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a b s t r a c t

Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in
optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-
SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between
support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support
vectors and sensory input. Downstream temporal integration generates the classification. Instant learning
of surprising events and off-line tuning of support vector weights trains the system. Emotion-based
learning, forgetting trivia, sleep and brain oscillations are phenomena that agreewith the Bio-SVMmodel.
A mapping to the olfactory system is suggested.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Human and animal brains excel in complex classifications.
Friend or foe? Edible or poisonous? Survival depends on such
quick appraisals. How does the brain implement trainable general-
purpose classifiers that learn instantly, yet avoid overwriting
relevant lessons and match outputs to appropriate behaviours?
Instant learning is vital in an unforgiving environment. Over-

writing or diluting old but still valid experiences is dangerous. Yet
there is not enough memory or search resources for remembering
everything. Memory must be managed so that vital knowledge is
conserved while trivial experiences are discarded. Connecting the
output of plastic neural classifiers to predetermined behavioural
triggers is crucial. Predator scent detection must for example be
coupled to flight behaviour. Haberly (2001) found, however, that
biologically plausible algorithms for trainable pattern recognition
generating predetermined output codes are in short supply.
This paper introduces Bio-SVM, a biologically feasible support

vector machine that instantly learns surprising examples, forgets
trivial examples and trains an optimal generalizing classifier with
predetermined output codes. Bio-SVM is consistent with the
observed mix of fast and slow brain oscillations and maps well to
the architecture of the olfactory system.
The generic pattern recognition task is to classify a test

sample by generalizing from known classifications of training
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examples. We shall only consider binary classifications. Multi-
value classifications can readily be produced by a bank of binary
classifiers. The training set S consists of examples (x, y), where x is
a real-valued input vector and y ∈ {+1,−1} indicates the correct
classification. Bold letters signify vector quantities. The training
examples are presented in a batch ormore realistically one-by-one
in online learning.
Support vector machines (SVMs) (see Cristianini & Shawe-

Taylor, 2000; Schölkopf & Smola, 2002 for reviews) have recently
emerged as a strong alternative for any classification application.
An SVMworks by projecting input vectors x to a high-dimensional
feature space. Features φ(x) are typically non-linear functions of
the input vector. The training algorithm finds a hyperplane in fea-
ture space separating positive cases from negative caseswithmax-
imum margin. The set of feature-space hyperplanes provides the
broad hypothesis domain that is vital for solving substantial clas-
sification tasks. Enforcing maximal margins ensures a generaliza-
tion performance that is optimal in a certain well-defined sense.
The key insight of SVM pioneers Boser, Guyon, and Vapnik (1992)
is that the SVM optimization problem can be solved without ex-
plicitly constructing the feature space.
The solution to a classification problem is the set of support vec-

tors SV. Each support vector xi is drawn from the training examples
and has an associated positive real-valued weight αi. The support
vectors are borderlinemembers of the training data used for defin-
ing the partitioning feature-space hyperplane. Positive support
vectors are close to the negative domain. Negative support vectors
are similarly bordering to the positive realm. An SVM classifies test
samples x using a real-valued classification function f (x). The test
sample belongs to the negative class y = −1 if f (x) < 0 and to the
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positive class y = 1 otherwise. The classification function is

f (x) =
∑
i∈SV
yiαiK(xi, x)+ b, (1)

where b is a bias parameter. The positive definite kernel function K
defines the implicit projection to feature space. For a given pair of
input vectors xi and xj, K(xi, xj) is a measure of alignment in fea-
ture space.

2. The Bio-SVMmodel

SVMs are correctly viewed as founded on rigorousmathematics
rather than biological analogies. Solution algorithms suggest
implementation in a digital computer. There is, however, one
aspect of SVMs that stands out as similar to biological systems.
An SVM ignores typical examples but pays attention to borderline
cases and outliers. It remembers surprises and forgets run-of-the-
mill events. Life learns also from odd emotionally charged events.
We remember the support vectors. Given their mathematical
soundness, efficiency and a certain high-level similarity to
biological learning, could SVMs be implemented in the brain?
This section casts the abstract SVM concept into a form that can

be implemented by biological neural systems—the Bio-SVMmodel.
This hypothesis is then compared to the gross features of brain
pattern recognition systems.

2.1. Zero-bias ν-SVM

Wemust first find a formal SVMmodel that is malleable to neu-
ral form. The base-line is ν-SVM (Schölkopf, Smola, Williamson, &
Bartlett, 2000), a soft-margin SVM in which a dimensionless pa-
rameter 0 < ν < 1 controls the trade-off between generalization
and accuracy. Soft margin means that outlier support vectors may
violatemargins. Suchmavericks are expected in noisy training sets.
Schölkopf et al. (2000) show that ν is an upper bound on the frac-
tion of margin errors. The ν-SVM model is solved, for a set of m
training examples, by maximizing the dual objective function,

W (α) = −
1
2

m∑
i,j=1

yiyjαiαjK(xi, xj), (2)

subject to

0 ≤ αi ≤
1
m

(3)

and
m∑
i=1

αi ≥ ν. (4)

The classification function is defined by Eq. (1). The solution to
this problem is the optimal feature-space hyperplane.
We use a modified version of ν-SVM in which the bias

parameter in Eq. (1) is set to zero. This is achieved by embedding
the feature space vector φ(x) of the original problem in a
larger space {φ(x), τ }, thus increasing the dimensionality by one
(Cristianini & Shawe-Taylor, 2000). This operation corresponds to
replacing the old kernel K with a new kernel K + τ 2. Removing
the bias means less freedom for optimization and thus potentially
smaller feature space margin, leading to reduced generalization
performance (see Cristianini & Shawe-Taylor, 2000, p. 131). As
explained in Section 2.5, it is, however, an essential simplification
for mapping the model to a biological substrate.
The solution of the ν-SVM problem in Eqs. (2)–(4) is the

weight vector α. We need a solution algorithm that is suitable
for physiological modelling even if it may be suboptimal as a
serial computer algorithm. We note that in general there exists an
optimal solution in the α-space hyperplane,
m∑
i=1

αi = ν, (5)

(Chang & Lin, 2001). The strategy is to start at an arbitrary point in
the allowed domain of the α-hyperplane, e.g. by initializing all αi
to ν/m, and then follow the projection of the gradient ofW (α) in
the α-hyperplane until an optimum is found.
The gradient projection is

gradP(W ) = grad(W )− e⊥(grad(W ) · e⊥), (6)

where e⊥is the unit normal vector of the α-hyperplane and
grad(W ) = ( ∂W

∂α1
, ∂W
∂α2
, . . . , ∂W

∂αm
). The ith gradient component is

∂W
∂αi
= −yi

m∑
j=1

yjαjK(xj, xi) = −yif (xi) = −margi, (7)

where margi is the margin in feature space between the example
and the classification hyperplane. A positivemarginmeans that the
example is classified correctly. The ith component of the gradient
projection is, therefore,

gradP(W )i = 〈marg〉 −margi, (8)

where 〈marg〉 = 1
m

∑m
j=1 yjf (xj) is the average margin. Each

weight shall hence be updated in proportion to the difference
between the average margin and the margin of the associated
example. This rule strives to make the margin of each example
equal to the average margin as the hypothesis α progresses
towards the optimum. It is not always possible to reach equality.
The converged ν-SVM partitions the training examples into three
distinct sets.
Trivial examples are non-support vectors. Their weights are

driven to zero since the margin of such examples is larger than the
average margin. Note that trivial examples can be removed from
the training set once a solution has been found.
Outliers are possibly misclassified support vectors that consis-

tently fall beyond of the average margin. Their weights are pushed
to the maximum value 1/m.
Regular support vectors converge to the average margin. Their

weights fall within 0 < αi < 1/m.
Eq. (2) is quadratic with respect to α and the maximum is

sought in the α-space hyperplane defined by Eqs. (3) and (5).
This guarantees that there are no false maxima (see Chang & Lin,
2001 for a proof). It is hence easy to evaluate convergence. With
plenty of time and computational resources one can simply move
in very small steps along gradP(W ) until the maximum is found.
The challenge is to find a biological apparatus that does just this.

2.2. The Bio-SVM concept

The general architecture and key operational processes for
mapping zero-bias ν-SVM to brain systems are first outlined here
and then detailed in the following sections. The main modules of
the Bio-SVM are the Oscillating Memory (OM) for learning and
storing support vectors and the Classification Pathway (CP) for
performing classifications. The OM is the only plastic part of the
system. The overall architecture is shown in Fig. 1.
The Bio-SVM executes three processes:

(1) Classification, where sensory inputs are classified.
(2) Surprise learning, where new training examples are engraved.
A supervising unit, called the Critic, detects failed classifica-
tions and triggers the OM to remember the anomalous event.

(3) Importance learning, where trivial examples are forgotten
and support vectors get optimal weights. The OM inputs
training examples to the CP while the brain sleeps and
adjusts weights according to resulting feedback. Examples are
forgotten if weights consistently fall to zero.

Higher brain systems control which process to employ.
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Fig. 1. Bio-SVMhigh-level architecture and interfaces. A Bio-SVMclassifier (dashed
box) interacts with surrounding systems shown in gray tone. It receives sensory
inputs and outputs classifications. The Critic is an abstraction of higher brain
systems providing feedback in case of misclassifications.

Fig. 2. Details of the Classification Pathway (CP) and signal flow in the classification
process. OM is the Oscillating Memory. Sensor signal x is captured by the Trap.
The OM outputs the support vector (xi, yi). K is the kernel function and f is the
classification function according to Eq. (1).

2.3. Classification

The classification process operates when the animal is awake
and captures sensory data. We assume that the system is fully
trained so that the OM contains support vectors with appropriate
weights. The CP consists of three sub-units: the Trap, the Kernel
and the Integrator, connected as shown in Fig. 2.
Sensor signal x(t0) is captured by the Trap at time t0. Thismeans

that the Trap locks on the signal and outputs x(t0) for a time Ttrap
however the input fluctuates. The Trap acts like a sensory memory
stabilizing the input. After a time Ttrap, the Trap will reset, capture
the presently available incoming signal x(t0+ Ttrap) and repeat the
cycle.
The OM oscillates between support vector memories. It will at

any given moment output support vector (xi, yi) with probability
pi = καi, where κ is a constant and αi is the support vector
weight. The Kernel unit gets the input vector x from the Trap
and the present support vector (xi, yi) from the OM, computes
the SVM kernel and outputs yiK(xi, x) to the Integrator. This is
done continuously as the inputs change. The Integrator resets as a
new input is captured by the Trap. The system needs means, such
as a clock signal, for synchronizing the Trap and Integrator reset.
The clock frequency 1/Ttrap must be much smaller than the OM
frequency.
The Integrator estimates the zero-bias classification function

(Eq. (1)) by temporal integration over the Kernel output,

f (x) ≈ c ′
∫ t0+Ttrap

t0
yi(t)K(xi(t), x)dt, (9)
Fig. 3. Signal flow in the surprise learning process. CP is the Classification Pathway.
OM is the Oscillating Memory. Sensor signal x is captured by the Trap. The OM
outputs the support vector (xi, yi). K is the kernel function. The feedback from the
Critic provides implicitly the correct valence y of the misclassified example.

where c ′ is some positive constant and t0 is the starting time of the
integration over the holding time of the Trap. The support vector
index i(t) is a function of time since the OM oscillates between
support vector states. The time integral in Eq. (9) becomes, over
many OM oscillations, asymptotically proportional to

m∑
i=1

yipiK(xi, x) = κ
m∑
i=1

yiαiK(xi, x) = κ f (x). (10)

The Integrator estimates the SVM classification function
multiplied by an immaterial constant. The final output is sgn(f (x)),
where sgn is the sign function.

2.4. Surprise learning

There is no learning feedback for correct classifications. Faulty
classifications, however, cause admonishment from higher brain
systems represented by the Critic (see Fig. 3). Consider a binary
snake/non-snake classifier in the brain of an animal. A snake is first
thought to be a non-snake. The mistake is eventually discovered,
causing fear. The Critic sends a negative surprise signal to the
OM. The Trap is still providing a copy of the misclassified input x
to the OM. The surprise signal forces the OM into a plastic state
where a new training example (x,−1) instantly is imprinted. The
correct classification of the input is implicit in the feedback from
the Critic. Life can also provide positive surprises. The classifier
takes a branch for a snake eliciting an erroneous fear response.
Relief follows as themistake is exposed. The Critic ensures that the
OM stores themisclassified event x as a new example (x,+1)with
a positive classification. All misclassifications are here considered
to be surprises. The mapping of emotional valence to SVM valence
will differ depending on the nature of the classification.
Note that surprise learning requires no repetition of the

stimuli. Good support vector candidates are found since the
process identifies borderline cases and outliers. The system
is, however, off-balance after incorporating a surprise because
the new example has an inappropriate weight. The importance
learning process finds the newmaximumof the SVMdual objective
function where fresh examples as well as previous support vectors
get proper weights. Before describing the importance learning
process we need a more comprehensive model of the OM.

2.5. The oscillating memory

The base-line for the OM is the Hopfield associative memory
(Hopfield, 1982; see Hertz, Krogh, & Palmer, 1991 for a review).
The Hopfield memory consists of artificial binary-state neurons.
The output of each node depends on inputs from all the other
nodes. The Hopfield model can learn a new memory instantly
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and therefore supports surprise learning, given that the training
examples are appropriately coded to a binary format.
Hopfield networks have spurious attractors, including combi-

nations of the intendedmemories and spin glass states. It has been
found that under certain favourable combinations of noise and
memory load only regular memories persist. Hopfield models can
also be augmented to suppress mirror states where all the bits of
the regularmemory states have been flipped.We assume here that
only regular memories are activated in the OM.
Hopfield networks relax into one of the memory patterns.

A node that fires in the selected state will just keep firing.
Biological associative memories can have a much richer variety of
dynamic behaviour including spontaneous oscillations. Exhaustion
of vigorously firing neurons that are characteristic of one memory
pattern may for example cause the associative memory to switch
to a different pattern. This could cause a perpetual oscillation.
Chaotic itinerancy (Ikeda, Matsumoto, & Otsuka, 1989; Kaneko,

1990; Tsuda, 1992; see Kaneko & Tsuda, 2003 for a review),
where a chaotic dynamic system orbits between a set of quasi-
attractors, offers a framework for a deeper understanding of
spontaneous switching between memory states. Tsuda (1996)
investigated chaotic itinerancy in artificial neural networks.
Chaotic itinerancy has been applied to perception and episodic
memory in the brain (Tsuda, 2001). Chaotic switching in brain
systems is also discussed for example by Kozma and Freeman
(2001) and Kay, Lancaster, and Freeman (1996). Spontaneous
stochastic switching between attractor states is just one facet of the
rich phenomenology of chaotic itinerancy. Simulations in several
different types of artificial neural networks confirm the ubiquity
of such stochastic switching. Pantic’, Torres, Kappen, and Gielen
(2002) studied models of associative memories with depressible
synapses and found a phase with fast oscillations between stored
memories. Horn and Usher (1989) showed that fatigue in the
artificial neuron’s threshold function causes a similar behaviour.
Liljenström (2003) describes a dynamical model of self-organized
cortical oscillations.
As a simplified model of stochastic switching we assert that

eachmemory state has an endurance time Ti. Once a givenmemory
pattern is triggered it will remain active for the duration of Ti and
then spontaneously deactivate. The OM then becomes unstable
and relaxes to a newmemory pattern. Sparsely populated Hopfield
networks have attractors with equally large basins of attraction.
The system is influenced by external and internal stochastic
processes that can be modelled as thermal fluctuations. In the
context of our simple model it is hence reasonable to assume
that the new state is randomly selected with an equal probability
distribution. The probability of finding the OM in memory state i
during a given oscillation cycle is, hence,

p′i =
1
m
. (11)

The probability of finding the OM in memory state i at a given
time is

pi =
Ti
Ttot

, (12)

where Ttot is the sum of the endurance times of all memory
patterns.We further postulate that there is amaximum endurance
time Tmax and that the OM operates in a domain where mTmax >
Ttot so that all states cannot have maximum endurance.
The present high-level OM model is expressed in terms

of memory patterns rather than neurons. It would be best
matched by a sparsely populated Hopfield memory where active
cells are involved in only one memory pattern. More realistic
representations should involve overlapping populations where
the same neuron fires in several memory patterns. It remains to
Fig. 4. Signal flow in the importance learning process. CP is the Classification
Pathway. OM is the Oscillating Memory. The OM output (xj, yj) is captured and
held by the Trap. The Kernel merges the trapped (xj, yj) and the present (xi, yi)
OMmemory and provides the learning feedback Bij to the OM (see Eq. (16)).

demonstrate that such detailedmodels produce approximately the
same behaviour as our simple model.
We now show that dimensionless auxiliary variables αi, related

to endurance time according to

Ti = mαiTmax, (13)

take on the role of the SVMweights. Eq. (3) is fulfilled by definition.
Eqs. (12) and (13) imply that

pi = mαi
Tmax
Ttot

. (14)

Hence pi = καi, as assumed in the classification process.
The OM model locks the SVM weights to the

∑m
i=1 αi = ν

hyperplane, since
∑m
i=1 pi = 1 entails

m∑
i=1

αi =
Ttot
mTmax

= ν. (15)

We note that 0 < ν < 1, as required by the ν-SVMmodel.
At this point we can reconsider the reason for dropping the

bias parameter b in Eq. (1). This parameter gives rise to a third
constraint

∑m
i=1 αiyi = 0 in the optimization problem that is

defined by Eqs. (2), (3) and (5) (Schölkopf et al., 2000). While the
constraints (3) and (5), as we have seen, are natural consequences
of the endurance time model, it is difficult to accommodate the
third constraint where strength and valence of memory states are
combined.

2.6. Importance learning

The importance learning process implements zero-bias ν-SVM
gradient search. This section will explain how the SVM weights
slowly move towards the optimum of the dual objective function
(Eq. (2)) while the brain sleeps. External senses and the Critic are
turned off. TheOMoscillates and is in a slightly plastic phasewhere
memory endurance is tuned.
The Trap locks on inputs from the OM since dominant external

inputs are absent in a sleeping state (see Fig. 4). The OM sends
the example corresponding to its present state to the Trap. The
Trap locks and reproduces the example for the duration of the
holding time Ttrap. At the end of the holding time, the Trap becomes
unstable again and locks on the pattern that presently is provided
by the OM. The effect is that the Trap randomly outputs support
vectors with probability distribution pj = καj. The Trap hence
oscillates at a rate 1/Ttrap which is assumed to be much lower than
the OM oscillation frequency.
Consider an OM oscillation in which the example with index

i is the active memory and the example with index j is locked in
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the Trap. The Kernel receives (xj, yj) from the Trap and the present
oscillation state (xi, yi) from the OM. It outputs
Bij = yiyjK(xi, xj) (16)

to the OM. Note that this is almost identical to the signal yiK(xi, xj)
from the Kernel to the Integrator. The sleeping brain ignores the
Integrator output.
The OM has a plastic phase in each oscillation where memories

can be reinforced or weakened according to the following:
(1) Depress the present memory pattern in proportion to Bij.
(2) Potentiate all memory patterns in proportion to Bij/m.

Note that Bij is signed. In terms of the endurance timemodel we
get for 0 < Ti < Tmax,

Ti ← Ti − ηTtotBij, (17)

∀k : Tk ← Tk + ηTtot
Bij
m
, (18)

where η is a dimensionless learning rate. This should be
understood as a physical process proceeding in infinitesimal steps
while conforming to the constraints 0 ≤ Ti ≤ Tmax. Note that
Ttot , and hence ν is conserved under the transformations (17) and
(18). The corresponding update rules for SVMweights follow from
Eq. (13).
The average net result ofm OM cycles on a weight αi < 1/m is

αi ← αi +
mη
κ

(
1
m

m∑
k,j=1

p′kpjBkj − pi
m∑
j=1

pjBij

)
. (19)

Using Eqs. (11) and (12), the symmetry of the kernel and
κ−1

∑m
j=1 pjBij = yif (xi) = margi, we find that Eq. (19) evaluates

to

αi ← αi + η(〈marg〉 −margi), (20)

which is identical to the component-wise gradient search rule in
Eq. (8). The Bio-SVM model solves the zero-bias ν-SVM problem
with a stochastic version of gradient search. Statistical fluctuations
away from the true gradient are not a problem since there are
no false optima, the SVM weight constraints are automatically
enforced, and the optimum can be reached from any point in the
α-hyperplane.
The update rules take slightly different forms if some of the

SVM weights are locked to the minimum or maximum value. It
can be shown that the Bio-SVM update rules again correspond to
zero-bias ν-SVM gradient ascent in such special cases. Asymptotic
convergence of the gradient search process is ensured for a
sufficiently small learning rate. Serviceable implementations must
use learning rates that are small enough to avoid overshooting but
yet give adequately fast convergence. Biological systems would
have to tune the learning rate by genetic or individual trial
and error. Importance learning has, in numerical experiments,
been compared with optimal solutions. Convergence to useful
approximate solutions is always found although the margin of
regular support vectors, due to the probabilistic nature of the
algorithm, varies asymptotically in an interval centred on the
optimal margin. The mean deviations are typically less than 5% of
the optimal margin.
The OM implements garbage collection of persistently inactive

memory states where the corresponding endurance times consis-
tently are suppressed to zero. Such stateswill eventually decay and
be forgotten. This means that a steady-state OM only contains sup-
port vectors. Experiments with SVMs that forget trivial examples
show that the resulting classifiers are efficient and robust. This is a
special case of the well-known memory-saving ‘‘chunking’’ meth-
ods in the SVM toolkit (Schölkopf & Smola, 2002). New examples,
introduced by the surprise learning process, can be initiated to a
default endurance time by setting a large initial learning rate in
Eqs. (17) and (18).
3. Discussion

In the description of the Bio-SVM model we have glossed over
many important aspects of biological systems. Much of the huge
complexity of perception, pattern recognition and memory in the
brain has deliberately been ignored for the purpose of making the
introduction of the Bio-SVM model more transparent. It is now
time to catch up with some of these issues.
The Bio-SVM model is suggested as a mechanism for one-shot

low-level trainable pattern recognition in the brain. It could, for
example, model the ability of a rabbit to recognize the scent of a
grey fox after one single exposure. Humans and animals, however,
have many intertwined memory systems, probably including
several different systems for hard-wired and trainable pattern
recognition, several types of short-term memory and also long-
term episodic and declarative memory. In describing the Bio-SVM
model we have emphasised how animals are prone to remember
emotionally charged exceptional events (support vectors) and
forget successful classifications. Note, however, that the total
memory system of humans and advanced animals certainly also
provides means to remember typical examples and events of no
apparent importance.
The present model appears to be consistent with the gross

pattern of observed oscillations in the brain, in particular high-
frequency cortical oscillations combined with the low-frequency
olfactory ‘‘sniff cycle’’. There are, however, many oscillatory
phenomena of the brain and there is presently no evidence that
any observed oscillation actually is caused by Bio-SVM pattern
recognition.
It should also be understood that it is unlikely that the brain im-

plements any algorithm exactly as envisaged in convenient math-
ematical formulas or computer simulations. Temporal summation
in biological neurons is, for example, not a clean linear temporal
integration but is inherently non-linear and limited in range. The
present speculation can only be confirmed by the interplay of ex-
perimental observations and increasingly realistic modelling.
The convergence time of the temporal integration in Eq. (9)

is an Achilles’ heel of the model since a good classification must
be delivered within a reasonable time to be of any use for the
animal. Convergence times depend strongly on problem details,
the number of support vectors and the margin of the solution.
Numerical experiments are shown in Fig. 5. Quick assessments
require, in general, a small number of support vectors.
We have focused on how neural systems could optimize

classification accuracy by finding the maximum of the SVM
dual objective function Eq. (2). Real-world performance depends,
however, on robust joint optimization of time, resources and
accuracy. Fig. 5 demonstrates how Bio-SVM temporal integration
early delivers coarse results that successively become more
accurate. Higher-order systems can therefore be flexible about
when to act on the emerging classification.
The types of components and functions that are needed for

building a Bio-SVM classifier appear to be available in nature.
The Trap is essentially sensory memory (Baddeley, 1999). Neural
assemblies can implement non-linear multi-input functions that
may serve as kernels. An SVM works with a wide range of kernels.
Ensuring a positive definite kernel is the main challenge. Bio-
SVM requires temporal integration in Eq. (9). Biological neurons
provide a similar function through the mechanism of temporal
summation (Johnston & Wu, 1995). The OM is an oscillating
associative memory. The biological plausibility of associative
memories is explained inHaberly (2001). The oscillating behaviour
is a speculation grounded in the concept of chaotic itinerancy
(Ikeda et al., 1989; Kaneko, 1990; Kaneko & Tsuda, 2003; Tsuda,
1992) and supported by computational experiments (Horn &
Usher, 1989; Liljenström, 2003; Pantic’ et al., 2002). The underlying



612 M. Jändel / Neural Networks 23 (2010) 607–613
Fig. 5. Examples of Bio-SVM classification convergence. A Bio-SVM classifier is
trained to recognize a chessboard pattern using ν = 0.5 and a Gaussian kernel. The
Bio-SVM error probability versus integration time is shown. The error probability is
the probability that the Bio-SVM classification, computed by temporal integration
(Eq. (9)), differs from the standard SVM classification according to Eq. (1). The error
probability is estimated by averaging over 100000 random test samples. Time is
measured in units of OM oscillations because convergence depends on how many
OM oscillations are included in Eq. (9). The convergence time increases in general
with the number of support vectors in the solution but depends also on specific
support vector positions and weights. A support vector’s contribution to Eq. (9)
depends on theweight and the distance to the test sample. The curve for 20 support
vectors is, for example, below the curve for 16 support vectors because the former
solution includes a smaller set of high-weight support vectors that dominate in Eq.
(9).

neural mechanism of the endurance time model could be synaptic
depression (Johnston & Wu, 1995), for example, according to the
vesicle depletion model (Abbott, Varela, Sen, & Nelson, 1997;
Tsodyks & Markham, 1997).
An advantage of Bio-SVM is that learning modifies only the OM

and not feed-forward sensory data pathways. Bio-SVM learning
will hence not interfere with other processes using the same
perceptual pathways. Learning new support vectors will not
weaken skills that depend on old support vectors since SVM
weights are continuously adapted in the importance learning
process.
The Bio-SVM architecture is robust against many of the un-

avoidable haphazard changes in a living neural system. Associa-
tive memories are stable against minor damage to neurons and
synapses. Some modifications of the classification pathway can be
absorbed as tweaking of the kernel function. The recurrent training
of the SVM weights compensates for such changes.
Support vectors arememories of significant percepts. Each sup-

port vector was once imprinted in memory because it was sur-
prising and hence had emotional impact. Support vectors remain
in memory since they collectively define classification boundaries.
Higher-order brain systems could hence reason about the state of
SVM-based classifiers. SVMs would be useful components of mod-
ular semantic systems.
Bio-SVM associative memory oscillations could be turned on

and off as higher brain systems switch attention between different
contexts. A possiblemechanism for this is to append a context code
to input vectors stored in the OM. Presenting the context code as a
partial memory makes the OM fluctuate between support vectors
carrying the context code.
SVMs are pattern recognizers with a soundmathematical foun-

dation and an impressive track record of successful applications.
Bio-SVM is an SVM architecture based on biologically inspired
components. To find if such systems actually exist in brains one
should look for a low-frequency oscillating sensory memory and
a high-frequency associative memory that keeps oscillating rather
than stabilizing in a recognized pattern. A non-linear kernel and a
temporal integrator should be found in the feed-forward sensory
pathway.
The olfactory system discriminates between many different

molecular stimuli and hence includes many classifiers. Fig. 6
Fig. 6. Bio-SVM mapping to the olfactory system. One of many olfactory kernel
machines is outlined. Solid ovals stand for known brain parts. Higher-order brain
systems (HOBS) are management functions in the cortex and the limbic system.
OB is the olfactory bulb. AOC is the anterior olfactory cortex. APC and PPC are
the anterior and posterior piriform cortex, respectively. Dashed boxes indicate
hypothetical components of a Bio-SVM system. The Trap is a register for input data
in the AOC. OM is an oscillating associative memory in the APC. The Kernel and
the Integrator are the core classification logic in the PPC. Solid lines are known
neural projections. Dot–dashed lines are hypothetical connections. Broad driving
connections carrying current or recalled sensory data are D1, D2, D3, D4 and D5.
Narrow modulatory projections are M1, M2 and M3. Afferents (D1) carry pre-
processed odor data from the OB to the AOC Trap. Trapped inputs are forwarded
to the Kernel (D2) and to the OM (D3). The OM projects support vectors both to the
Kernel (D4) and to the Trap (D5). The Integrator sends classification results (M1)
to HOBS. HOBS triggers learning of misclassified examples (M2). The Kernel sends
learning feedback (M3) to the OM. Anatomical facts are highly simplified but follow
reviews in Haberly (1998, 2001). Known anatomical projections that are unused in
the mapping are hidden. The feedback from the piriform cortex to the OB is, for
example, not shown in the figure.

suggests a speculative mapping of the Bio-SVM to the olfactory
architecture. The anterior piriform cortex (APC) resembles an
associative memory (Haberly, 2001). The fast oscillations of the
APC are not specific to the input (Haberly, 1998). The 4–8 Hz
theta oscillation is connected to odor input capture (Macrides,
Eichenbaum, & Forbes, 1982) while fast 40–50 Hz oscillations
are related to the piriform cortex (Haberly, 1998). The anterior
olfactory cortex (AOC) forwards processed sensory inputs to the
piriform cortex (Haberly, 1998). Backprojections from the APC
allow associatively recalled memories from the APC to be copied
to the AOC so that ‘‘. . . a facsimile of the odor-evoked firing pattern
. . . ’’ is recreated (Haberly, 2001). The posterior piriform cortex is
mainly a feed-forward network and is hence suited for hosting
the Kernel and the Integrator. This mapping is certainly crude
and tentative but suggests that the gross anatomical facts of the
olfactory systemare not inconsistentwith the Bio-SVMhypothesis.
An alternative hypothesis would be to map the CP to the

olfactory bulb while the OM remains in the piriform cortex.
The glomeruli in the bulb would then take the role of the Bio-
SVM Trap and mitral and tufted cells together with granule cells
would implement the Kernel and Integrator functions. Backward
projections from the piriform cortex to the granule layer would, in
this model, carry support vector data from the OM to the Kernel.
Projections to the glomeruli accounting for inputs from the OM to
the Trap, however, appear to be missing.
Can we conclude anything about the functional form of

the presumed neural SVM kernel? The Bio-SVM model inher-
its the prerequisite that the kernel must be positive definite
from the base-line ν-SVM model but is otherwise agnostic with
respect to the form of the kernel. Many different kernels are
used for pattern recognition, including polynomial, (x · x′)n;
inhomogeneous polynomial, (x · x′ + c)n; Gaussian,
exp(−‖x − x′‖2/2σ 2) and sigmoid, tanh(ω(x · x′) + θ), ω > 0,
θ ≥ 0. Computational experiments show that pattern recognition
performance often is quite insensitive to the precise form of the
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kernel (Schölkopf, Burges, & Vapnik, 1995). The Gaussian kernel
used in the experiments of Fig. 5 can for example be replaced with
several different inhomogeneous polynomial kernels without any
significant variation in learning or recognition performance. Even
kernels that violate the condition of positive definiteness some-
times work well in practise (Ong, Mary, Canu, & Smola, 2004). A
specific functional form of the Bio-SVM kernel is hence not part of
the generic model.
There is little basis for speculation on specific kernels for

olfactory pattern recognition. The kernel must adapt to the format
of odor signals reaching the piriform cortex. Presently there
remains much to learn about the neural code. There are, however,
good reasons to believe that neural systems would be able to
develop effective kernel functions. Feed-forward artificial neural
networkswith at least one layer of hiddenneurons can, under quite
unrestrictive conditions, approximate any continuousmultivariate
function with arbitrary accuracy (Cybenko, 1989). Gaussian radial
basis functions can for example be constructed by a hidden layer
computing (xi − x′ i)2 components followed by an output neuron
performing the exponential of the weighted and summed outputs
from the hidden layer.
The present tentative mapping of the Bio-SVMmodel to the ol-

factory system shows intriguing correspondences. Note, however,
that there is a comprehensive literature on computational models
of olfaction with many alternative models (see Cleland and Linster
(2005) for a review) including those where much of the informa-
tion processing is in the olfactory bulb (see e.g. Freeman (1975);
Skarda and Freeman (1987)). Odor recognition with an associative
memory for oscillating patterns in the piriform cortex and encod-
ing of inputs in the olfactory bulb was modelled by Li and Hertz
(2000).
Neural classifiers can gradually develop the Bio-SVM architec-

ture along an evolutionary path where each phase has increased
utility. A hard-wired non-linear classification pathway comes first.
Sensory memory stabilizes the output. Associative memory, con-
necting to the classification pathway, adds flexibility for handling
exceptions. Memory oscillations and downstream temporal sum-
mation provide a crudemechanism for averaging over the relevant
exceptional states. Evolution discovers Bio-SVM by gradually tun-
ing this machinery.
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