
ORI GIN AL ARTICLE

An architecture modeling framework for probabilistic
prediction

Pontus Johnson • Johan Ullberg • Markus Buschle •

Ulrik Franke • Khurram Shahzad

Received: 7 June 2013 / Revised: 25 November 2013 / Accepted: 25 January 2014 /

Published online: 14 February 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract In the design phase of business and IT system development, it is

desirable to predict the properties of the system-to-be. A number of formalisms to

assess qualities such as performance, reliability and security have therefore previ-

ously been proposed. However, existing prediction systems do not allow the

modeler to express uncertainty with respect to the design of the considered system.

Yet, in contemporary business, the high rate of change in the environment leads to

uncertainties about present and future characteristics of the system, so significant

that ignoring them becomes problematic. In this paper, we propose a formalism, the

Predictive, Probabilistic Architecture Modeling Framework (P2AMF), capable of

advanced and probabilistically sound reasoning about business and IT architecture

models, given in the form of Unified Modeling Language class and object diagrams.

The proposed formalism is based on the Object Constraint Language (OCL). To

OCL, P2AMF adds a probabilistic inference mechanism. The paper introduces

P2AMF, describes its use for system property prediction and assessment and pro-

poses an algorithm for probabilistic inference.

P. Johnson � J. Ullberg (&) � M. Buschle � K. Shahzad

Department of Industrial Information and Control Systems,

KTH – Royal Institute of Technology, 100 44 Stockholm, Sweden

e-mail: johanu@ics.kth.se

P. Johnson

e-mail: pj101@ics.kth.se

M. Buschle

e-mail: markusb@ics.kth.se

K. Shahzad

e-mail: khurrams@ics.kth.se

U. Franke

FOI – Swedish Defence Research Agency, 164 90 Stockholm, Sweden

e-mail: ulrik.franke@foi.se

123

Inf Syst E-Bus Manage (2014) 12:595–622

DOI 10.1007/s10257-014-0241-8

Keywords Probabilistic inference � System properties � Business

properties � Prediction � Assessment � Object Constraint Language � UML

1 Introduction

Many business endeavors depend heavily on the development of information systems

(Ross et al. 2006). For these to be successful, it is desirable not to develop by trial-and-

error, but rather by predicting the properties of envisioned services as early as possible

in the lifecycle (Kurpjuweit and Winter 2007). Such predictions may guide architects

and developers, allowing them to explore and compare design alternatives at a low cost

(van Sinderen et al. 2012). Designers routinely argue for or against alternative design

alternatives based on the expected impact of those choices on, e.g., the future financial

viability, availability, security or functional capabilities. However, experience-based

predictions made by individual developers have drawbacks in terms of transparency,

consistency, cost and availability (Cooke and Goossens 2004; Nielsen 1994).

Therefore, it is desirable to have formal approaches to business and IT architecture

property prediction. In addition to prediction, system property analysis methods may

be employed to assess properties of existing systems that are difficult to measure

directly, as in the case of for instance information security (Freiling 2008).

1.1 Contribution

In this article, we present P2AMF, a framework1 for generic architecture analysis of

systems2. It has to be stressed that the term system here is not limited to IT systems

alone. Rather, following the Oxford dictionaries, it refers to a ’’set of things working

together as parts of a mechanism or an interconnecting network; a complex whole’’

(Oxford Dictionaries 2013). P2AMF can be used to describe everything that can be

expressed in terms of classes, their attributes and relations between these classes.

P2AMF is based on the OCL (Object Constraint Language 2010). The most

prominent difference between P2AMF and OCL is the probabilistic nature of

P2AMF. P2AMF allows the user to capture uncertainties in both attribute values and

model structure.

One of the main purposes of performing such architecture analysis is to provide

decision support. Seen from the perspective of a generic decision cycle, e.g. the

OODA loop (Richards 2004), c.f. Fig. 1, the work presented in this article can aid in

encoding observations in terms of scenarios and describing the as-is and various to-

be architectures. In particular, P2AMF can analyse these scenarios in the orientation

phase of the OODA loop. This in order to facilitate rational decision-making based

on analysis rather than subjective judgement.

1 We use the term framework to denote a formal (system description) language and a set of inference

rules (for attribute value assessment).
2 An early version of P2AMF was published as Probabilistic Imperative Object Constraint Language

(Pi-OCL) in 2010 (Ullberg et al. 2010) While the general lines of thought remain the same, the early

version was unnecessarily dependent on a formalism that was limited to exact probabilistic inference

rather than more general approximate sampling algorithms, and lacked performance evaluation.

596 P. Johnson et al.

123

1.2 Architecture prediction

In Business and IT system design, many qualities are worth predicting. These

include theoretically well-established non-functional properties such as perfor-

mance, reliability and schedulability. For these properties, widely accepted

analysis approaches have been established (UML Profile for MARTE 2009; Lyu

1996; Smith and Williams 2001). There are also properties where consensus on

the theoretical base has yet to materialize, e.g. in the case of business network

profitability (Gordijn et al. 2005; Johnson et al. 2013; Osterwalder 2004), security

(Jürjens 2002; Lodderstedt et al. 2002; Sommestad et al. 2010), and interopera-

bility (Chen and Doumeingts 2003; Ullberg et al. 2012). Finally, there are many

functional capabilities and non-functional properties that are so specific to a

certain context that the analysis approach needs to be tailored for each instance,

e.g. compliance with local and national regulations for financial reporting. The

multitude of potentially interesting analyses prompts the need for generic

languages and frameworks for system property analysis. An additional raison

d’être for such formalisms is the integrated analysis of multiple properties that

they enable. Multi-attribute analysis provides a base for structured quality attribute

trade-off, and trade-offs between different properties is a key element in any

design activity.

To contain the analysis algorithms of multiple business and IT system properties,

a framework needs to feature an appropriate and sufficiently flexible language.

Many system property analysis approaches are based on logic (Halpern and

Weissman 2003; Hansson and Jonsson 1994). There are also a number of quality

analyses employing arithmetic operations (Joseph and Pandya 1986; Smith and

Williams 2001). Finally, many business and IT property analyses require

information on structural aspects of the system (role assignment, logical structure,

deployment structure, etc.) (Gokhale 2007; Ritchey and Ammann 2000).

Although analysis is the most prominent feature of the framework, it should also

act as the communicator of the design. It must therefore offer descriptive

capabilities in terms of modeling. One of the most widely applied generic modeling

languages today is the Unified Modeling Language (UML) (OMG Unified Modeling

Fig. 1 The presented work seen from the perspective of the OODA loop

An architecture modeling framework 597

123

Language 2011). Practically all major IT architecture and design tools are based on

or support UML modeling (Lee et al. 2005; Quatrani 2002). Any generic framework

for quality analysis therefore benefits from UML compatibility, allowing models to

be shared between design and analysis.

The OCL (Object Constraint Language 2010), developed under the aegis of the

Object Management Group (OMG), satisfies these requirements, including

compatibility with UML. OCL incorporates predicate logic, arithmetics and set

theory, making it sufficiently expressive to contain most system property analysis

needs. OCL was developed with normative purposes in mind. However, OCL is also

suitable for the descriptive (in particular predictive) purposes of architecture

analysis, allowing the designer to predict the effects of various changes to a planned

business or IT system, or to better understand the workings of an existing system.

OCL has previously been employed for various types of analysis (Briand et al.

2003; Lodderstedt et al. 2002; Skene and Emmerich 2003). However, one

increasingly important characteristic of modern business and IT systems is not

captured by OCL: uncertainty.

1.3 The importance of uncertainty

As industries grow older, our knowledge of the business and IT systems being

developed grows less certain. There are several reasons for this development.

Firstly, the systems and the architectures describing them are rapidly growing more

complex; they are growing in size as well as in the complexity of the underlying

technologies. While a few decades ago, it was feasible for one person to fully grasp

the workings of a company’s IT architecture or its collaborations with suppliers and

customers, this is no longer the case, simply due to the increased complexity.

Secondly, as businesses and systems grow older, so do the people who designed

them. The original developers of many systems and businesses running today have

changed jobs, retired, or even died. Combined with the poor state of documentation

that plagues many projects, this adds to our uncertainty. Thirdly, the use of

externally developed and maintained business and IT services is increasing. Such

uncertainty about e.g. the physical location of stored data may make an exit plan

from a vendor or partner difficult to execute (Joint et al. 2009), thus resulting in a

lock-in effect (Rold and Chamberlin 2011).

However, it is important to remember that the uncertainty inherent in the business

yields not only risk, but also opportunity. Renowned consultancy Gartner argues

that for organizations with highly variable total demand or uncertain future needs,

cloud solutions, generally coupled with high uncertainties (Khajeh-Hosseini et al.

2010; Marston et al. 2011; Randles et al. 2010), outperform traditional methods,

since the pay-per-use principle minimizes waste (Claunch 2011). However, to reap

such potential business benefits, well-reasoned decisions under uncertainty must be

made.

Arguably, these uncertainties are, in general, so significant that they ought not be

ignored in the analysis. Whether a given prediction should be used for decision

making or not depends on its credibility. In the face of uncertainty, the decision

598 P. Johnson et al.

123

maker must trade the expected consequences of inaccuracy against the cost of

lowering it, typically through additional data collection and modeling. Due to its

importance for decision making, it is standard practice in many areas, e.g. in the

medical domain, to report on the credibility of analysis results and treatments

(Altman et al. 1983; Daly and Bourke 2008; Gardner and Altman 1986). Such

credibility is typically specified in terms of significance levels, confidence intervals

or similar.

To allow for explicit consideration of uncertainty in the analysis of non-

functional properties in business and IT, the framework presented in this paper,

P2AMF, is capable of expressing and comprehensively treating uncertainty in UML

models. In P2AMF, attributes are random variables. P2AMF also allows the explicit

modeling of structural uncertainty, i.e. uncertainty regarding the existence of objects

and links. Indeed, as opposed to comparable formalisms (cf. Sect. 7 on related

work), P2AMF features probabilistic versions of logic, arithmetic and set operators,

properly reflecting both structural uncertainty and the uncertainty of attribute

values.

1.4 Outline

This article is composed of eight sections. In Sect. 2, P2AMF is described from the

perspective of the user; in this section, the contribution of the article is provided in

its most accessible form. The qualities that make P2AMF suitable to different types

of analyses are presented in Sect. 3; these qualities are put to the test in the business

case analysis of Sect. 4. The most challenging part of the development of P2AMF

was the extension of the OCL inference mechanism to a probabilistic context. The

proposed inference approach is presented in Sect. 5. Section 6 reports on the

successful implementation of a tool for P2AMF modeling and analysis. In Sect. 7,

related work is considered. Finally, Sect. 8 contains the conclusions.

2 Introduction to P2AMF

In this section, P2AMF is described from the point of view of the user, i.e. an analyst

evaluating a particular property. In the first subsection, the differences between

P2AMF and the UML–OCL duo are explained. Then, an example class diagram is

introduced and subsequently instantiated. This is followed by a subsection where the

object diagram attribute values are predicted. The final two subsections describe the

expressiveness and some current applications of P2AMF.

2.1 Differences between P2AMF and UML–OCL

The OCL is a formal language used to state expressions on UML models. These

expressions typically specify invariant conditions that must hold for the system

being modeled, or queries over objects described in a model (Object Constraint

Language 2010). OCL expressions are written in the context of a class, an

An architecture modeling framework 599

123

association or an attribute in order to specify an invariant for one of these concepts.

Starting from this context, an OCL expression can navigate through class diagram

associations to produce collections of objects or attributes. Based on these, it is

possible to evaluate various conditions, e.g. the existence of an object with specific

properties, or comparing the value of an attribute with a threshold value.

From the user perspective, P2AMF has many similarities to UML–OCL; from a

syntax perspective, every valid P2AMF statement is also a valid OCL statement.

There are, however, also significant differences. The first and most important

difference is that while OCL mainly is employed in the design phase to specify

constraints on a future implementation, P2AMF is used to reason about existing or

potential systems. P2AMF may be employed to predict the uptime of a system while

OCL is used to pose requirements on the uptime of the same system. While OCL is

mainly normative, mandating what should be, P2AMF is descriptive and predictive,

calculating what is or will be.

A second difference between UML–OCL and P2AMF is the importance of the

object diagram for P2AMF. As in standard UML, class diagrams with embedded

expressions may be constructed that represent a whole class of concepts. These

diagrams may then be instantiated into object diagrams representing the actual

architectures using these concepts. In P2AMF, however, the object diagrams

become particularly significant as inference is performed on them.

Furthermore, P2AMF takes uncertainty into consideration. In particular, two

kinds of uncertainty are introduced. Firstly, attributes may be stochastic. For

instance, when classes are instantiated, the initial values of their attributes may be

expressed as probability distributions. As will be described later, the values may

subsequently be tuned for each instance.

Secondly, the existence of objects and links may be uncertain. It may, for

instance, be the case that we no longer know whether a specific role in the

organization is still in use or whether it has been retired. This is a case of object

existence uncertainty. Such uncertainty is specified using an existence attribute

that is mandatory for all classes. We may also be uncertain about whether a role is

responsible for a process or if a server is still in the cluster servicing a specific

application. These are examples of association uncertainty. Similarly, this is

specified with an existence attribute on the association, implemented using

association classes.

The introduction of two mandatory existence attributes and the specification of

attribute values by means of probability distributions thus constitute the only

changes to OCL as perceived by the user. These modest changes, however, allow for

a comprehensive probabilistic treatment of the affected class and object diagrams,

including both attribute uncertainty and structural uncertainty, enabling proper

probabilistic inference over OCL expressions.

2.2 An example class diagram

To illustrate the usage of P2AMF, consider the simple example of a cloud service.

This is a case where the probabilistic nature of P2AMF is relevant; in cloud

600 P. Johnson et al.

123

computing, the sheer complexity of the cloud mandates for an architecture, and

architecture analysis, approach. Furthermore, there is a fundamental uncertainty

about such things as the number of servers currently providing a given service,

about the characteristics of these particular servers, etc. Nevertheless, these aspects

influence the properties of the service at hand.

The class diagram for the example is given in Fig. 2. It contains three classes:

Service, Cloud and Server. In the present example, we assume that the service

provider would like to predict the future response time of the provided service.

Thus, responseTime is an attribute of each of the three classes. Furthermore,

every server can be up or down, thus prompting the attribute available. If a server

is down, the time to repair is given by the attribute timeToRepair. Some of the

attributes are given initial values while the rest are derived from other attributes.

Such initial values may be either deterministic or probability distributions and

correspond to the attribute value relevant for the whole class of concepts, and may

be overwritten with more precise information for a specific instance in the object

diagram. There is also a helper operation, min, returning the minimum of the

provided values. Below, the model’s P2AMF expressions are provided. The class

diagram also specify cardinality for the relationships. These are always specified

deterministically as in a normal class diagram. However, since the existence of

objects and links is uncertain, there might be object models that do not satisfy the

cardinality constraints, which is managed by the sampling algorithm, see Sect. 5 for

more information.

Going from the bottom up in the P2AMF expressions below, first consider the

Boolean server existence attribute. The probability that a given server exists is

given by a Bernoulli distribution of 97 %. Since the running example concerns a

future state, this probability distribution represents the belief that a server will in

fact be installed as planned, and will be dependent on the modeler’s or other

expert’s knowledge. Continuing to the attribute available, the distribution

specifies a 95 % probability that a given server is up and running at any given

moment. For the attributes timeToRepair and responseTimeWA, truncated

normal distributions specify the expected time (in seconds) before a server is up and

running again after a failure and the response time for the case of a server that has

not failed respectively. Both are truncated at 0 to avoid the small probability for

negative values. So far, we have considered four attributes assigned initial

probability distributions on the class level. They thus represent the whole population

of considered servers. Later, as the class diagram is instantiated, these estimates can

be updated with system-specific data.

The top-most attribute of the Server class differs from the previously presented

as it is derived. The derivation states that the response time of the server depends on

whether it is available or not. If it is available, responseTimeWA gives the response

time while timeToRepair returns the relevant value when the server is down. The

Execution association connects the Server to the Cloud class. As there is

uncertainty about whether a given server is connected to the Cloud, its existence

attribute is assigned a probability of 70 %.

An architecture modeling framework 601

123

The Cloud class has two attributes: its existence, which is similar to the

existence attribute of the server class except that we are certain that the Cloud

exists; and a real attribute specifying the expected response time of the networking

infrastructure. The Provision association class connects Service to the Cloud.

Its features are similar to the Execution association class.

Fig. 2 An example class
diagram

602 P. Johnson et al.

123

Finally, the class Service contains one derived attribute, responseTime, one

operation, min, and the mandatory existence attribute. The service response time

is given as a sum of the Cloud networking infrastructure response time on the one

hand, and the minimum response time of the set of providing servers on the other.

The min operation simply returns the minimum value of a set of values. The

existence attribute is similar to those of the other classes.

2.3 An example object diagram

The class diagram captures the general type of system and the causal effects that such

systems are subject to. In order to make specific predictions, however, object diagrams

detailing actual system instances are required. Instantiations follows the same rules as

in object orientation in general. Classes are instantiated into objects, associations into

links, multiplicities must be respected, and attributes may be assigned values (in the

case of P2AMF, either deterministic values or probability distributions).

An architecture modeling framework 603

123

There is, however, one interesting and useful difference. In ordinary UML/OCL,

values may not be assigned to derived attributes since those attributes are inferred from

the derivation expression. Assignment of a different value than the one resulting from

the derivation rule would lead to an inconsistent model. The probabilistic inference

algorithm presented in Sect. 5, however, does allow the assignment of values to

derived attributes, as long as attributes are assigned values within the ranges specified

by the probability distributions, on the class level. The most useful consequence of this

capability is the possibility to infer backwards in the causal chain. In our running

example, we can therefore gain knowledge about the availability of the servers merely

by observing the response time of the service. This capacity for backwards reasoning is

not available in standard OCL/UML. As an example, consider a model where x = y ? z.

If x is assigned a value, OCL can tell us nothing of the value of y. P2AMF, however,

can. Therefore, in P2AMF, all information that is provided in the object diagram is

used to improve the predictions of attribute values.

Returning to the running example, consider the object diagram of Fig. 3. In this

instance of the class diagram, the calculator—an instance of the Service

class—uses theCloud, which is the single instance of the Cloud class. Three

redundant Server instances are present in the Cloud, calcServA, calcServB and

calcServC.

We assume that the service provider estimates the attribute values as presented in

Table 1. Note that attributes may be assigned either deterministic values, as

theCloud.existence, or stochastic ones, as e.g. calcServC.timeToRepair.

Some are not assigned any values at all. These will instead be inferred as part of the

prediction. Again, note that unlike standard UML/OCL, any attribute may be

assigned a value and any attribute may be unassigned; inference will still be

possible. A modeler can therefore obtain predictions based on the current state of

knowledge, however poor that knowledge is. Of course, high uncertainties in the

object diagram will generally lead to high uncertainties in the predictions.

Fig. 3 Instantiation of the example class diagram

604 P. Johnson et al.

123

2.4 Inference in the object diagram

With support of a tool (Ullberg et al. 2010), the analyst can perform predictive

inference on the object diagram described above with the click of a button. The details

of the underlying algorithms are presented in Sect. 5. The results of the inference are

new probability distributions assigned to the attributes. As these are typically non-

parametric, they are most easily presented in the form of diagrams. Figure 4 displays

the distribution of the most interesting attribute, calculator.responseTime. We

note that the most probable response time is 80 ms. This is the sum of the most

probable response times of theCloud and calcServB, as calcServB is the fastest

server and is probably available. However, there is a certain probability (24 %) that

calcServB is down (i.e. that available is false) or that it is not in service (that

existence is false). In this case, calcServA will most probably (83 %) be

available, and the response time will increase to 130 ms on average. If calcServA

Table 1 Attributes are assigned either probability distributions or deterministic values in the object

diagram

Attribute
type

Class.Attribute Assigned value

Real calculator.responseTime

Boolean calculator.existence Bernoulli (0.997)

Boolean provision.existence True

Real theCloud.responseTime TNormal (0.05, 0.005, 0)

Boolean theCloud.existence True

Boolean executionA.existence Bernoulli (0.85)

Real calcServA.responseTime

Real calcServA.responseTimeWA TNormal (0.08, 0.01, 0)

Real calcServA.timeToRepair TNormal (6,000, 2,000,
0)

Boolean calcServA.available Bernoulli (0.94)

Boolean calcServA.existence Bernoulli (0.975)

Boolean executionB.existence Bernoulli (0.85)

Real calcServB.responseTime

Real calcServB.responseTimeWA TNormal (0.03, 0.005, 0)

Real calcServB.timeToRepair TNormal (9,000, 3,000,
0)

Boolean calcServB.available Bernoulli (0.91)

Boolean calcServB.existence Bernoulli (0.975)

Boolean executionC.existence Bernoulli (0.92)

Real calcServC.responseTime

Real calcServC.responseTimeWA TNormal (0.12, 0.015, 0)

Real calcServC.timeToRepair TNormal (6,000, 2000, 0)

Boolean calcServC.available

Boolean calcServC.existence Bernoulli (0.975)

An architecture modeling framework 605

123

also fails or if it is not in service, calcServC will provide a mean response time of

170 ms. Despite the tripled redundancy, there is a small probability (1.2 %) that

none of the servers are available. In that case, the response time depends on the

installed server with the shortest time to repair, i.e. either calcServA or

calcServC, with a mean of 1:40h (6,000 s) each. Finally, although quite unlikely,

there is the risk (0.3 %) that none of the servers will exist as modeled; they could

have been taken out of service or were perhaps never installed in the first place. In

this case, the response time will be so high that the exact value no longer matters.

As mentioned, backward inference is an important capability of probabilistic

reasoning. As an example, suppose that when the system has been installed, an end

user of the calculator service measures its response time to 130 ms. From this

information, the prediction system automatically infers that both calcServA and

calcServB must be either unavailable (90 % probability) or non-existent (e.g.

retired) (10 % probability) while calcServC must be providing the service. This

conclusion is reached automatically, but it can be understood intuitively as follows:

Provided by redundant servers, the calculator service response time is given by

the fastest available server. Since the measured service response time (taking the

Cloud into account) is slower than those of calcServA and calcServB, they are

surely down. Since the measured response time fits the probability distribution of

calcServC when it is up and running, this must be the providing server.

3 Expressiveness of P2AMF

A set of expressive characteristics featured by P2AMF make it particularly well

suited for specifying predictive system property models. These include object

orientation, support for first-order logic, arithmetics, set theory and support for

expressing both class and instance level uncertainty. This section expands on these

capabilities and the next section illustrate them in context.

3.1 Object orientation

P2AMF operates on class and object diagrams. The object-oriented features of such

diagrams may therefore be leveraged by the predictive systems in P2AMF. These

Fig. 4 calculator.responseTime probability distribution

606 P. Johnson et al.

123

features are well known and include class instantiation, inheritance, polymorphism,

etc. The benefits include the following:

Real-world modeling The object-oriented paradigm has consistently proven

suitable for modeling the real world.

Software system modeling Equally successful as in the modeling of the real world

has the object-oriented paradigm been in modeling the software systems that

operate on that world.

Instantiation From the point of view of prediction, the concept of instantiation

allows a clear differentiation between the general prediction theory (expressed on

the class level) and the specific instances of prediction (represented by object

models). This separation is also a separation of concerns between the developer

of the predictive system (e.g. an expert on some quality attribute) and its user (the

modeler of a specific system).

Due to object-orientation’s suitability for system analysis, several object-oriented

prediction systems have previously been proposed (UML Profile for MARTE 2009;

Grassi et al. 2007; Smith and Williams 2001).

3.2 First-order logic

P2AMF is able to express first-order logical relations. The predictive benefits of

predicate logic are undisputed. These are used as a base for many deductive

formalisms (Jackson 2002; Spivey 1992), including those aimed at for instance

information security (Halpern and Weissman 2003), interoperability (Allen 1997),

and correctness (Moriconi and Qian 1994).

3.3 Arithmetics

If predicate logic is important for predictive systems, arithmetics, the oldest branch

of mathematics, is perhaps even more so. Arithmetics is used for prediction of

properties ranging from hardware-related ones such as throughput (Smith and

Williams 2001), reliability (Lyu 1996) and execution time (Puschner and Koza

1989) to organizational and economic ones such as cost (Drury 2007), efficiency

(Mason-Jones and Towill 1999) and value (Rappaport 2000).

3.4 Set theory

The object-oriented concept of instantiation allows the creation of many objects of

the same class. In order to efficiently make predictions on such models, set theory is

indispensable. The ability to speak of the number of components in a certain system,

the qualities of a set of objects following a given navigation path in an object

diagram, etc. are important for predictions on most systems with varying structure.

The many prediction-oriented software specification formalisms based on set theory

(Jackson 2002; Spivey 1992) testify to its relevance.

An architecture modeling framework 607

123

3.5 Instance-level uncertainty

As previously discussed, for many real-world systems and situations, perfect

information is rare. On the contrary, the available information is often incomplete,

old, vague, conflicting or otherwise uncertain (Aier et al. 2009). In P2AMF, attributes

of objects, e.g. the uptime of a certain server, the age of a piece of hardware, or the

efficiency of an employee, may be expressed by probability distributions.

For many systems, not only the attribute values are associated with uncertainty,

but also the system structure. Is it still the case that system X communicates with

system Y? Does cloud service Z have double servers as the specification claims, or

was one retired last month? Structural uncertainty grows important as the system

grows larger and moves further from the modeler, e.g. into the Cloud. The

introduction of the existence attribute on classes and associations allows the

specification of structural uncertainty in P2AMF.

3.6 Class-level uncertainty

As mentioned previously, the object-oriented separation of class and object

diagrams by instantiation is particularly suitable for predictive models as the

generic, theoretical prediction laws and structures may be captured on the class level

while particulars about a specific system are left to the object model. This division

also pertains to the specification of uncertainty. While the object-level modeler may

be uncertain about the structure and attributes of a specific system model, the class-

level modeler may need to express uncertainties about e.g. the strengths of attribute

relations. For instance, to what extent a certain category of firewalls reduces the

success rate of cyber attacks is rarely known precisely. Uncertainty regarding such

information may be codified by means of class-level attribute uncertainty in

P2AMF. Similarly as for the instance level, the existence attribute also allows

specification of structural uncertainty on the class level.

4 A business case analyzed with P2AMF

In order to show the usefulness of P2AMF for business-related analysis, this section

offers an applied example. Since IT is increasingly being procured ’’as a service’’,

the example will address profitability analysis of service level agreements, SLAs,

from the perspective of the service provider. In particular, we focus on availability

provision, an important but difficult area of SLA writing.

Specifically, assume that we are about to sell an IT service to a customer. Following

negotiations, there is now an SLA proposed. It sets an Availability-Require-

ment, expressed as a percentage, and also a requirement on the Time To Recovery,

TTRRequirement, expressing the customer demand that recovery in the case of

outage does not exceed h hours. To enforce these requirements, the SLA contains

provisions on fines in case of breaches: There is an AvailabilityFinePerBa-

sisPoint which has to be paid if the average annual availability goes below the

requirement. For example, with a requirement of 99.50 % availability, a result of

608 P. Johnson et al.

123

99.35 % would entail 15 times the fine per basis point to be paid. Similarly, there is a a

TTRFinePerHour which has to be paid if the TTR exceeds the requirement. For

example, with a requirement of 4 hours recovery time, a recovery lasting 6 hours

would entail twice the fine per hour to be paid. Finally, of course, the SLA contains a

SalesIncome, i.e. the amount for which we sell it. But will it be profitable?

To find the NetIncome, i.e. the SalesIncome minus our costs for the IT service

offered and any fines, we need to model our ApplicationServiceOffer in

greater detail. As service providers, we have access to certain information that the

customer does not. In particular, we know the Cost of our ApplicationService,

as well as the distribution of its Time To Failure, TTF. For the sake of the example,

we let this distribution be Weibull, following (Schroeder and Gibson 2010) and

(Heath et al. 2002). Similarly, we know the the Cost of our RecoveryProcess, as

well as the distribution of its Time To Recovery, TTR. For the sake of the example,

we let this distribution be log-normal, following (Schroeder and Gibson 2010) and

(Franke et al. 2013b).

Before proceeding with the example, it is worth to dwell on how this problem

would be addressed manually, without P2AMF. Probably, the business analyst

would apply the well-known equation availability (1):

A ¼ MTTF

MTTFþMTTR
ð1Þ

Using mean TTF and TTR, this equation gives a valid result for the steady state

availability. This is a single figure—the mean—not the entire distribution. But—as

pointed out by Snow and Weckman –it is dangerous to base conclusions about SLA

breaches on means (Snow and Weckman 2007). P2AMF allows us to consider the

entire distribution of both availability and TTR. The result of a simulation (with

suitable parameters) is given in Fig. 5. As is evident, the SLA at hand has a good

chance of being profitable. However, there is also a substantial risk that it will run at

Fig. 5 ServiceLevelAgreement.NetIncome probability distribution

An architecture modeling framework 609

123

a loss, and a small chance that it will run at a considerable loss. The mean value

(also displayed in the figure) gives no insight into these finer details of the

opportunities and risks involved.

Briefly considering the P2AMF implementation, the main work is done in the

definition of the NetIncome-attribute:

The two if-clauses (illustrating first-order logic) check to see if any of the fines

for excessive downtime or availability are to be calculated. If so, the amounts are

calculated (illustrating arithmetics) based on the values of the Availability and

TTR attributes of the ApplicationServiceOffer and the RecoveryProcess,

respectively. These are stochastic, based on sampling of Weibull TTF and log-

normal TTR (illustrating instance-level uncertainty). In the final calculation, the

stochastic fines and the fixed costs of the provider are both subtracted from the fixed

income gained from selling the service, thus yielding the stochastic net income

illustrated in the histogram in Fig. 5.

Indeed, this model can help us not only with the immediate decision of whether

to accept or decline a concrete SLA on offering. It can also help us make more

strategic decisions on availability. There are two ways of increasing availability:

increase TTF or decrease TTR (Franke 2012). The P2AMF model enables us to see

how much it is worth to pay for better hardware or more robust software (which will

increase TTF), and how much it is worth to pay for a stand-by repair crew (which

will decrease TTR), given the SLAs that we have currently signed with our

customers.

Improving business analysis of availability SLAs is important. In Franke et al.

(2013c) practitioners explain that their companies are immature when it comes to

SLA writing, particularly when IT services are delivered in complex architectures

610 P. Johnson et al.

123

with many layers of sub-contractors. Furthermore, recent research suggests that

practitioners often fail to maximize expected utility when faced with availability

SLA decisions (Franke et al. 2013a).

4.1 Other applications and examples

P2AMF has been used to predict such diverse properties as availability (Franke et al.

2013c), interoperability (Ullberg et al. 2012), cyber security (Holm et al. 2013) and

the effects of changes to the organizational structure of an enterprise (Gustafsson

et al. 2009). It has also been used for multi-property analysis (Närman et al. 2012)

of aggregated systems and services and tradeoffs between different attributes

including cost and availability (Österlind et al. 2013). The papers cited contain other

applied examples of P2AMF that can be read by the interested reader. In total, more

than 40 analyses have so far been conducted using P2AMF. For example, P2AMF

has been used for analysis by more than 20 practitioners, either on their own or with

support from the authors. Most of these cases belong to the financial, defense or

power utility businesses. In most cases, the practitioners used the tool to do

availability analysis, followed by cost evaluations and data accuracy analysis.

Furthermore, P2AMF as encapsulated in the tool has also been used to teach

students enterprise architecture analysis. Throughout 5 courses, more than 50

students have used the tool to date.

5 Probabilistic inference

In this section, we explain how inference is performed in P2AMF models. A Monte

Carlo approach is employed, where the probabilistic P2AMF object diagram is

sampled to create a set of deterministic UML/OCL object diagrams. For each of

these sample diagrams, standard OCL inference is performed, thus generating

sample values for all model attributes. For each attribute, the sample set collected

from all sampled OCL models is used to characterize the posterior distribution.

Several Monte Carlo methods may be employed for probabilistic inference in

P2AMF models, including forward sampling, rejection sampling and Metropolis-

Hastings sampling (Koller and Friedman 2009; Walsh 2004). Of these, rejection and

Metropolis-Hastings sampling allow the specification of evidence on any attribute in

the object models while forward sampling only allows evidence on root attributes3.

In this section, we will present rejection and Metropolis-Hastings sampling since

evidence on all attributes is a likely scenario.

Both sampling algorithms have in common that the first step is to generate

random samples from the existence attributes’ probability distribution

PðXÞ : x½1�; . . .; x½M�. For each sample, x[i], and based on the P2AMF object

diagram Op, a reduced object diagram, Ni 2 N, containing only those objects and

links whose existence attributes, Xj, were assigned the value true, is extracted.

Some object models generated in this manner will not conform to the constraints of

3 Root attributes are attributes that have no causal parents.

An architecture modeling framework 611

123

UML. In particular, object models may appear where a link is connected to only one

or even zero objects. Such samples are rejected. Other generated object models will

violate e.g. the multiplicity constraints of the class model. Such samples are also

rejected. Additionally, some OCL derivations are undefined for certain object

models, for instance a summation derivation over an empty set of attributes. After

this rejection procedure, a set of traditional UML/OCL object diagrams remains,

N � N. The structures in N vary but all elements are syntactically correct. The

attributes are not yet assigned values.

5.1 Rejection sampling

The objective of the rejection sampling algorithm is to generate samples from the

posterior probability distribution P(X, Y|e), where e = eX [eY denotes the evidence

of existence attributes as well as the remaining attributes. The objective is thus to

approximate the probability distributions of all attributes, given observations on the

actual values of some attributes, and prior probability distributions representing

beliefs about the values of all attributes prior to observing any evidence.

The algorithm is depicted in Algorithm 1. Rejection sampling requires the

attributes that are part of a sample Y1; . . .; Yn to be sorted in topological order i.e.

parent attributes appear earlier in the sequence than the attributes that are calculated

based on them, their children. Following the general first step, in the second step, for

each of the remaining object diagrams, Ni, the probability distribution of the root

attributes, P(Yr) is sampled, thus producing the sample set yr½1�; . . .; yr½sizeðNÞ�. If

there is evidence on a root attribute, the sample is assigned the evidence value.

Based on the samples of the root attributes, the OCL expressions are calculated in

topological order for each remaining attribute in the object diagram, yr
i ¼ fyr

i
ðPayr

i
Þ.

The result is a set of deterministic UML/OCL object diagrams, K � N, where in

each diagram, all attributes are assigned values.

The third step of the rejection sampling algorithm rejects those object diagrams

that contain attributes which do not conform to the evidence. The sampling process

612 P. Johnson et al.

123

ensures that root attributes always do conform, but this is not the case for OCL-

defined attributes. The final set of object diagrams, O � K, contains attribute

samples from the posterior probability distribution P(X, Y|e). These samples may

thus be used to approximate the posterior.

5.2 Metropolis-Hastings sampling

Metropolis-Hastings sampling (Koller and Friedman 2009; Walsh 2004) is an

iterative sampling technique converging to a desired distribution limit. It aims to

create a Markov chain MC with a stationary distribution being the desired

distribution, i.e., a chain of samples where the sampled attribute values match the

specified evidence. The algorithm is described in Algorithm 2. First one valid

sample is created using rejection sampling. Once this sample is found it is used as

the first element in the Markov chain.

The second step is to create a new chain element based on the last added element.

A new sample is created as a copy of the last chain element. For the attributes

without any specified evidence new values are generated using a candidate-

generating distribution. Then the likelihood of the new sample given the old sample

Pðx0jxÞ is evaluated. Thereafter the probability of acceptance a of the sample is

calculated, considering the likelihood Pðx0jxÞ, which over time is given more weight

to. If a is greater than a given limit l the sample is added to the chain otherwise the

last added element is added again. The second step is repeated until a predefined

number M of chain elements has been added. The first samples are typically not

used to evaluate the model; they are called burn-in samples B and train the

algorithm. As a final step the burn-in samples are removed.

Similar to rejection sampling, Metropolis-Hastings sampling allows specifying

evidence for any attribute of the model. This algorithm does need a comparably

An architecture modeling framework 613

123

smaller number of samples and is therefore more effective, especially when

considering models including a large number of attributes. The biggest disadvantage

of Metropolis-Hastings sampling is that, especially for models with many local

minima, a solution not being the best one might be found. This is because of the

chain structure of the result, where samples are based on their predecessor.

6 Implementation of P2AMF

In this section, we report on a software tool that allows modeling of both

probabilistic class diagrams and probabilistic object diagrams4. It also performs

inference as described in Sect. 5. A complementary presentation of the tool is

available in Buschle et al. (2013).

6.1 Design

The presented tool is implemented in Java using the Eclipse rich client platform. To

provide the modeling facility the Eclipse Modeling Framework (EMF) (Steinberg

et al. 2008) is used and extended. The tool is divided into two components, the

CLASS MODELER, and the OBJECT MODELER, corresponding to two file types: class and

object diagrams.

The CLASS MODELER is a graphical editing tool for probabilistic class diagrams. In

addition to the basic editing functionality provided by other class diagram modeling

tools, the CLASS MODELER (1) allows attribute values defined either by probability

distributions or by OCL expressions, (2) requires a value for the mandatory existence

attributes of classes and associations, and (3) provides OCL syntax checking support

using the OCL plugin of the Eclipse Modeling Framework Eclipse Modeling

Framework (2011). A screen shot of the CLASS MODELER is presented in Fig. 6.

The OBJECT MODELER (cf. Fig. 7) has two components: (1) an editing tool for

probabilistic object models, and (2) an inference engine. The editing tool differs

from other object diagram editor tools mainly in (1) allowing probabilistic attribute

values, including the mandatory existence attributes, (2) displaying histograms for

all attributes representing their probability distributions after inference, and (3)

offering different inference algorithms and parameters. By the click of a button, the

calculations described in Sect. 5 generate posterior probability distributions for all

attributes.

6.2 Usage and performance

As mentioned, the tool has been used for modeling and prediction of several system

properties. The largest class diagrams created in these projects have reached sizes of

some twenty classes and sixty attributes. As object diagrams can grow significantly

larger, we have produced examples with some seventy objects and five hundred

attributes.

4 The tool is available for download at http://www.ics.kth.se/eaat.

614 P. Johnson et al.

123

http://www.ics.kth.se/eaat

While model editing of these sizes is straightforward, the performance in the

inference can be an issue, depending on the complexity of the P2AMF expressions,

the selected inference algorithm and its parameters. For our most complicated

models, one Monte Carlo sample requires 0.5 s for the OCL inference on a standard

Fig. 6 Screen shot of the CLASS MODELER

Fig. 7 Screen shot of the OBJECT MODELER

An architecture modeling framework 615

123

laptop.5 For all algorithms, the inference time grows linearly with the number of

samples. Figure 8 displays the inference time as a function of the number of

samples for the example presented in Fig. 3. Note that 1,000 samples normally is a

sufficient sample size; in the diagram, we display the results for larger sample sizes

to highlight the linear relationship. For rejection sampling, the acceptance rate (the

share of samples that conform to evidence and are thus not rejected) influences

inference time inversely proportionally. Figure 9 shows the inference time per

sample as a function of the inverted acceptance rate, also for the example of Fig. 3.

Thus, the more unlikely the evidence, the greater the share of samples that is

Fig. 8 Inference time as a function of the number of samples for the example of Fig. 3. 1,000 samples is
normally a sufficient sample size

Fig. 9 Inference time per sample as a function of the inverted acceptance rate of Fig. 3

5 MacBook Pro, 2.4 GHz Intel Core i5, 4 GB RAM.

616 P. Johnson et al.

123

rejected, and the longer the computation required to produce a specific number of

samples. For the Metropolis-Hastings algorithm, inference time is also affected by

choice of proposal distribution and burn-in time. Overall, the current implemen-

tation is usable but can encounter performance problems for certain models.

Forward sampling for 1,000 samples in our largest models on the aforementioned

hardware requires some 80 seconds to calculate. Compared to the time required for

modeling (counted in hours or days), this is quite acceptable.

There are several options available for performance improvements, including

more efficient coding, multithreading (which is expected to improve performance

significantly) and even high-performance cloud computing.

7 Related work

There are three categories of work that in different ways are similar to P2AMF. The

first category includes variants of first-order probabilistic models. Among other

proposals, these include Bayesian Logic (BLOG) (Milch et al. 2005), Probabilistic

Relational Models (PRM) (Friedman et al. 1999) and Directed Acyclic Probabilistic

Entity-Relationship (DAPER) models (Heckerman et al. 2004). These are similar to

P2AMF in their use of object-based templates which may be instantiated into

structures amenable to probabilistic inference. However, first-order probabilistic

models also differ from P2AMF; most importantly, they do not consider how logic

and arithmetic operators are affected by structural uncertainty. Consider the

following expression,

In contrast to the mentioned works, P2AMF will properly weigh the friends’

probability of existence (object existence probability) as well as the probability

that they are indeed friends (link probability existence) in order to provide a

relevant measure of average age. When all friends’ existence is certain, the

expression will evaluate to their average age (if the friends are 15, 20 and

60 years, the average is 31.67 years). If one friend’s existence probability

decreases, her age’s influence on the average will shrink proportionally. Figure 10

displays the probability distribution in the case where the three friends all have a

75 % existence probability.

The second category of related work comprises query and constraint languages

such as SQL (Melton and Simon 1993) and OCL (Object Constraint Language

2010). Similarly to P2AMF, these languages allow logical and arithmetic queries of

object or entity models. They are, however, deterministic rather than probabilistic.

There are however also probabilistic versions of such query languages, such as

An architecture modeling framework 617

123

PSQL (Dey and Sarkar 1998). These approaches have similarities with the second

type of uncertainty introduced in Sect. 2.1, the existence of objects, but do not cover

the stochastic attributes.

The third and most important category of related work is work on stochastic quality

prediction for software architecture. Some of these, such as MARTE (UML Profile for

MARTE 2009), KLAPER (Grassi et al. 2008) and ArgoPerformance (Distefano et al.

2005), are concerned with the analysis of UML or other Meta-Object Facility (MOF)

compliant models. Others, such as the Palladio component model for model-driven

performance prediction (Becker et al. 2009), the work by Meedeniya et al. (2012) on

architecture based reliability evaluation and the work of the Q-ImPrESS EU project on

performance, reliability, and maintainability (Becker et al. 2008) have opted for non-

UML modeling formalisms. In the specific context of cloud computing, Stantchev

proposes a method for performance evaluation (Stantchev 2009), Klems et al. (2009)

offer a framework for economic value analysis, and Lee et al. (2009) propose metrics

for non-functional Software-as-a-Service properties. However, common to all of these

contributions is their focus on the analysis of particular properties. P2AMF differs

from these, as it does not propose specific analyses but rather provides a general

language for expressing them. The closest match is probably the work by Ferrer et al.

(2012) on multiple non-functional property evaluation, using the Dempster-Shafer

approach to probabilistic reasoning. However, P2AMF is more general still; aiming to

offer not just a toolbox but a unified language where the best practice of e.g. reliability

or performance modeling can be expressed. Within this third category, there are also

generic frameworks for system quality analysis, such as ATAM (Bass et al. 2003).

These typically provide quite different support than P2AMF, and are not based on

probabilistic foundations.

8 Conclusions

It is desirable to predict and assess the expected quality and behavior of business

and IT systems already in the design stage. Furthermore, in the constantly changing

Fig. 10 Average age of three friends

618 P. Johnson et al.

123

complex and uncertain business environment of today, the need for such analyses to

deal with uncertainty grows.

In this paper, we have reported on a language and tool for probabilistic prediction

and assessment of business and IT system properties. The formalism, P2AMF,

supports automatic probabilistic reasoning based on set theory, first-order logic and

arithmetics. Based on class and object diagrams, P2AMF is compatible with UML.

This paper has introduced P2AMF and exemplified it for some simple analysis

cases. The use of P2AMF for predicting such diverse properties as system

availability, interoperability, performance, usability, data accuracy and the effects

of changes to the organizational structure of an enterprise has been reported on. Two

algorithms for performing the required probabilistic inference was proposed, and a

software tool supporting both modeling and inference was presented.

References

Aier S, Buckl S, Franke U, Gleichauf B, Johnson P, Närman P, Schweda CM, Ullberg J (2009) A survival

analysis of application life spans based on enterprise architecture models. In: Proceedings of 3rd

international workshop on enterprise modelling and information systems architectures (EMISA

2009), Lecture notes in informatics, pp 141–154

Allen RJ (1997) A formal approach to software architecture. PhD thesis, Carnegie Mellon University,

Pittsburgh, PA

Altman DG, Gore SM, Gardner MJ, Pocock SJ (1983) Statistical guidelines for contributors to medical

journals. Br Med J 286:1489–1493

Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd edn. Addison-Wesley

Longman Publishing Co., Inc., Reading, MA

Becker S, Trifu M, Reussner R (2008) Towards supporting evolution of service-oriented architectures

through quality impact prediction. In: 23rd IEEE/ACM international conference on automated

software engineering-workshops, 2008. ASE Workshops 2008, IEEE, pp 77–81

Becker S, Koziolek H, Reussner R (2009) The palladio component model for model-driven performance

prediction. J Syst Softw 82(1):3–22

Briand L, Labiche Y, O’Sullivan L (2003) Impact analysis and change management of uml models. In:

Proceedings of the international conference on software maintenance, IEEE, pp 256–265

Buschle M, Johnson P, Shahzad K (2013) The enterprise architecture analysis tool–support for the

predictive, probabilistic architecture modeling framework. In: Proceedings of the 19th Americas

conference on information systems to appear

Chen D, Doumeingts G (2003) European initiatives to develop interoperability of enterprise applications:

basic concepts, framework and roadmap. Ann Rev Control 27(2):153–162

Claunch C (2011) Cloud computing can be the singular solution for at least five use cases. Techical

report, Gartner

Cooke R, Goossens L (2004) Expert judgement elicitation for risk assessments of critical infrastructures.

J Risk Res 7(6):643–656

Daly LE, Bourke GJ (2008) Interpretation and uses of medical statistics. Blackwell Science Ltd, Oxford

Dey D, Sarkar S (1998) Psql: a query language for probabilistic relational data. Data Knowl Eng

28(1):107–120

Distefano S, Paci D, Puliafito A, Scarpa M (2005) Design and implementation of a performance plug-in

for the argouml tool. In: Proceedings of the 23rd IASTED international multi-conference on

software engineering, IASTED

Drury C (2007) Management and cost accounting. South-Western

Eclipse Modeling Framework (2011) EMF: OCL plugin for the eclipse modeling framework. http://www.

eclipse.org/emf/

An architecture modeling framework 619

123

http://www.eclipse.org/emf/
http://www.eclipse.org/emf/

Ferrer AJ, Hernández F, Tordsson J, Elmroth E, Ali-Eldin A, Zsigri C, Sirvent R, Guitart J, Badia RM,

Djemame K, Ziegler W, Dimitrakos T, Nair SK, Kousiouris G, Konstanteli K, Varvarigou T, Hudzia

B, Kipp A, Wesner S, Corrales M, Forgó N, Sharif T, Sheridan C (2012) Optimis: a holistic

approach to cloud service provisioning. Future Gener Comput Syst 28(1):66–77. doi:10.1016/j.

future.2011.05.022

Franke U (2012) Optimal IT service availability: shorter outages, or fewer? IEEE Trans Netw Serv

Manag 9(1):22–33. doi:10.1109/TNSM.2011.110811.110122

Franke U, Buschle M, Österlind M (2013a) An experiment in SLA decision-making. In: Economics of

grids, clouds, systems, and services. Springer, New York, pp 256–267

Franke U, Holm H, König J (2013b) The distribution of time to recovery of enterprise IT services

(in review)

Franke U, Johnson P, König J (2013c) An architecture framework for enterprise IT service availability

analysis. Softw Syst Model 1–29. doi:10.1007/s10270-012-0307-3

Freiling FC (2008) Introduction to security metrics. In: Dependability metrics. Springer, New York,

pp 129–132

Friedman N, Getoor L, Koller D, Pfeffer A (1999) Learning probabilistic relational models. In:

Proceedings of the 16th international joint conference on artificial intelligence, vol 2. Morgan

Kaufmann Publishers Inc., San Francisco, CA, pp 1300–1307

Gardner MJ, Altman DG (1986) Confidence intervals rather than p values: estimation rather than

hypothesis testing. Br Med J (Clin Res ed) 292(6522):746–750

Gokhale SS (2007) Architecture-based software reliability analysis: overview and limitations. IEEE Trans

Dependable Secure Comput 4(1):32–40

Gordijn J, Osterwalder A, Pigneur Y (2005) Comparing two business model ontologies for designing

e-business models and value constellations. In: Proceedings of the 18th Bled eConference, Bled,

Slovenia pp 6–8

Grassi V, Mirandola R, Sabetta A (2007) Filling the gap between design and performance/reliability

models of component-based systems: a model-driven approach. J Syst Softw 80(4):528–558

Grassi V, Mirandola R, Randazzo E, Sabetta A (2008) KLAPER: an intermediate language for model-

driven predictive analysis of performance and reliability. In: Rausch A, Reussner R, Mirandola R,

Plášil F (eds) The common component modeling example, lecture notes in computer science,

vol 5153, Springer, Heidelberg, pp 327–356. doi:10.1007/978-3-540-85289-6_13

Gustafsson P, Höök D, Franke U, Johnson P (2009) Modeling the IT impact on organizational structure.

In: Proceedings of 13th IEEE international EDOC conference (EDOC 2009)

Halpern JY, Weissman V (2003) Using first-order logic to reason about policies. In: Proceedings of the

IEEE computer security foundations workshop, IEEE computer society

Hansson H, Jonsson B (1994) A logic for reasoning about time and reliability. Formal Aspects Comput

6(5):512–535

Heath T, Martin R, Nguyen T (2002) Improving cluster availability using workstation validation. ACM

SIGMETRICS Perform Eval Rev 30(1):217–227

Heckerman D, Meek C, Koller D (2004) Probabilistic models for relational data. Technical report,

Microsoft

Holm H, Shahzad K, Buschle M, Ekstedt M (2013) P2cysemol: predictive, probabilistic cyber security

modeling language (in review)

Jackson D (2002) Alloy: a lightweight object modelling notation. ACM Trans Softw Eng Methodol

11:256–290

Johnson P, Iacob ME, Välja M, van Sinderen M, Magnusson C, Ladhe T (2013) Business model risk

analysis: predicting the probability of business network profitability. In: Enterprise interoperability.

Springer, New York, pp 118–130

Joint A, Baker E, Eccles E (2009) Hey, you, get off of that cloud. Comput Law Secur Rev 25(3):270–274

Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J 29(5):390–395

Jürjens J (2002) UMLsec: extending UML for secure systems development. Lect Note Comput Sci

2460:64–87

Khajeh-Hosseini A, Sommerville I, Sriram I (2010) Research challenges for enterprise cloud computing.

Arxiv preprint arXiv:10013257

Klems M, Nimis J, Tai S (2009) Do clouds compute? A framework for estimating the value of cloud

computing. In: Weinhardt C, Luckner S, Stößer J, Aalst W, Mylopoulos J, Rosemann M, Shaw MJ,

Szyperski C (eds) Designing E-business systems. Markets, services, and networks, lecture notes in

620 P. Johnson et al.

123

http://dx.doi.org/10.1016/j.future.2011.05.022
http://dx.doi.org/10.1016/j.future.2011.05.022
http://dx.doi.org/10.1109/TNSM.2011.110811.110122
http://dx.doi.org/10.1007/s10270-012-0307-3
http://dx.doi.org/10.1007/978-3-540-85289-6_13

business information processing, vol 22, Springer, Heidelberg, pp 110–123. doi:10.1007/978-3-642-

01256-3_10

Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press,

Cambridge, MA

Kurpjuweit S, Winter R (2007) Viewpoint-based meta model engineering. In: EMISA, vol 143, p 2007

Lee M, Kim H, Kim J, Lee J, Gum D (2005) StarUML 5.0 user guide

Lee JY, Lee JW, Cheun DW, Kim SD (2009) A quality model for evaluating software-as-a-service in

cloud computing. In: 7th ACIS international conference on software engineering research,

management and applications, 2009. SERA ’09, pp 261 –266. doi:10.1109/SERA.2009.43

Lodderstedt T, Basin D, Doser J (2002) SecureUML: a UML-based modeling language for model-driven

security. Lect Note Comput Sci 2460:426–441

Lyu MR (1996) Handbook of software reliability engineering. Mcgraw-Hill, New York

Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsasi A (2011) Cloud computing-the business

perspective. Decis Support Syst 51(1):176–189

Mason-Jones R, Towill DR (1999) Total cycle time compression and the agile supply chain. Int J Prod

Econ 62(1–2):61–73

Meedeniya I, Aleti A, Grunske L (2012) Architecture-driven reliability optimization with uncertain model

parameters. J Syst Softw 85(10):2340–2355

Melton J, Simon A (1993) Understanding the new SQL: a complete guide. Morgan Kaufmann Publishers,

Los Altos, CA

Milch B, Marthi B, Russell S, Sontag D, Ong DL, Kolobov A (2005) Blog: probabilistic models with

unknown objects. In: Proceedings of the 19th international joint conference on artificial intelligence,

Morgan Kaufmann Publishers Inc.,Los Altos, CA, IJCAI’05, pp 1352–1359

Moriconi M, Qian X (1994) Correctness and composition of software architectures. SIGSOFT Softw Eng

Notes 19:164–174

Närman P, Buschle M, Ekstedt M (2012) An enterprise architecture framework for multi-attribute

information systems analysis. Softw Syst Model 1–32. doi:10.1007/s10270-012-0288-2

Nielsen J (1994) Usability engineering. Access Online via Elsevier

Object Constraint Language (2010) Object Management Group, version 2.3

OMG Unified Modeling Language (OMG UML) (2011) Superstructure. Object Management Group,

version 2.4

Österlind M, Johnson P, Karnati K, Lagerström R, Välja M (2013) Enterprise architecture evaluation

using utility theory. In: The trends in enterprise architecture research (TEAR) workshop

Osterwalder A, et al (2004) The business model ontology: a proposition in a design science approach.

Institut dInformatique et Organisation Lausanne, Switzerland, University of Lausanne, Ecole des

Hautes Etudes Commerciales HEC 173

Oxford Dictionaries (2013) Oxford Dictionaries Online. http://www.oxforddictionaries.com/definition/

english/system

Puschner P, Koza C (1989) Calculating the maximum execution time of real-time programs. Real-Time

Syst 1:159–176

Quatrani T (2002) Visual modeling with rational rose 2002 and UML, 3rd edn. Addison-Wesley

Professional, Reading, MA

Randles M, Lamb D, Taleb-Bendiab A (2010) A comparative study into distributed load balancing

algorithms for cloud computing. In: IEEE 24th international conference on advanced information

networking and applications workshops (WAINA), 2010, IEEE, pp 551–556

Rappaport A (2000) Creating Shareholder value: a guide for managers and investors. Free Press, New

York

Richards C (2004) Certain to win: the strategy of John Boyd, applied to business. Xlibris Corporation

Ritchey R, Ammann P (2000) Using model checking to analyze network vulnerabilities. In: Proceedings

on IEEE symposium on security and privacy, 2000. S P 2000. IEEE, pp 156–165

Rold CD, Chamberlin T (2011) Cloud sourcing deals anatomy: from public to private, from services to

technology lock-in. Technical report, Gartner

Ross JW, Weill P, Robertson DC (2006) Enterprise architecture as strategy: creating a foundation for

business execution. Harvard Business Press, London

Schroeder B, Gibson G (2010) A large-scale study of failures in high-performance computing systems.

IEEE Trans Dependable Secur Comput 7(4):337–350

An architecture modeling framework 621

123

http://dx.doi.org/10.1007/978-3-642-01256-3_10
http://dx.doi.org/10.1007/978-3-642-01256-3_10
http://dx.doi.org/10.1109/SERA.2009.43
http://dx.doi.org/10.1007/s10270-012-0288-2
http://www.oxforddictionaries.com/definition/english/system
http://www.oxforddictionaries.com/definition/english/system

Skene J, Emmerich W (2003) A model-driven approach to non-functional analysis of software

architectures. In: Proceedings of the 18th IEEE international conference on automated software

engineering, IEEE

Smith CU, Williams LG (2001) Performance solutions: a practical guide to creating responsive, scalable

software. Addison-Wesley Professional, Reading, MA

Snow A, Weckman G (2007) What are the chances an availability SLA will be violated? In: Sixth

international conference on networking, 2007. ICN’07, IEEE, pp 35–35

Sommestad T, Ekstedt M, Johnson P (2010) A probabilistic relational model for security risk analysis.

Comput Secur 29(6):659–679

Spivey JM (1992) The Z notation: a reference manual. Prentice Hall International (UK) Ltd., Englewood

Cliffs NJ

Stantchev V (2009) Performance evaluation of cloud computing offerings. In: Third international

conference on advanced engineering computing and applications in sciences, 2009. ADVCOMP ’09.

pp 187 –192. doi:10.1109/ADVCOMP.2009.36

Steinberg D, Budinsky F, Merks E, Paternostro M (2008) EMF: eclipse modeling framework. Addison-

Wesley Professional, Reading, MA

Ullberg J, Franke U, Buschle M, Johnson P (2010) A tool for interoperability analysis of enterprise

architecture models using Pi-OCL. Enterprise Interoperability IV, pp 81–90

Ullberg J, Johnson P, Buschle M (2012) A language for interoperability modeling and prediction. Comput

Ind 63(8):766–774

UML Profile for MARTE (2009) Modeling and analysis of real-time embedded systems. Object

Management Group, version 1.0

van Sinderen M, Lagerström R, Ekstedt M, Johnson P (2012) Preparing the future internet for ad-hoc

business networks support. In: Proceedingson 1st international workshop on architecture modeling

for the future internet enabled enterprise (AMFInE)

Walsh B (2004) Markov chain Monte Carlo and Gibbs sampling

622 P. Johnson et al.

123

http://dx.doi.org/10.1109/ADVCOMP.2009.36

	An architecture modeling framework for probabilistic prediction
	Abstract
	Introduction
	Contribution
	Architecture prediction
	The importance of uncertainty
	Outline

	Introduction to P2AMF
	Differences between P2AMF and UML--OCL
	An example class diagram
	An example object diagram
	Inference in the object diagram

	Expressiveness of P2AMF
	Object orientation
	First-order logic
	Arithmetics
	Set theory
	Instance-level uncertainty
	Class-level uncertainty

	A business case analyzed with P2AMF
	Other applications and examples

	Probabilistic inference
	Rejection sampling
	Metropolis-Hastings sampling
	Design
	Usage and performance

	Related work
	Conclusions
	References

