memory information from Windows routines.

IFD 03 System documentation 84

