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Abstract

The Swedish Defence Research Agency (FOI) has developed a concept demonstrator called the Information Fusion Demonstrator
2003 (IFD03) for demonstrating information fusion methodology suitable for a future Network Based Defense (NBD) C4ISR system.
The focus of the demonstrator is on real-time tactical intelligence processing at the division level in a ground warfare scenario.

The demonstrator integrates novel force aggregation, particle filtering, and sensor allocation methods to create, dynamically update,
and maintain components of a tactical situation picture. This is achieved by fusing physically modelled and numerically simulated sensor
reports from several different sensor types with realistic a priori information sampled from both a high-resolution terrain model and an
enemy organizational and behavioral model. This represents a key step toward the goal of creating in real time a dynamic, high fidelity
representation of a moving battalion-sized organization, based on sensor data as well as a priori intelligence and terrain information,
employing fusion, tracking, aggregation, and resource allocation methods all built on well-founded theories of uncertainty.

The motives behind this project, the fusion methods developed for the system, as well as its scenario model and simulator architecture
are described. The main services of the demonstrator are discussed and early experience from using the system is shared.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In defense applications, information fusion processes
exploit a dynamic target situation picture produced by
multi-sensor fusion, combining its information with rele-
vant a priori information, in order to refine and interpret
a battlespace situation picture. Ultimately, this semi-auto-
1566-2535/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.inffus.2005.11.002

q A short version of this study was presented at the Seventh Interna-
tional Conference on Information Fusion (FUSION 2004) in Stockholm,
Sweden [1].
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matic intelligence interpretation process aims at delivering
a comprehensive picture of the opponents’ options and,
based on an evaluation of these options, suggest their likely
intentions.

Along these lines, the Swedish Defence Research Agency
(FOI) has developed a concept demonstrator called the
Information Fusion Demonstrator 2003 (IFD03) for dem-
onstrating in a tactical level ground warfare scenario, infor-
mation fusion methodology expected to be suitable for use
at the division or brigade level in a future Network-Based
Defense (NBD) C4ISR system. Drawing upon progress
reports presented in several conference papers [1–4], this
article presents principles, methods, architecture, and
conclusions from the development and early evaluation of
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IFD03. We claim, and argue below, that our work represents
a novel approach to providing an integrated simulation
model of a complex system consisting of a battalion-sized
moving ground force multi-target, being observed by a
partly autonomous, partly controllable networked multi-
sensor surveillance system and interpreted using informa-
tion fusion. On the other hand, several other approaches
to achieving improved situation awareness have been pro-
posed and explored in the literature. Such related work is
discussed in Section 5.

As detailed in this paper, IFD03 integrates methods
related to different fusion ‘‘levels’’ [5], specifically multi-sen-

sor–multi-target tracking, force aggregation, and reactive

multi-sensor management. The information fusion method-
ology integrated into IFD03 rests on a few basic principles,
i.e., cooperation between methods on fusion levels 1, 2, and
4, together with a tight coupling between a qualified syn-
thetic environment and models of sensor behavior, target
force behavior, and communication. It is based on Demp-
ster–Shafer clustering and template matching [6–8], particle
filtering [9,10], and finite set statistics [11].

In 2003, our project completed the development of
IFD03 and performed a demonstration for an invited audi-
ence of tactical intelligence, C2 methodology, and informa-
tion technology specialists.1 The demonstration was based
on a simple battalion-level ground force attack scenario
(Section 1.4), originally formulated by the Swedish Armed
Forces for studies in network-based defense.

1.1. Project background and rationale

On behalf of the Swedish Government, in 1998 the US-
based defense consultancy company SAIC carried out a
network-based defense architecture study entitled Domi-

nant Battlespace Awareness for the Swedish Armed Forces

2020. The methodology of the study was based largely on
scenario simulation. The most demanding, dimensioning
scenario used was an attack on Swedish military forces
by a division-sized ground force, supported by air and
sea operations. An issue identified during the study as crit-
ically important was the need for a capability of the archi-
tecture to provide real-time information fusion while an
intense flow of sensor and intelligence reports is being gen-
erated and communicated across the high-capacity net-
work to the command posts. In the absence of purposeful
information fusion, the anticipated information flow was
perceived to become unmanageable. Thus the need for a
focused research effort in information fusion was recog-
nized by the Swedish Armed Forces.

The NATO Data Fusion Demonstrator (DFS) project,
briefly discussed in [12] was at the time the best known of
the few projects discussed in the open literature and in
important ways represented the state-of-the-art. However,
1 A simplified version of the demonstration is available at http://
www.foi.se/fusion/avi/IFD03_demo.avi.
in relation to our requirements its architecture and meth-
odology had severe shortcomings, see Section 1.2.

Preliminary studies of new methods of force aggregation
based on Dempster–Shafer clustering and a literature sur-
vey of multi-sensor resource management were performed
and reported by members of our group [13,14]. A lack of
mathematically principled methods for multi-sensor,
multi-target tracking of objects (usually vehicles) moving
in terrain or other poorly characterized neighborhoods
was already recognized in the information fusion commu-
nity [15,16]. In this area, recent research progress in ran-
dom set and particle filter methods seemed to us likely to
yield useful results [11,16,17].

Partly based on insights gained in these studies, a
research and development project was initiated at FOI
whose task was to create, demonstrate and evaluate a
‘‘test-bed’’ to support development, demonstration, analy-
sis, and evaluation of methods for fusing of surveillance
and intelligence information and for coordination of sur-
veillance resources.

The preliminary studies also showed that in order to
build an information fusion test-bed or demonstrator, a
number of stringent technical requirements had to be met
by the simulation environment embedding the target, sen-
sor, and fusion models. Key among these were [2,3]:

• a simulation platform tightly coupled to the ‘‘fusion
engine’’, enabling the representation of closed-loop
management of sensor resources,

• terrain modelling functionality capable of representing a
large geographical area in high spatial resolution and
three dimensions, as well as of performing state-of-the-
art line-of-sight and trafficability calculations in partly
covered terrain,

• a simulation engine capable of efficiently representing
and dynamically managing a battalion-sized moving
ground force, as well as several sensor platforms
concurrently,

• tools for scenario definition usable by non-
programmers.

1.2. Critical issues

Kent [12] provides a critical review of information
fusion as a technology for commanders of land-based mil-
itary operations, while noting that there has been relatively
little open research in this area, an observation which is still
largely valid. In particular, it cites experience from the
NATO Data Fusion Demonstrator (DFS) project, finished
in 1998, which among other things concluded that future
research should consider from the outset information dis-
play methods and information manipulation by humans.
On the other hand, NATO DFS did produce some critical
intelligence information more accurately and timely than
the conventional manual process. The paper’s general
assessment is, however, that ‘‘fusion research has failed
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to produce systems that can support the needs of the com-
manders of land-based military operations, especially those
that involve operations other than war’’.

Other researchers, including Lorenz and Biermann [18]
and Lambert [19], make similar remarks based on first-
hand experience with prototype or demonstrator systems
while emphasizing the fact that after the end of the cold
war, in most western countries the focus of interest has
shifted from large-scale ‘‘symmetric’’ military battles to
asymmetric peace-keeping and peace-enforcement coalition
operations. Lorenz and Biermann [18] claim that in today’s
conflicts, ‘‘the major problem [in meeting this] new chal-
lenge is the lack of ad-hoc availability of necessary back-
ground knowledge for automated analysis tasks. [. . .] We
are forced to match every change according to a collection
of standard patterns and develop a catalogue of recurring
changes to patterns.’’

Since NATO DFS was not intended as a fieldable sys-
tem but only as a demonstrator, we believe that this criti-
cism is somewhat premature; time was not then, and is
still not ripe for a fully mature system for tactical informa-
tion fusion to be built, in particular not one suitable for
operations other than war. As indicated in Section 1.1,
however, in relation to our requirements the methodology
and architecture of NATO DFS had other severe
shortcomings:

• its fusion and aggregation methods were not based on
mathematical, nor even quantitative, theories of
uncertainty,

• as a consequence, it was impossible to provide mathe-
matical estimates of the credibility of the system’s con-
clusions, e.g., with regard to report association and
force aggregation,

• it did not provide any theoretically well-founded method
for multi-target tracking of mobile vehicles in terrain,

• since it lacked capability to track and predict the posi-
tion of adversary targets, it could not be used for mod-
elling closed-loop automated management of the multi-
sensor resource,

• its simulation and terrain-modelling architecture was
unable to support the required integrated, high-fidelity
representation of the intelligent multi-target, multi-sen-
sor, terrain-interacting, communicating, mobile system
to be modelled.

In the remainder of this paper, the techniques developed
for IFD03 to resolve these issues are discussed.

1.3. Conceptual overview

In general terms, the scenario simulation in IFD03
describes the stochastic interaction between an observation
system, a complex target system, in this case a hierarchi-
cally organized adversary unit, and a complex environ-
ment. Our long-term objective has been to create a
dynamic, high fidelity representation of the behavior of a
moving battalion-sized organization, based on sensor data
as well as a priori intelligence and terrain information.
Such a model would allow accurate short-term predictions
to be made of adversary movement, tactical disposition
and capability, providing an opportunity for computer-
supported real-time tactical planning of countermeasures.

Surveillance information from the observation system is
generated during the simulation by a set of sensor models.
The sensors deliver reports more or less continuously to a
fusion node, symbolizing a future division-level intelligence
staff. In the fusion node information is fused, interpreted
and fed back to sensors as control messages in simulated
real time. The fusion node uses the sensor information as
input to aggregation, tracking, and reactive sensor manage-
ment processes (see Section 2).

The fusion node communicates with the reconnaissance
resources of the observation system, i.e., a civilian, tempo-
rarily connected roadside video camera, Home Guard sol-
diers using advanced position-measuring binoculars,
ground sensor networks detecting and classifying moving
vehicles, and surveillance UAVs remotely controlled by
the fusion node and carrying video or IR cameras. Com-
munications intelligence (COMINT) surveillance units are
also available. The UAVs normally fly along predeter-
mined routes, while being capable of immediately obeying
control messages from the fusion node, such as to switch to
a different route or to deploy a ground sensor network.

The target system consists of ‘‘red’’ (adversary) forces of
battalion strength, with several mechanized and armored
subunits. These units move largely according to doctrinal
rules on or near roads. Their speed and movement pattern
is influenced by road and terrain trafficability according to
unit and vehicle type.

1.4. Scenario

The scenario takes place in May 2015. Tension in the
Baltic Sea area has grown gradually over several years.
At the outbreak of the war, a ‘‘trojan horse’’ landing at
the Kapellskär ferry harbor, 90 km north-east of Stock-
holm, is judged to constitute the greatest threat.

The only intelligence sources available at the time of the
landing are four Home Guard patrols deployed at strategic
points along the enemy advance routes, Fig. 1. The battal-
ion’s UAV group is ordered to immediately deploy two
UAVs for reconnaissance.

Forty-five minutes later, the two UAVs directed to Råd-
mansö have contributed to creating a fairly detailed situa-
tion picture. The chief intelligence officer is now able to
state that the adversary force consists of a mechanized bat-
talion reinforced by antiaircraft and mortar units, advanc-
ing along two roads towards the town of Norrtälje.

The final phase of the scenario involves the continued
adversary march towards the tactically critical lake passes
south-west of the town. As sensor platforms become fewer
and eventually only a single UAV remains, that resource
needs to be intelligently utilized to estimate which routes



Fig. 1. Information collection situation at 17.00. Four Home Guard (HV)
patrols are located at critical points along the adversary’s approach route.
A bridge is located at O.
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the adversary units are likely to take, and when they will
reach the lake passes. Hence, the automatic sensor resource
manager of the fusion node is tasked to find the best route
for the UAV and to decide where to drop its deployable
ground sensor network.

1.5. Use cases

The major use cases [20] we had in mind when creating
the system were:

• performing demonstrations addressing a possibly
‘‘information-fusion-naive’’ audience. This is communi-
cation, not research, but could be developed into a
methodology to present, visualize, and later analyze in
detail properties of new components and subsystems,

• performing studies and experiments with sensor models,
terrain and other environment models, fusion methods,
doctrine models, scenario assumptions, etc., in various
combinations, to test different hypotheses about possi-
bilities and limitations related to NBD and information
fusion,

• developing methodology and models for information
fusion, i.e., specification, development, and testing of
new methods and fusion concepts.

1.6. Development tools

Whereas previous information fusion projects at FOI
have focused on method and algorithm development for
various specific problems, in particular clustering, aggrega-
tion, and classification of force units [13] and sensor man-
agement [14], it was realized from the start of the IFD03
project [2] that its functionality requirements would compel
us to devote significant resources to acquire and develop a
set of new and complex system development tools. Thus,
the development tools used in the project were chosen to
support substantial reuse [21], including evolutionary
extension and rewriting [22], both of software models and
algorithms and of simulation scenario scripts.

Consequently, the demonstrator implementation is built
on top of three comprehensive commercial development
environments, the problem solving environment (for an in-
depth study of this concept, see [23]) MATLABTM [24], the
simulation framework FLAMESTM [25], and the terrain mod-

elling system TerraVistaTM Pro Builder [26]. In the project,
FLAMES and MATLAB were tightly integrated, and
FLAMES’ new handling of advanced terrain models, gener-
ated by TerraVista, was specified and at least partly
financed. Finally, the FLAMES software for visualization
of simulation results using the new terrain modelling fea-
ture was restructured and both functionally and computa-
tionally substantially improved.

1.7. Structure of paper

Section 2 reviews the fusion methods used in the demon-
strator. These are Dempster–Shafer clustering and Demp-
ster–Shafer template matching for force aggregation
(Section 2.1), probability hypothesis density (PHD) particle
filtering for ground vehicle tracking (Section 2.2), and ran-
dom set simulation for sensor allocation (Section 2.3).

In Section 3 the software architecture of the IFD03 sys-
tem is presented. Section 3.1 introduces the main object
categories and their roles in the simulation. Principles
and design requirements of object and doctrine models
are surveyed in Section 3.2. In Section 3.3, a viewer’s per-
spective of the demonstration is first introduced, then in
Section 3.3.1, the organization of the visualization module
in IFD03 is described. Modeling techniques used in creating
the environment model of the demonstrator are discussed
in Section 3.4.

Section 4 describes a set of qualitative analyses of IFD03
output carried out to evaluate the performance of its fusion
methods. Section 5 provides a comparison with other pub-
lished approaches to building information fusion demon-
strator and prototype systems. Section 6 concludes the
paper.

2. Fusion methods

The analysis module has three main tasks and uses four
different methods. The tasks are force aggregation, ground
vehicle tracking and sensor allocation. They are performed
using Dempster–Shafer clustering and template matching
for force aggregation, probability hypothesis density
(PHD) particle filtering for ground vehicle tracking, and
random set simulation for sensor allocation.

2.1. Force aggregation

In force aggregation, sensor reports with given position,
time, and type information are used. Here, force aggrega-
tion is defined as a sequence of two processes: (1) association



Fig. 3. Force aggregation of platoons into companies.
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of intelligence reports, objects or units (depending on hierar-
chical level) by a clustering process; (2) classification of clus-
ter content through comparison with templates.

Initially, all pairs of intelligence reports are evaluated, to
find whatever is against an association of these two reports
to the same object: Wrong type of vehicle? (note that type
assignments are allowed to be more or less specific) Is dis-
tance too long or too short? Wrong direction? Wrong rela-
tive positions? etc. This yields a conflict matrix which is
supplied to the clustering algorithm. We use the Demp-
ster–Shafer clustering algorithm [27,28,7,8] to partition
the set of reports into subsets corresponding to objects,
and classify the objects by fusing all intelligence using
Dempster’s rule. This method continues upwards level by
level. At the vehicle to platoon level, vehicles are clustered
and groups of vehicles are classified using Dempster–Shafer
matching against templates [6]. At all levels in clustering
and template matching several alternative hypotheses are
carried. Each alternative hypothesis is matched and evalu-
ated against all templates and a weighted average of fitness
is calculated for each potential template.

Screen pictures from the demonstrator showing the
result of automated force aggregation at the platoon and
company levels are shown in Figs. 2 and 3. A few other
approaches to force aggregation are [29,18,30].

2.1.1. Conflict matrix

There is one conflict matrix for each aggregation level.
The conflict matrix element cij contains the conflict between
the entities i and j. The matrix is symmetric and contains
zeros on the diagonal.

When computing the conflict matrix for the reports, the
conflict between two reports is based on their vehicle type,
on how fast a vehicle must travel in order to cause the two
reports and on how much their directions differ. When
computing the conflict matrix for vehicles and units, the
conflicts are based on doctrine data that specify how far
apart the objects appear within their unit.
Fig. 2. Force aggregation of vehicles into platoons.
All entities—reports, vehicles and units—contain a clas-
sification of types, TY. However, the classification is uncer-
tain, so we can only give probabilities for sets of types,
representing the varying specificity of type assignments in
the reports. The basic belief mass supporting that an entity
is of type A 2 TY is denoted m(A). All basic belief func-
tions in IFD03 are consonant, i.e., the focal elements of
the belief functions can be ordered by set inclusion, ensur-
ing that their type conflicts are well-defined.

Conflict matrix for reports. The value c of an element in the
conflict matrix is computed from the type conflict ct, the
speed conflict cs and the direction conflict cd.

c ¼ 1� ð1� ctÞð1� csÞð1� cdÞ ð1Þ
The type conflict between the entities ei and ej is given by

Dempster’s rule of combination [31,32]:

ct
ij ¼

X
A2ei ;B2ej

A\B¼;

mðAÞ � mðBÞ ð2Þ

The speed conflict is obtained by calculating the speed at
which a vehicle must travel in order to cause both reports,
see Fig. 4.
Fig. 4. The relationship between speed and conflict.
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The direction conflict is calculated in an analogous way
by computing the difference between the directions of
movement in the two reports. For details see [13].

Conflict matrix for vehicles and units. If there is no enemy
unit that contains the estimated entity types of both
reports, the conflict should be large. If there is such a unit,
the conflict is determined by the current estimate of dis-
tance between the units and the maximum allowed distance
according to doctrine.

For each level—vehicles, platoons, companies, etc.—a
distance matrix, DM, is defined so that the allowed dis-
tance between TYa and TYb is DMab.

The conflict between entity ei and ej is given by

cij ¼
X

A2ei;B2ej

QAB � mðAÞ � mðBÞ ð3Þ

where

QAB ¼ min
a2A;b2B

qab ð4Þ

and

qab ¼
1 d > DMab

0 otherwise

�
ð5Þ

where d is the distance between entities ei and ej.

2.1.2. Clustering

In [28] a method for clustering intelligence reports based
on their pairwise conflict was developed. This method was
extended into a method capable of handling also pairwise
attractions [7]. Such evidence is not generated intrinsically
in the same way as conflicts. Instead, it is provided by com-
munications intelligence, indicating that two objects prob-
ably belong to the same unit (cluster) as they are in
communication. Such information is made available from
studying communication patterns obtained through
COMINT, e.g., if two objects are transmitting in sequence
one may calculate a probability that they are in communi-
cation and thus belong to the same unit structure.

As conflicts push reports apart (into different clusters)
and attractions pull them together (into the same cluster),
using both can lead to an improved clustering result and
faster computation. The conflict, as calculated in Section
2.1.1, and the attraction together form the basis for sepa-
rating intelligence reports into clusters. A high conflict
between two intelligence reports is an indication of repel-
lency that they do not belong to the same cluster. The
higher the conflict, the less credible it is that they belong
to the same cluster.

Attracting evidence is represented as a pairwise piece of
evidence, where pij is a degree of attraction.

The best partitioning of all intelligence reports is found
by a clustering process [8] which minimizes a function
mfvag�vð:AdPÞ with a proposition that this is not an ‘‘ade-
quate partition’’ AdP. This function was derived by com-
bining the conflicting information from the clusters mfvag
with the attracting metalevel evidence mv. For details, see
[7]. Here, we use the same notation as there.

Approximately this function can be written as

mfvag�vð:AdP Þ � 1�
Y

ðijÞj8a.ei^ej 62va

ð1� pijÞ �
Y

a

�
Y

ðijÞjei^ej2va

ð1� cijÞ ð6Þ

Clustering of the intelligence reports is done by neural clus-
tering using Potts spin theory [33,34]. The Potts spin prob-
lem consists of minimizing an energy function

E ¼ 1

2

XN

i;j¼1

Xq

a¼1

ðJ�ij � Jþij ÞSiaSja ð7Þ

by changing the states of the spins Sia, where Sia 2 {0, 1}
and Sia = 1 means that report i is in cluster a. N is the num-
ber of intelligence reports and q the number of clusters.
This model serves as a clustering method if J�ij is used as
a penalty factor when reports i and j are in the same cluster,
and Jþij when they are in different clusters.

The minimization is carried out by deterministic anneal-
ing [35]. For computational reasons a mean field model is
used, with Via = hSiai, Via 2 [0,1], in order to find the min-
imum of the energy function. The Potts mean field equa-
tions are

V ia ¼
e�Hia½V �=TPq
b¼1e�Hib½V �=T

ð8Þ

where

Hia½V � ¼
XN

j¼1

J ijV ja � cV ia; ð9Þ

and V, T, Hib and c are parameters of the annealing
process.

In order to map the function mfvag�vð:AdP Þ onto a Potts
spin neural network it must be rewritten as a sum of terms.

Minimizing the right member of Eq. (6) is equivalent to
minimizing the expression:X
ðijÞj8a.ei^ej 62va

� logð1� pijÞ þ
X

a

X
ðijÞjei^ej2va

� logð1� cijÞ

ð10Þ
To apply the Potts model to Dempster–Shafer cluster-

ing, interactions J�ij ¼ � logð1� cijÞdjAi\Ajj and Jþij ¼
� logð1� pijÞð1� djAi\AjjÞ are used in the energy function
(Eq. (7)), where Ai is the focal element of the simple sup-
port function ei, and

djAi\Ajj �
1 jAi \ Ajj ¼ 0

0 otherwise

�
ð11Þ

and dij (in Fig. 5) is a Kronecker function

dij �
1 i ¼ j

0 i 6¼ j

�
ð12Þ



Fig. 5. Pseudocode for clustering algorithm.

Fig. 6. Logarithm of the total weight of conflict, showing a qualitative
change in behavior near the correct number of clusters. The result in this
figure is based on clustering all intelligence obtained from sensors
observing the advance of one mechanized battalion.
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In Fig. 5 an algorithm for minimizing the energy func-
tion through iteration of Eqs. (8) and (9) is shown.

2.1.3. Number of clusters

In order to estimate the correct number of clusters, the
conflict function which results from clustering with differ-
ent numbers of clusters is calculated and analyzed. Of
course, where the number of clusters is too small the con-
flict will be high. Where the number of clusters is too large
a small residual conflict, emanating from measurement
errors, will remain.

It was found experimentally that there is a change of
behavior in the conflict function near the correct number
of clusters, which was determined as follows.

1. The logarithm of the total weight of conflict as function
of the number of clusters was computed from empirical
data, see Fig. 6.

2. The concave lower envelope of this function was deter-
mined using a convex hull algorithm.

3. At an arbitrary abscissa, the envelope function was
bisected in a left and a right part, each of which were
then fitted by least squares to a straight line.

4. The acute angle between the two lines was maximized
over all bisection abscissas and the maximizing abscissa
was chosen as number of clusters.

This is similar to the L-method by Salvador and Chan
[36].
Experimental tests of this algorithm using sensor reports
and vehicles from the scenario described in Section 1.4
showed good correspondence between the number of clus-
ters determined in this way and the total number of
observed vehicles.
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2.1.4. Classification

The classification process deals with intelligence reports
on a cluster-by-cluster basis. Looking at intelligence in one
of the clusters, the classification from intelligence using
templates takes place in two phases. First, all intelligence
reports within the cluster are combined, then the combined
intelligence is compared with all available templates.

In the combination of intelligence a special concern is the
representation used. As the reports in general are not reports
about the same object or group of objects, one cannot use a
simple representation dealing only with object type.

Instead, a more complex representation has to be used,
that allows keeping track of different objects and their
possible types. Intelligence reports that are judged to be refer-
ring to the same object or group of objects are precombined
and henceforth viewed as one intelligence report. In this way,
all intelligence reports in the cluster under investigation can
be combined, providing the opportunity to investigate differ-
ent resulting hypotheses regarding force composition.

When selecting a template for the current cluster, a best
match between template and fused intelligence is sought.
Since intelligence consists of multiple alternative hypothe-
ses with an accompanying uncertainty, every hypothesis,
to its degree of uncertainty, must be taken into account.
As these hypotheses are also non-specific with regard to
object type, i.e., they refer to a subset of all possible types
instead of to a single type, one cannot expect a perfect
match for each type of object in the template. Instead,
one should look for the possibility of a match between
intelligence and template, i.e., the absence of conflicts in
number of items between what the intelligence proposes
and what each available template requests for all subsets
of types. With this measure a template can be selected for
intelligence with non-specific propositions.

Let us now focus on one subset va and the aggregation
of the intelligence in this subset. Let TY = {TYi} be a set
of all possible types of objects, where TYi is a type of vehi-
cle or a type of unit, depending on which hierarchical level
is analyzed.

When fusing reports regarding different sets of objects
that should be combined as components of a larger unit
structure, the frame of discernment becomes

HIa ¼ fhx1; x2; . . . ; xjIajig ð13Þ

where xi = (xi•n,xi•pt) is information regarding the ith set
of objects with xi	n 
 f1; . . . ;N Cag and xi•pt 
 TY. Here,
NCa is the maximum number of objects according to the
intelligence in cluster a.

One now needs to compare templates having specific
propositions that are certain in what they are requesting
with intelligence propositions that are not only uncertain
but may also be non-specific in what they are supporting.
This problem is handled by comparing a candidate tem-
plate and intelligence with each subset of TY. To do this,
one may investigate how much support a subset of TY

receives both directly and indirectly from intelligence and
template, respectively.
The support for a subset of TY is added up from all
propositions that are equal to, or itself a subset of this sub-
set of TY. This is similar to the calculation of belief from
basic probability numbers in Dempster–Shafer theory,
except that one does not add basic probability numbers
but natural numbers representing the number of objects
of the proposed types.

Let TE = {TEi} be a set of all available templates. Each
template is represented by any number of slots Sj

i where
Sj

i	pt 2 TY is a possible type and Sj
i	n is the number of that

type in TEi.
Since there are several different alternative propositions

in the intelligence regarding the type of objects and their
corresponding number of objects, one needs to compare
each potential template with these alternatives and let each
proposition influence the evaluation. For each template a
measure of fitness is found between the template and each
proposition in the intelligence separately.

A linear combination is then made, where each measure
of fitness is weighted by the basic probability number of
that proposition,

m�J aðhx1; x2; . . . ; xjIajiÞ; ð14Þ

giving

p�JaðTEiÞ ¼
1

2

X
hx1;x2;...;xjIa ji
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n2SCaðTY Þ
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n

ST iðTY Þ ;
ST iðTY Þ

n

� �� �
2
666664
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j

maxn2SCaðSj
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ST iðSj
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ST iðSj
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n

h in o
;
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a	ptÞ > 01;

ST iðSj
a	ptÞ ¼ 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775

3
777775 ð15Þ

where Sj
a	pt 
 TY .

These functions were derived in [6]. Here we use essen-
tially the same notation as there.

For each TEi, the number of objects requested by the
template in Eq. (15) is calculated as

ST iðX Þ ¼
X

jjSj
i	pt
X 	pt

Sj
i	n 8X 
 TY ð16Þ

and the number of objects supported by proposition
hx1; x2; . . . ; xjIaji of the intelligence as

SCaðX jhx1;x2; . . . ;xjIajiÞ
¼

X
i xi 2 hx1;x2; . . . ;xjIajixi	pt 
 X 	pt
�� xi	n 8X 
 TY ð17Þ

To summarize, the available intelligence is first fused
into several alternative hypotheses. Each hypothesis is then
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evaluated against all templates to give an overall fitness for
each template. Finally, the best fitting template is selected if
its fitness value is above a predefined threshold. While the
fitness measure p�Jað�Þ is used for aggregation from the cur-
rent hierarchical level, one also needs the basic probability
of the highest ranked template for any further aggregation
from the next hierarchical level. Through a fitness weighted
transformation, these templates will share this support in
relation to their fitness towards the corresponding focal ele-
ment in the intelligence.

The basic probability number of TEi is found as

m�JaðTEiÞ ¼X
hx1;x2;...;xjIa ji�TEi

"
m� Jaðhx1; x2; . . . ; xjIajiÞ

�
phx1;x2;...;xjIa jiðTEiÞP

TEj
hx1;x2;...;xjIa ji
phx1;x2;...;xjIa jiðTEjÞ

#
ð18Þ

The evidential force aggregation method makes it possi-
ble to aggregate uncertain intelligence reports with multiple
uncertain and non-specific propositions into recognized
forces using templates.

2.2. Tracking

In the tracking module, the states of an unknown num-
ber of ground vehicles moving in terrain are maintained.
The tracking is based on observations in the form of intel-
ligence reports of ground position y, ground speed v, and
direction of motion h.

When tracking multiple targets in general, the size of the
state-space for the joint distribution over target states
grows exponentially with the number of targets. When
the number of targets is large, this makes it impossible in
practice to maintain the joint distribution over target
states.

A mathematically principled approach to avoid the
combinatorial explosion is to propagate only the first
moment of the joint distribution, the probability hypothesis

density (PHD) [17]. This entity is briefly described in Sec-
tion 2.2.1. It has the property that its integral over each
sub-area S in the state-space is the expected number of tar-
gets within this area. Peaks in the PHD can thus be
regarded as estimated target states. Since the identities of
objects are not maintained, there is no model-data associa-
tion problem. However, the method has the drawback that
no knowledge about dependencies in motion between
objects can be represented. Also in Section 2.2.1, a particle
filter [9,37] implementation of PHD tracking, the PHD par-
ticle filter, is briefly described. For a thorough description,
see [38]. Particle filtering is suited for tracking with non-lin-
ear and non-Gaussian motion models, and is thus suitable
for ground target tracking. The non-linear terrain-depen-
dent motion model is described in Section 2.2.2.

In [38], the sensor visibility is assumed constant with
respect to position and time. Here, we incorporate knowl-
edge of sensor quality and field of view into the filter. This
is described in Section 2.2.3.

2.2.1. PHD filtering

The number of vehicles (called targets below) to track is
unknown and varies over time. This means that the targets
at time t is a random set [39,11] Ct ¼ fX1

t ; . . . ;XNt
t g, where

Xi
t is the state vector of target i and Nt is the number of tar-

gets in the set. A certain outcome of the random set Ct is
denoted X t ¼ fx1

t ; . . . ; xnt
t g. Similarly, the set of observa-

tions received at time t is a random set Rt ¼ fZ1
t ; . . . ;

ZMt
t g, where Mt can be larger than, the same as, or smaller

than Nt. A certain outcome of the random set Rt is denoted
Zt ¼ fz1

t ; . . . ; zmt
t g.

For large numbers of targets, it is computationally
intractable to keep track of every single target. A more
tractable approach is then to represent the first moment
of the full joint distribution, the probability hypothesis
density (PHD) DXt jR1:tðxtjZ1:tÞ [17,38], which is defined over
the state-space H of one target instead of the much larger
joint target space HNt . The computational cost of propa-
gating the PHD over time is much lower than propagating
the full distribution.

The PHD has the properties that, for any subset S 
 H,
the integral of the PHD over S is the expected number of
targets in S at time t:

E½jCt \ Sj� ¼
Z

S
DXt jR1:tðxtjZ1:tÞdxt ð19Þ

In other words, it will have local maxima approximately at
the target locations. The integral of the PHD over H is the
expected number of targets, nt.

We now describe one time-step in the PHD filter, which
is propagated using Bayes’ rule [17,38]. First, a prior PHD
is predicted from the PHD and observations at the previ-
ous time-step. Then, new observations are used to compute
the likelihood of this prior PHD. This results in a new pos-

terior PHD. The steps are described below.

Prediction. The temporal model of the targets include birth
(appearance of a target in the field of view), death (disap-
pearance of a target from the field of view) and temporal
propagation. Probability of target death is pD and of target
birth pB.

Target hypotheses are propagated from earlier hypothe-
ses according to the dynamical model

Xt ¼ /ðXt�1;WtÞ ð20Þ
where Wt is a noise term independent of Xt�1 (Section
2.2.2). This gives

fXt jXt�1;Z1:t�1
ðxtjxt�1; z1:t�1Þ � fXt jXt�1

ðxtjxt�1Þ

with no dependence on the history of observations z1:t�1.
Other target hypotheses are born from observations at

the previous time instant [38] according to the model

Xt ¼ /ðh�1
Xt
ðZt�1;Vt�1Þ;WtÞ ð21Þ
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where Vt is a noise term (Section 2.2.2). This model defines
the birth pdf fXt jZt�1

ðxtjzt�1Þ.
To take all observations Rt ¼ fZ1

t ; . . . ;ZMt
t g into

account for target birth, a birth PHD is defined from the
set of birth pdfs as

DXt jRt�1
ðxtjZt�1Þ ¼

X
zi

t�1
2Zt�1

fXt jZt�1
ðxtjzi

t�1Þ. ð22Þ

Given the models of motion, death and birth, the prior
PHD [17] is estimated from the posterior PHD at the pre-
vious time instant as

DXt jR1:t�1
ðxtjZ1:t�1Þ

¼ pBDXt jRt�1
ðxtjZt�1Þ

þ
Z
ð1� pDÞfXt jXt�1

ðxtjxt�1ÞDXt�1jR1:t�1
ðxt�1jZ1:t�1Þdxt�1

ð23Þ
Fig. 7. Pseudocode for time-step
Observation. We define pFN as the probability that a target
is not observed at a given time step (the probability of false
negative). This entity is further discussed in Section 2.2.3.
Assuming that there are no spurious observations, the pos-
terior PHD distribution is computed [17] from the prior as

DXt jR1:tðxtjZ1:tÞ ¼
X
zi

t2Zt

fXt jZt ;R1:t�1
ðxtjzi

t; Z1:t�1Þ

þ pFN DXt jR1:t�1
ðxtjZ1:t�1Þ ð24Þ

where

fXt jZt ;R1:t�1
ðxtjzi

t;Z1:t�1Þ / fZt jXtðzi
tjxtÞDXt jR1:t�1

ðxtjZ1:t�1Þ ð25Þ

which is a pdf (with the integral 1 over the state-space).
Using Eqs. (22)–(24), the PHD is propagated in time.

Pseudocode for one time step of the tracking algorithm is
shown in Fig. 7. The result of the tracking is the estimated
number of targets and the location of the detected maxima
in the posterior PHD in each time step. An example of a
posterior PHD is shown in Fig. 8.
t in a PHD particle filter.



Fig. 8. The posterior PHD represented as a set of particles. For greater
visibility, the histogram over particle position is shown; the saturation of
red in a certain sub-area (i.e., histogram bin) represents the particle
concentration in this area. The three blue symbols denote, from lower left
to upper right, a ground sensor network, a UAV, and a Home Guard
patrol.
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2.2.2. Terrain dependent motion and birth model

The state of a vehicle hypothesis at time t depends (Eq.
(20)) on the state of the hypothesis at the previous time-
step t � 1, and on the terrain at the vehicle position yt.
Likewise, the state of a newly born particle (Eq. (21))
depends on the observation from which it was born, and
on the terrain at its position.

While the dependence on previous time can be modeled
using linear dynamics, the terrain dependence is highly
non-linear. For each position, the terrain can be retrieved
from the database (see Section 3.4). The terrain influence
on the vehicle position is represented as probability ratios
pwater = pwater/proad = 0, pforest = pforest/proad = 0.04, pfield

= pfield/proad = 0.2, and proad = 1 of the vehicle being posi-
tioned in different type of terrain.

The sampling from the conditional pdf fXt jXt�1
ðxtjxt�1Þ is

performed in two steps:

1. Each particle in the old posterior cloud fn1
t�1; . . . ; nnt�1N

t�1 g
is propagated using a first order linear dynamical
motion model.

2. Each new particle is given a weight pterrain type depend-
ing on the terrain type at its position. A new particle
cloud is then Monte Carlo sampled from the weighted
particles.

Likewise, the sampling from the conditional pdf
fXt jzt�1

ðxtjzi
t�1Þ for each old observation zi

t�1 is performed
as

1. N particles are sampled from observation zi
t�1 using a

linear Gaussian model. The cloud is propagated using
a first order linear dynamical motion model.

2. Identical to step 2 above.
2.2.3. Sensor position dependent detection rate

The probability of missed detection pFN varies over
space and time, due to the type and fields of view of the dif-
ferent sensors.

To achieve a correct PHD estimate it is important to
model this variance. For each sensor i in the system, the
target detection probability pi

t and the present field of view
Ai

t is known at a given time-step t (see also Section 3.1). The
probability of missed detection in a certain position y can
then be derived as

pFN ðyÞ ¼
Y
y2Ai

t

ð1� pi
tÞ. ð26Þ

This varying pFN is used for propagation of the PHD
over time as described in Eq. (24).

This is intuitively obvious: if there are no sensors
nearby, the prior particle distribution is accepted as poster-
ior distribution as is. However, prior particles that come
inside the field of view of a sensor are suppressed if there
are no observations to support them. Accurate sensors with
high pi

t suppress particles to a higher degree than sensors
with a low pi

t.

2.3. Sensor allocation

The allocation module in IFD03 implements a simple
version of sensor allocation based on random set simula-
tion. As in the tracking module (Section 2.2), random sets
[39,11] are used to formally describe the algorithm’s oper-
ation, and the probability hypothesis density is used to ren-
der the method computationally feasible.

The purpose of the sensor allocation method imple-
mented in IFD03 is to determine which of several sensor
allocation schemes should be used in a given tactical situa-
tion. In the demonstrations, sensor allocation is performed
when the commander wants to determine which of three
possible roads a previously observed heavy tank company
will take. Input to the module are a list of such allocation
schemes or plans, a road network that describes the geog-
raphy of the situation of interest, and estimated positions
of enemy units. The positions are extracted from the other
analysis modules. The road network was constructed by
computer processing of a list of coordinates for roads
extracted from the FLAMES database. Sensor allocation
schemes were constructed by hand.

In order to determine the best of the sensor allocation
schemes, we simulate a possible future path of the enemy
units and apply all the sensor schemes to it. For each sensor
scheme, this gives a list of simulated observations that can
be input to a fusion module. For each fusion output, we
calculate a fitness value by comparing it to the ‘‘true’’
simulated future. By averaging over possible future paths,
we determine a total fitness for each sensor allocation
scheme.

Mathematically, the algorithm works as follows. A den-
sity vector x0 is given, which describes the positions of the
units of interest at time t = 0. A set S is defined, consisting
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of sensor allocation schemes and information about the
road network on which the enemy is assumed to move.

Three different random sets are introduced:

1. X(t) denotes the positions of the enemy units at time t,
conditioned on their being located at x0 at time 0. It
can be seen as representing a simulation of ground truth:
the instance x(t) of X(t) occurs with probability
P[X(t) = x(t)jX(0) = x0]. For simplicity of notation, the
conditioning on x0 is not explicitly shown in the
following.

2. For each sensor allocation scheme s 2 S and instance
x(t) of the future ground truth, a set of possible observa-
tions Z(x(t), s, t) is calculated at time t. Z is also a ran-
dom set; note that it depends on ground truth as well
as on allocation scheme.

3. Finally, we determine what our view of ground truth
would be, given the set of observations Z. This gives rise
to the final random set, Y(t). Y(t) is our fusion system’s
approximation of the (simulated) ground truth X(t)
using the observations Z obtained by deploying sensors
according to sensor allocation scheme si.

All of the random sets introduced are explicitly time-
dependent. Here, an expression like P[X(t)] denotes the
probability of the entire time-evolution of X(t), not just
the probability at a specified time. P[Æ] can thus be seen
as a probability density functional in the space of all explic-
itly time-dependent random sets.

Determining which sensor allocation scheme to use is
now done simply by comparing the assumed ground truth
x(t) to the fusion system’s simulated view y(t). For each
instance x(t) of X(t), the best s can easily be determined
by averaging over the ensembles of observations Z and
simulated filter output Y entailed by that simulated ground
truth. An allocation scheme is good if the simulated filter
gives a good approximation of the simulated ground truth.
The fit of a specific allocation scheme s for a certain simu-
lated ground truth x(t) can be written as

HðxðtÞ; sÞ ¼
Z

P ½ZðtÞ ¼ zðtÞjXðtÞ ¼ xðtÞ; s�

� P ½YðtÞ ¼ yðtÞjZðtÞ ¼ zðtÞ�

� hðxðtÞ; yðtÞÞdzðtÞdyðtÞ ð27Þ

where h is a functional that compares x(t) and y(t) and the
integrals are functional integrals over all random sets y(t)
and z(t). In IFD03, four different h-functionals are used:
two which compute the entropy of y at either a user-specified
target-time or averaged over all time, and two which calcu-
late the L2 distance between x and y, again either at a specific
time or averaged over all times. The difference between the
entropy-like measure and the distance measure is that the
entropy measure rewards allocation schemes that give rise
to peaked distributions, but might miss some of the enemy
units. A measure that uses a specific time is termed a local
measure, while global h-measures average over all times.
The overall best sensor allocation scheme is then deter-
mined by averaging also over the random set X(t), as

sbest ¼ arg min
s2S

Z
P ½XðtÞ ¼ xðtÞ�HðxðtÞ; sÞdxðtÞ ð28Þ

Implementing Eqs. (27) and (28) would thus entail averag-
ing over three different random sets, which is clearly com-
putationally infeasible. There are several possible ways of
approximating these equations.

One way is to use approximations of the probabilities P

appearing in them, perhaps employing some kind of Monte
Carlo sampling instead of the ensemble averages. In the
implementation used in IFD03, we use a number of
approximations:

1. As stated above, all motion of adversary units is con-
strained to a road network. Also, discretised time is used
instead of continuous.

2. Instead of full random sets for simulated ground truth,
observations, and simulated filter, PHD’s are used for
these. This means that, for instance, x(t) only gives the
expected number of units at different positions in the
road network.

3. A very simple model is used for determining
P[X(t) = x(t)] and averaging over all x(t): it is assumed
that the adversary’s movement can be described by a
motion model M. This model is used to determine paths
for all adversary units present at time t = 0. Instead of
averaging over all possible futures, a certain number
Nf of such paths are generated and assumed to have
equal probabilities of occurring.

4. A similar motion model in the form of a transition
matrix M is used to simulate the filter determining Y,
and we average only over a number No of possible
observations (i.e., realizations of Z).

Pseudocode for the sensor allocation algorithm is shown
in Fig. 9.

The sensor allocation module returns the best found
sensor allocation scheme ~sbest as well as a quality measure
that simply gives the fraction of the number of simulated
ground truths and observations in which ~sbest dominated
all other allocation schemes. In experiments performed
using IFD03, the allocation scheme selected was also the
one which a human analyst would choose, given the same
information as the method.

There are several directions of future work related to the
method described here. Computational efficiency can be
improved considerably by considering equivalence classes
of future paths for the enemy units. The concept of such
equivalence classes is described in detail in [40]. Briefly,
we consider two paths equivalent if they give rise to the
same set of observations, and we only need to average over
all equivalence classes when determining the fitness of a
sensor scheme. The computational cost could also be
reduced by using Monte Carlo sampling instead of the sim-
ple averaging over the three random sets used here.



Fig. 9. Pseudocode for sensor allocation.
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Furthermore, more work needs to be done on automat-
ically generating sensor allocation schemes. This could be
done by, e.g., generating all possible UAV paths that cover
the road network or using genetic algorithms to modify
paths and evaluate them using the method presented in this
section. Another possibility would be to use a swarming or
collective intelligence algorithm for this, similar to [41].

The method could also be used interactively by a user,
who suggests partial or complete sensor schemes to the sys-
tem. Here work needs to be done both on how to generate
a complete plan from a partial one and on how to best
interact with the user.

3. System architecture

In this section, the overall design of the IFD03 system is
described. The demonstrator utilizes all of the methods
described in Section 2, implemented as ‘‘cognitive models’’,
i.e., behavioral submodels of simulated actor models. It
also makes use of an advanced terrain database that has
been integrated into the simulation framework FLAMES
and provides a standard procedure for scenario definition,
which can be used to flexibly combine the various object
models to form specific scenarios.

An overview of how the different components fit
together is given in Fig. 10.

3.1. Scenario simulator

All data originate in the scenario simulator. The primary
objects of the simulation fall into three categories: actors,
terrain model and fusion node.

• Actors. The actors in a scenario simulation consist of
‘‘red’’ (adversary) and ‘‘blue’’ (own) units. Each unit is
equipped with a platform model and a radio model for
communication. Blue units are also equipped with vari-
ous sensors for target detection and classification. To



Fig. 10. Connections between different parts of IFD03. Lines between
modules mean that the modules exchange data. Note that the Visualizer is
a separate program, while all the other modules are linked into the Fire
program.
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enable target detection and classification, visual and
acoustic/seismic signatures are attached to all red plat-
forms. When a detection is made, a report is sent to
the fusion node with target information.

• Terrain. As detailed in Section 3.4, the terrain model
represents the features of the environment, such as ter-
rain elevation or vegetation foliage, by polyhedra. The
platforms and sensors in a scenario use this information
for mobility and visibility calculations. The same infor-
mation is available to the fusion node, which currently
uses it only in the tracking algorithm.

• Fusion node. The fusion node has access to a priori infor-
mation in the form of a terrain model and a doctrine and
materiel database, generically describing the adversary’s
military organization. Also, it has the capability to per-
form dynamic remote control of a set of sensors which
can observe portions of this force. Most importantly,
the fusion node provides services for report clustering,
aggregation, classification, and tracking of force units,
and for allocation and control of information collection
resources, see Section 2. The other blue units continu-
ously feed the fusion node with target reports and, upon
request by the fusion node, sensor status reports. By
sending sensor status reports a unit updates the fusion
node about the current coverage of its sensors. This
information is used by the tracking algorithm, see Sec-
tion 2.2.3.
In a formal sense, the fusion node is also an actor in the
scenario. It is implemented as a FLAMES cognitive
model attached to a blue unit, modeling those aspects
of a C4ISR system which are needed in the application.

The parts of IFD03 which handle scenario simulation are
written in C and directly linked into the FLAMES suite of
programs. All fusion modules are implemented in MAT-
LAB code, which are first auto-translated into C using
the MATLAB Compiler, then wrapped (by hand) as
FLAMES cognitive models and finally compiled and linked
into the FLAMES program Fire to produce an executable.

3.2. Modeling doctrine, organization, and equipment

IFD03 requires models describing the behavior and
motion of adversary ground forces according to their doc-
trine, i.e., the set of tactical rules that is expected to guide
the behavior of the opponent’s army. This includes tele-
communication and transportation along a road network
of mechanized forces in hostile territory.

The adversary battalion model consists of approxi-
mately 60 vehicles: battle tanks, two types of tracked armed
personnel carriers, wheeled antiaircraft missile launch vehi-
cles, and mortar vehicles. To create models of these target
objects as well as of a number of additional vehicle types
occurring in related force structures, a table of normalized
detection, classification, and identification probabilities are
needed for each object type and each type of sensor. In
these tables, objects are assumed to be viewed at a fixed dis-
tance and against a clutter-free image background, noise-
free seismic or acoustic environment, etc. Attenuating
properties of the environment will reduce these probabili-
ties as they occur in observing situations. Five different bat-
talion structures were included in the force aggregation
template database. The descriptions include unit hierarchy
down to vehicles of specified types. From these resource
descriptions the application ‘‘march under low threat’’
was developed, which includes the sequence of and distance
between vehicles and units, from vehicles via platoons to
companies.

The information used in modelling the radio communi-
cation needed to stimulate COMINT interceptors describes
the commanding hierarchy and simple communication
rules.

3.2.1. Sensor modeling principles

How a sensor can be modelled depends strongly on its
type. In general what is needed is some kind of detection
or recognition time for each sensor, e.g., for an image sen-
sor, a shortest time during which an object must be contin-
uously visible to be detected, classified, or identified, each
step in this sequence requiring additional time. These times
depend on sensor type, obstacles in the line of sight, and
target object type, in combination with target attitude in
relation to the sensor.

The resolution of an image-generating sensor is vital for
the sensor’s ability to detect, classify, and identify a target.
It depends on optics, zoom factor etc. Additionally, the
contrast between light and dark parts of the image has to
be strong enough [42]. The object’s aspect angles in relation
to the observing sensor are also of relevance. Finally, the
surrounding environment generates clutter which reduces
the sensor’s ability to distinguish objects. Factors which
are significant in determining the sensor’s detection and
recognition capabilities should be weighed against each
other. These may be grouped into three general categories:
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1. A sensor detects energy (light, vibrations, radio signals,
etc.).

2. The energy has been emitted from somewhere, as well as
propagated and attenuated, reflected etc., on its way to
the sensor.

3. For detection to take place, the detected signal-to-noise
ratio (SNR) from a target must be high enough for a sig-
nature-extracting mechanism to find the features it is
trained to discern.

The fusion methods tested in IFD03 expect input such as
observation times, target positions and velocities with their
uncertainty estimates, as well as target types with uncer-
tainty within a given target classification hierarchy. Recog-
nition type hierarchies relevant for the different sensors’
energy classes were constructed. According to these, an
image sensor can, e.g., discern (with decreasing discernibil-
ity) <T80>j<tank>j<tracked vehicle with 6 track rollers>j
<vehicle>, and a seismic sensor can discern <heavy tracked
vehicle>j<vehicle>. This allows comparisons based on evi-
dential reasoning to be made between type information
from different sensor categories.

Sensors used to detect ground targets will likely show
greater rates of false detection the more difficult prevailing
surveillance conditions are. In the scenario used, terrain is
diversified with many forested areas of different sizes, open
croplands, roads, lakes, and littoral regions.
3.2.2. Sensor models

Image sensors. Image sensor detection probability is based
on the empirical ‘‘Johnson criterion’’ [43]. It gives a rela-
tion between the number of resolved pairs of light/dark
bars in a bar pattern of the same size as the target minor
extension projected towards the observer, and the proba-
bility of detection, classification, or identification. The
number of resolved bars is related to the contrast between
light and dark regions in the image, also interpretable as
SNR. For a sensor in the visible region, this is the contrast
of reflected light within and at the bounds of a potential
target. This contrast is dependent on target surface reflec-
tance variations, and the strength and direction of the
ambient light. For an IR sensor in the thermal region, con-
trast depends instead on the target and background tem-
perature variations.

The attenuation of light is modelled for an image sensor
observing from a UAV. The attenuation factor is depen-
dent on terrain cover type (forest/open land), and, in the
forest case, on the angle between the line-of-sight (LOS)
and the vertical direction.
Ground sensor networks. A simple ground sensor network
model was implemented. It is assumed to possess an inte-
grated tracker, so that terrain effects as well as the influence
of the individual positions of the network nodes could be
disregarded. This entails a statistically homogeneous detec-
tion capability inside the range of the network. Such a sen-
sor is able to contribute high quality position and speed
measurements, but only poor classifications.

Human observers. The model of human observers, Home
Guard patrols equipped with advanced measuring binocu-
lars, is less detailed than the image sensor discussed above.
This is mainly due to difficulties of modelling the complex
fusion performed by the human brain. A basic relationship
of detection quality proportional to distance was assumed
and model parameters were then adjusted so as to produce
reasonably realistic output.

COMINT interceptors. Radio messages can be intercepted
by blue COMINT interceptors deployed in the terrain. The
interceptors give rather coarse information about bearings
to emitters. Bearing crossings are computed to get an indi-
cation of the position of an emitter. Information about
position and communication pattern is transmitted to the
fusion node, which tries to find out who is communicating
with whom, see Section 2.1.2.

3.2.3. Sensor carriers (platforms)
Sensors are carried by either an unmanned aerial vehicle

(UAV), a COMINT interceptor station, or a soldier. A
video/IR camera can be attached to the UAV, which can
also carry and drop a ground target multi-sensor system.

3.3. Scenario display

During demonstrations, three adjacent projection
screens show, respectively:

• reports and ground truth data displayed on a synthetic
map background,

• results from the different information fusion methods
displayed on map backgrounds, and

• dynamic plots of various statistics and other informa-
tion about the current state of the fusion processes.

These views are intended to support a tactical intelli-
gence staff in building a situation picture.

At the beginning of the scenario only a few reports have
arrived. These are indicated on the first screen (Fig. 11) and
then appear as clustered objects on the second screen (cf.
Fig. 2). This is the first chain of fusion events shown during
the demonstration. At the same time the process can be fol-
lowed on the third screen where plots of the number of
received reports and the estimated number of objects are
displayed (Fig. 12).

As the scenario progresses, more surveillance resources
are allocated and therefore many more reports are deliv-
ered. On the second screen, views showing clustered vehi-
cles and clustered platoons are displayed. Here, vehicles
and platoons are automatically classified into more or less
specific categories, when possible into specific types. The
categories or types are displayed using standardized army
symbols (Fig. 2). The operator can switch instantly



Fig. 11. Snapshot of the sensor report (top) and ground truth (bottom)
views in IFD03.

Fig. 12. Snapshot of the standard status view in IFD03. The sub-plots
show incoming reports and the estimated number of vehicles, platoons and
companies over time.

Fig. 13. Visualizer perspective eastward, covering a part of the scenario
area of interest. The terrain is color-coded according to (forest: green,
open land: yellow, water: blue, road: grey, built-up areas: pink). Note the
different heights of forest canopies and built-up areas.
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between different aggregation levels such as reports, vehi-
cles, platoons and companies, showing how the different
information fusion methods work at different levels. The
display can be paused or moved back or forth in scenario
time, to show how correspondences vary in different situa-
tions and between different levels of the scenario. By zoom-
ing in on any desired display area, detailed situations can
be visualized and discussed. Additional information can
be obtained by right-clicking on the symbols in a view.
An information box then appears with details specific for
each type of symbol.

To indicate how the fusion methods are performing,
various results can be compared with ground truth while
they are displayed. Having access to all scenario informa-
tion, the ground truth view shows the location of all vehi-
cles and all sensors in the displayed area over time.

3.3.1. Visualizer

The IFD03 Visualizer is a substantially modified version
of the original FLAMES visualizer Flash. The simulation
results can be visualized in multiple parallel visualizers,
making it possible to use several computers and screens
simultaneously. New views can easily be created and
customized.

From a programming perspective the IFD03 Visualizer
consists of four entities, three of which are executable
applications. The database, handled by a MySQL database
manager [44], stores simulation result data to be visualized.
The postprocessor application creates tables in the data-
base. It also converts and transfers simulation result data
into the database. The playback control application syn-
chronizes the playback of the scenario across the different
connected visualizers. Finally, the modified Flash appli-
cation performs the actual visualization of the data.

3.4. Environment model

The terrain model for IFD03 is created by using a third
party terrain database generation tool, TerraVista Pro
Builder [26], that can import data from different sources
and export a single correlated, i.e., geometrically and topo-
logically consistent, terrain description. TerraVista also has
the ability to write the correlated data in a variety of for-
mats. The terrain model is structured as a TIN DEM (Tri-
angulated Irregular Network Digital Elevation Model)
representing the terrain skin, and additional vector data
describing terrain features, such as roads, rivers, lakes
and houses (Figs. 13 and 14).



Fig. 14. Terrain elevation and feature data after adding roofline data for
six buildings (purple) and areal data for two bridges (dark blue).
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3.4.1. Terrain data

The source data for this terrain model consisted of con-
ventional off-the-shelf geographic data from the Swedish
Land Survey. Source data used in the project come from
their GSD (Geographical Data of Sweden) product. For
the scenario used in IFD03, data describe a 45 · 20 km2

area including the peninsula of Rådmansö, north-east of
Stockholm. The terrain features were grouped into seven
classes defined by FLAMES: bridge, building, canopy, land
region, lake, river, and road. The 50 · 50 m2 ground eleva-
tion database from which our triangulated 3D model was
built is probably detailed enough for our current needs,
although for realistic modelling of the strongly varying tree
canopy transparency, one would probably need, say,
25 · 25 m2 raster information on tree population density
and type, as well as typical tree height and mixing ratio
of coniferous and deciduous trees.

4. Fusion performance evaluation

The performance of the three fusion methods described
in Section 2 was evaluated as follows. The force aggrega-
tion method was qualitatively evaluated by inspecting
results from the demonstration scenario. Vehicle and pla-
toon aggregation results were studied, originating from a
set of situations with different characteristics. As detailed
in Section 2.1, aggregation results derive from conflict-
based Dempster–Shafer clustering and classification of
sensor reports giving vehicle position, direction, and type
estimates, followed by clustering of vehicle estimates and
classification of the resulting ‘‘platoon’’ clusters using orga-
nizational template matching. The performance of the ter-
rain tracker was studied during a small part of the scenario,
in which a mechanized company left the road to travel
across a stretch of half-open terrain. Evaluations of these
methods used data saved in the MySQL database during
a previously performed simulation of the scenario
described in Section 1.4. Finally, the sensor allocation
method was evaluated using an extensive simulation exper-
iment originally developed to verify a refined version of the
method, see [40].

4.1. Evaluating the force aggregation method

4.1.1. Case studies

We have selected four aggregation situations for analy-
sis and presentation, two of them close in space and time.
In all cases, we study the result of both vehicle and platoon
aggregation. Company aggregation was not analyzed. Dur-
ing our result analysis we studied several other situations in
detail. Our general conclusions below are based one these
situations as well.

In Fig. 15 we show first a vehicles estimate obtained by
clustering of sensor reports, where 10 observed ground
truth vehicles have generated 11 correctly but sometimes
imprecisely classified vehicle estimates. Eight of these were
also precisely classified. One additional precisely classified
vehicle estimate belongs to a previously passing unit. The
platoons estimate grouped 9 of the 10 vehicles correctly,
3 by 3, into correctly classified platoons. However, the
remaining two vehicle estimates, one of them based on
old observations, were combined into a type-specific but
actually incorrect platoon. If the old vehicle estimate could
have been eliminated, this type of problem would not
occur, cf the discussion below.

In Fig. 16 we show another situation in an area where
no other vehicles have previously passed by. Fifteen
ground truth vehicles generated 13 correctly classified
vehicle estimates, 7 of these precise. One precisely classified
vehicle estimate was incorrect, due to an erroneous spe-
cific sensor report being combined with other non-spe-
cific reports. The platoons estimate grouped the estimated
vehicles into 5 correctly classified platoons, one too
many.

In Fig. 17 we show a situation where a set of vehicles (a
company) are leaving the road and moving into the terrain.
Here, 15 ground truth vehicles generated 15 correctly clas-
sified vehicle estimates, 9 of these precise. The platoons
estimate grouped the estimated vehicles into 2 correctly
classified platoons. This is 3 platoons less than ground
truth. In this case, the speed is being reduced because of
the move into terrain, creating a queue with shorter
intra-vehicle distances than is typical for road travel. The
maximum distance between vehicles assumed in the aggre-
gation algorithms is constant and adapted to normal on-
road movement, making it possible for the clustering
algorithm to pack more vehicles into each platoon in this
atypical situation. Since the clustering algorithm uses only
binary relations between objects when deciding which
objects may be clustered, it is unable to exploit a priori
knowledge about the maximum vehicles allowed in a
platoon of a certain type. The only information it can
use is the maximum and minimum number of platoons
allowed, as given by the current number of vehicles



Fig. 15. Aggregation results at the roadside camera. Time is 17:25:25 (hh:mm:ss). Vehicle ground truth and sensor reports views are shown for
comparison. (a) Vehicles estimate. (b) Platoons estimate. (c) Sensor reports. Color becomes less saturated as reports are ageing. (d) Vehicle ground truth.

Fig. 16. Aggregation results from Home Guard observations of vehicles on the northern road. Time is 17:28:30. The vehicle ground truth view is shown
for comparison. (a) Vehicles estimate. (b) Platoons estimate. (c) Vehicle ground truth.
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Fig. 17. Aggregation results from Home Guard observations of vehicles (a mechanized company) coming south from the northern road and moving into
the terrain. Left column data are from 17:33:30, right column data from 17:35:30. A UAV is flying by at the latter instant, contributing additional
observations. (a) Vehicles estimate at 17:33:30. (b) Vehicles estimate at 17:35:30. (c) Platoons estimate at 17:33:30. (d) Platoons estimate at 17:35:30. (e)
Vehicle ground truth at 17:33:30. (f) Vehicle ground truth at 17:35:30.
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divided, respectively, by the minimum and maximum num-
ber of vehicles allowed for any platoon template.

4.1.2. Discussion

The most easily interpreted results were obtained from
sensor observations of the moving front of the advancing
battalion. Given that available sensor data were sufficiently
specific and complete, in this case the method usually per-
formed well, see Fig. 16.

In some situations all available sensor data (usually
from UAV observations) were highly unspecific, in others
a large number of sensor reports covered an interesting
area, including some which were several minutes old and
therefore indicated vehicles which had long since left the
area.

In the first case the vehicle clustering and classification
methods generate a set of unspecific vehicle observations.
The aggregation method deduces the organization type
by combining the observed vehicles types and the number
of observed vehicles. When the observed number of vehi-
cles is smaller than the true one and no type information
is available, the visualizer may deliver a specific unit type
determination based only on the estimated (but too low)
number of vehicles. Only the most likely alternative is cur-
rently displayed although basic probability numbers
weighted by platoon-to-template fitness are calculated for



2 We ran the randomization process 10 times generating 103 different
sensor schemes each time.
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all alternatives. A more informative approach might be to
inspect the structure of this set and decide whether it is
appropriate to display a specific result, or whether to opt
for an unspecific one.

In the second case, note that a vehicle moving at the typ-
ical scenario speed 50 km/h will have traversed more than 8
kilometers in 10 min, a large fraction of the entire scenario
transportation distance. Thus, in this scenario, vehicles
observed several minutes ago do not actually belong to
the current local scene. In a future decision support system
space and time windows used for aggregation should be
adjustable by the user, or if possible, be automatically
adapted to the situation. A simple but useful improvement
would be to color-code the age of estimated objects in all
views, a feature now used only in the sensor report views,
see Fig. 15.

The way it is currently used, the aggregation method is
based on only discriminating information. On the report-
to-vehicle level it rejects configurations it considers impos-
sible on grounds of speed limitations, directions, and type
inconsistencies. On the vehicle-to-platoon level it rejects
configurations based on track-to-track distances and type
inconsistencies, see Section 2.1. Using also attractive infor-
mation when available could improve aggregation perfor-
mance in certain situations.

In some cases, the computed distribution of platoon
types was quite far from the correct one. To correct this,
several approaches could be tried:

1. Trimming the existing criteria.
2. Introducing fuzzy templates which do not penalize par-

tially observed units.
3. Introducing additional kinds of criteria, such as top-

down analysis of consequences of the assumed organiza-
tional structure. This could lead to adjustments of lower
level (e.g., vehicle type) estimates.

4. Multi-hypothesis reasoning, deriving a set of alternative,
incrementally different clustering results, to be used as
alternative options in the platoon-to-template matching
process.

4.2. Evaluating the terrain tracking method

The discussion below of the performance of the particle
filtering method is based mainly on observations during the
terrain passage shown in Fig. 18, to be compared also with
the right column of Fig. 17.

Judging the utility and performance of a PHD particle
filter in this application is subjective, its outcome depend-
ing strongly on how results are to be used. Here a method
was needed for short-term qualitative prediction of vehicle
movements in terrain and on roads. Quantitative use of the
method, e.g. to precisely predict target locations, was not
prioritized. In Fig. 18, we illustrate how the PHD particle
filter satisfies this rather modest requirement. The scenario
situation is such that after the fly-by of the UAV at
17:35:35, no more direct observations were possible until
some part of the unit reached the area of sensitivity of
the ground sensor network in the lower left of the depicted
area. Two minutes later, on average the filter predicts a
somewhat more easterly path for the unit than was actually
used, Fig. 18(b). After one more minute, the prediction has
become quite unreliable, Fig. 18(c). At that moment the
ground sensor network has however already picked up sig-
nals from vehicles at the front of the unit, gradually allow-
ing the filter’s prediction to recover.

Thus, continued filtering without any new observations
gave a reasonable position estimate for no more than two
minutes in this situation. The filter parameters could prob-
ably be adjusted to better meet a user’s need of seeing the
distribution of possible locations for the unit rather than
focusing on trajectories considered to be the most likely.

4.3. Evaluating the sensor allocation method

In order to evaluate the sensor resource allocation
method described in section 2.3, experiments were per-
formed where the fitness of a large number of sensor allo-
cation schemes was determined. Since it is difficult to define
a true fitness for a sensor scheme, the relative ranks of the
schemes was then subjectively compared to ensure that
they were consistent with a human operator’s ranking.
Recall that in IFD03, a certain number of predetermined
sensor allocation schemes were input to the sensor alloca-
tion module, which determined the fitness of each of these.
The schemes used in IFD03 were designed so that one of
them should be clearly better than the others, one should
be clearly worse than the others and the rest have about
equal fitness. An additional 104 sensor allocation schemes2

were generated by mutating the IFD03 plans in the follow-
ing way:

• UAV paths were cut into small sub-routes that could be
connected independently of each other,

• places and times to drop ground sensor networks were
determined randomly.

The UAV routes were cut and the sub-routes merged
since we did not want to implement a complete route-plan-
ning algorithm for UAVs.

The fitnesses of each of these sensor schemes s were
determined using the four fitnesses h1, h2, h3, and h4 from
Fig. 9. In order to validate the evaluation method, the
results of hi(s) were inspected both for specific instances
x(t) of the simulated ground truth X(t) and for the aver-
aged values. Since most of the sensor schemes used in
IFD03 were hand-designed to be good, we expected all
the randomly generated schemes to be worse than those.
This expectation was fulfilled in the experiment: unsurpris-



Fig. 18. Results from particle filter tracker during the terrain passage, cf. Fig. 17. Vehicle ground truth at 17:38:40 is shown for comparison. (a) Particle
histogram at 17:35:35. (b) Particle histogram at 17:37:35. (c) Particle histogram at 17:38:40. (d) Vehicle ground truth at 17:38:40.
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ingly, most of the randomly generated schemes were very
bad. After determining the ranking of the schemes, the best
ones and some randomly selected bad ones were checked
manually to make sure that there were no obvious misses
in the ranking induced by the fitness calculations. For a
more thorough validation of a more advanced sensor
scheme evaluation method implemented using equivalence
classes of future paths, refer to [40].

5. Comparison with other approaches

The research that has been devoted to information
fusion issues since Kent’s paper [12] was written has
advanced the state-of-the-art in methodological areas likely
to become important in future command and control appli-
cations. At the same time, however, requirements and
ambitions have expanded substantially, indicating that tac-
tical application of information fusion is not a well-delim-
ited problem that will be solved once and for all, but a
growing research subfield of applied artificial intelligence
with the potential to successively provide new user benefits
far into the future. At the current state of knowledge,
researchers need to explore and compare several alternative
methodological approaches while watching out for particu-
lar emerging techniques suitable for early transfer to
fieldable systems. Below, a few such approaches are
briefly addressed and compared with those developed for
IFD03.
An early paper discussing the processing of tactical
information and the associated situation assessment of
the tactical battlefield is [45]. The architecture proposed
and elaborated in this paper by Gonsalves et al. combines
fuzzy logic and Bayesian belief networks (BN) for con-
structing and maintaining a hierarchical, probabilistic
model linking multiple entities at various levels, in the con-
text of overall mission goals and rules of engagement. Evi-
dence gathered incrementally in real-time undergoes fuzzy
logic filtering and is then applied to the appropriate nodes
of the BN, resulting eventually in revised probability esti-
mates concerning tactical situational hypotheses. A more
recent contribution to this class of methodologies is a paper
by Sutton et al. [46], where they propose a blackboard BN
architecture, enabling analyst users to manipulate and
combine BN fragments into hypothetical models of inter-
pretation which may then be evaluated using both observa-
tional and a priori inputs. Knowledge about the world
necessary for creating meaningful models is provided by
both analysts and the ‘‘corporate memory’’ stored on the
blackboard. The architecture extends blackboard tech-
niques with a principled method (BN) for representing
uncertainty, and it extends Bayesian network techniques
by a facility for incremental model-building.

One of the few papers which provide a commander’s
perspective on information fusion, emphasizing the need
for a multi-role capability, is written by Looney [47]. In
this paper Looney focuses primarily on what he calls an
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‘‘alternative’’ methodology for level 1 fusion, although he
also makes interesting remarks on requirements for
higher-level fusion methods in common operational picture
(COP) applications. The paper concludes with the state-
ment: ‘‘The major outstanding problems are in SA (situa-
tion assessment) and TA (threat assessment) and the
monitoring and adjusting of the fusion system to reduce
errors. However, there remain many problems in the detec-
tion, tracking and identification of targets of all types so
that new tracking algorithms are needed’’. In a later paper,
Looney and Liang [48] return to the question of providing
tools to support building up and maintaining situation
awareness for tactical commanders. They propose using
the centralized k-means clustering algorithm in a case-
based reasoning (CBR) context, to obtain robust unit type,
size and purpose determination on several levels of abstrac-
tion. These are then fed into a fuzzy belief network that
performs inferencing for threat assessment via heuristic
belief propagation.

IFD03 is based on fixed-structure but generic mathemat-
ical models, which may be adapted to different situations
mainly by exchanging model data provided a priori. Mod-
els based on such approaches to BN architectures which do
not possess any a priori structure should be highly flexible
and may in fact be particularly useful in intelligence appli-
cations in asymmetric warfare or operations other than
war, where the opponent’s order of battle may not be
known or even well-defined. These applications, currently
widely prioritized, were not addressed by the IFD03 project.
However, the flexibility of BN comes at a cost: it is a
model-building language having certain intrinsic limita-
tions, rather than a set of ready-made models. Indeed,
direct comparison of a language like BN with a system like
IFD03 does not make sense.

In comparison with the methods used in [48], the report
association of IFD03 can be considered to be more versa-
tile, since it takes into account not only target positions,
but all relevant target features and target-to-target rela-
tional features. Force aggregation is then performed by
Dempster–Shafer template matching rather than CBR.
Furthermore, IFD03 uses efficient algorithms, capable of
providing accurate answers to difficult computational
problems of realistic size sufficiently quickly for practical
application. Finally, the problems it solves are ubiquitous
in COP applications, particularly in conventional warfare
situations. However, no threat assessment is performed
by IFD03. In summary, the fusion methods of IFD03 extend
the state-of-the-art in providing solutions to a basic set of
tactically important problems.

6. Conclusions and future work

We described and discussed above the architecture,
methodology and user interface of a software system by
which it is possible to credibly demonstrate the use of infor-
mation fusion for improving commanders’ tactical situa-
tion awareness in an NBD environment. We showed how
the system can be applied to a concrete scenario and dis-
cussed how it produces and presents level 1, 2 and 4 fusion
results relating to this scenario.

Within the IFD03 demonstrator project, a new method
of force aggregation based on Dempster–Shafer clustering
and template matching was developed, implemented and
tested. Furthermore, a new method for multi-sensor,
multi-target tracking of an unknown number of vehicles
moving in terrain was proposed, developed and realized.
Finally, a new, admittedly preliminary methodology for
sensor resource management was proposed, implemented
and tested. Although the two first-mentioned methods have
been previously published, their implementation and appli-
cation in a complex and realistic scenario has not been dis-
cussed before.

The demonstrator contains a small number of fusion
methods based on fixed-structure, generic models, which
solve an important set of problems ubiquitous in conven-
tional warfare tactical situations. The models developed
for force aggregation and terrain tracking in IFD03 are
based on well-founded mathematical theories and use effi-
cient algorithms. Based on experience from our demonstra-
tor as well as on theoretical considerations we claim that
these methods represent a substantial advance in compari-
son to previously reported techniques for situation assess-
ment problems [45,18,48]. In fact, we believe them to be
mature enough to be considered for inclusion in a tactical
command and control system.

In the project a COTS-based simulation platform tightly
coupled to the ‘‘fusion engine’’ was created, enabling the
representation of closed-loop management of sensor
resources. It has a simulation engine capable of efficiently
managing a battalion-sized ground force moving on roads
or in terrain, as well as several sensor platforms
concurrently.

Based on such demonstrator systems, processes and
methodologies can be straightforwardly developed for pre-
senting, visualizing, and analyzing properties of proposed
new information fusion components and subsystems. In
addition, such systems may be used for performing studies
and experiments with sensor models, terrain and other
environment models, doctrine models, scenario assump-
tions, etc. Finally, it can be used to support the develop-
ment of methodology and models for information fusion
per se, i.e., the specification, development, and testing of
new fusion concepts and methods.

Further development of force aggregation along the
lines discussed in Section 4.1.2 should improve classifica-
tion accuracy and avoid the propagation of classification
errors to higher levels in the organizational hierarchy.
The clustering and aggregation techniques may eventually
be combined with particle filtering to permit concurrent
tracking of both solid objects (e.g., vehicles) and group
objects (e.g., ground force units), logically connected via
uncertain information about doctrinal rules and communi-
cation capability. Work is ongoing [49,50] to develop new
methods in the area of sensor resource management that
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should improve the ability to maintain an accurate opera-
tional picture. Finally, studies are being made which should
lead to some capability to automatically recognize and pre-
dict tactical plans and intentions [51,52].
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[4] J. Schubert, C. Mårtenson, H. Sidenbladh, P. Svenson, J. Walter,
Methods and system design of the IFD03 information fusion
demonstrator, in: CD Proceedings of the Ninth International
Command and Control Research and Technology Symposium,
Copenhagen, Denmark, paper 061, track 7.2, US Dept. of Defense
CCRP, Washington, DC, USA, 2004, pp. 1–29.

[5] A. Steinberg, C. Bowman, Revisions to the JDL data fusion model, in:
D.L. Hall, J. Llinas (Eds.), Handbook of Multisensor Data Fusion,
CRC Press, Boca Raton, FL, USA, 2001, pp. 2:1–19 (Chapter 2).

[6] J. Schubert, Evidential force aggregation, in: Proceedings of the Sixth
International Conference on Information Fusion, Cairns, Australia,
International Society of Information Fusion, Sunnyvale, CA, USA,
2003, pp. 1223–1229.

[7] J. Schubert, Clustering belief functions based on attracting and
conflicting metalevel evidence, in: B. Bouchon-Meunier, L. Foulloy,
R.R. Yager (Eds.), Intelligent Systems for Information Processing:
From Representation to Applications, Elsevier Science, Amsterdam,
Netherlands, 2003, pp. 349–360.

[8] J. Schubert, Clustering belief functions based on attracting and
conflicting metalevel evidence using Potts spin mean field theory,
Information Fusion 5 (4) (2004) 309–319.

[9] N. Gordon, D. Salmond, A. Smith, Novel approach to nonlinear/
non-Gaussian Bayesian state estimation, IEE Proceedings F (Radar
and Signal Processing) 140 (2) (1993) 107–113.

[10] B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman filter:
Particle filters for tracking applications, Artech House Publishers,
Norwood, MA, USA, 2004.

[11] R. Mahler, An Introduction to Multisource–Multitarget Statistics
and its Applications, Technical Monograph, Lockheed Martin Corp.,
Eagan, MN, USA, 2000.

[12] J. Kent, Deploying tactical fusion systems: the challenges, in:
Proceedings of the Third International Conference on Information
Fusion, Paris, France, International Society of Information Fusion,
Mountain View, CA, USA, 2000, pp. ThB1:11–17.

[13] J. Cantwell, J. Schubert, J. Walter, Conflict-based force aggregation,
in: CD Proceedings of the Sixth International Command and Control
Research and Technology Symposium, Annapolis, MD, USA, track 7,
Washington, DC, US Dept. of Defense CCRP, USA, 2001. pp. 1–15.

[14] N. Xiong, P. Svensson, Multi-sensor management for information
fusion: issues and approaches, Information Fusion 3 (2) (2002) 163–
186.

[15] D.L. Hall, A. Steinberg, Dirty secrets of data fusion, in: D.L. Hall, J.
Llinas (Eds.), Handbook of Multisensor Data Fusion, CRC Press,
Boca Raton, FL, USA,, 2001, pp. 21:1–12 (Chapter 21).
[16] R. Mahler, Random-set theory for target tracking and identification,
in: D.L. Hall, J. Llinas (Eds.), Handbook of Multisensor Data Fusion,
CRC Press, Boca Raton, FL, USA, 2001, pp. 14:1–30 (Chapter 14).

[17] R. Mahler, T. Zajic, Multitarget filtering using a multitarget first-
order moment statistic, in: SPIESignal Processing, Sensor Fusion and
Target Recognition X, Vol. 4380, SPIE, Bellingham, WA, USA, 2001,
pp. 184–195.

[18] F.P. Lorenz, J. Biermann, Knowledge-based fusion of formets:
discussion of an example, in: Proceedings of the Fifth International
Conference on Information Fusion, Annapolis, MD, USA, Interna-
tional Society of Information Fusion, Mountain View, CA, USA,
2002, pp. 374–379.

[19] D.A. Lambert, Grand challenges of information fusion, in: Proceed-
ings of the Sixth International Conference on Information Fusion,
Cairns, Australia, International Society of Information Fusion,
Sunnyvale, CA, USA, 2003, pp. 213–220.

[20] I. Jacobson, Object-Oriented Software Engineering: A Use Case
Driven Approach, Addison-Wesley Publishing Co., Reading, MA,
USA, 1993.

[21] J.O. Coplien, Reevaluating the architectural metaphor: toward
piecemeal growth, IEEE Software 16 (5) (1999) 40–44.

[22] J. Fredriksson, P. Svensson, T. Risch, Mediator-based evolutionary
design and development of image meta-analysis environments,
Journal of Intelligent Information Systems 17 (2–3) (2001) 301–322.

[23] D.W. Walker, O.F. Rana, M. Li, M.S. Shields, Y. Huang, The
software architecture of a distributed problem-solving environment,
Concurrency: Practice and Experience 12 (15) (2000) 1455–1480.

[24] MATLAB, Online, October 2005. Available from: <http://www.
mathworks.com>.

[25] FLAMES, Online, October 2005. Available from: <http://www.
ternion.com>.

[26] TerraVista, Online, October 2005. Available from: <http://www.
terrex.com>.

[27] J. Schubert, On nonspecific evidence, International Journal of
Intelligent Systems 8 (6) (1993) 711–725.

[28] M. Bengtsson, J. Schubert, Dempster–Shafer clustering using Potts
spin mean field theory, Soft Computing 5 (3) (2001) 215–228.

[29] J. Biermann, HADES–a knowledge-based system for message inter-
pretation and situation determination, in: A. Pasqual del Pobil, J.
Mira, M. Ali (Eds.), Tasks and Methods in Applied Artificial
Intelligence, Proceedings of the Eleventh International Conference on
Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, LNCS, vol. 1416, Springer-Verlag, Berlin, Germany,
1998, pp. 707–716.

[30] J.K. Johnson, R.D. Chaney, Recursive composition inference for
force aggregation, in: Proceedings of the Second International
Conference on Information Fusion, Sunnyvale, CA, USA, Interna-
tional Society of Information Fusion, Mountain View, CA, USA,
1999, pp. 1187–1195.

[31] A.P. Dempster, A generalization of Bayesian inference, Journal of the
Royal Statistical Society B 30 (2) (1968) 205–247.

[32] G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, Princeton, NJ, USA, 1976.

[33] R.B. Potts, Some generalized order–disorder transformations, Pro-
ceedings of the Cambridge Philosophical Society 48 (1952) 106–109.

[34] P.M. Chaikin, T.C. Lubensky, Principles of condensed matter
physics, Cambridge University Press, Cambridge, UK, 1995.
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[40] C. Mårtenson, P. Svenson, Sensor allocation using equivalence classes
of enemy paths, in: Proceedings of the Eighth International Confer-
ence on Information Fusion, Philadelphia, PA, USA, International
Society of Information Fusion, Sunnyvale, CA, USA, 2005.

[41] P. Svenson, H. Sidenbladh, Determining possible avenues of
approach using ANTS, in: Proceedings of the Sixth International
Conference on Information Fusion, Cairns, Australia, International
Society of Information Fusion, Sunnyvale, CA, USA, 2003, pp. 1110–
1117.

[42] L.A. Klein, Millimeter-Wave and Infrared Multisensor Design and
Signal Processing, Artech House Publishers, Norwood, MA, USA,
1997.

[43] J. Johnson, W. Lawson, Performance modeling methods and prob-
lems, in: Proceedings of the IRIS Imaging Systems Group, 1974.

[44] MySQL, Online, October 2005. Available from: <http://www.mysql.
com>.

[45] P.G. Gonsalves, G.J. Rinkus, S.K. Das, N.T. Ton, A hybrid artificial
intelligence architecture for battlefield information fusion, in: Pro-
ceedings of the Second International Conference on Information
Fusion, Sunnyvale, CA, USA, International Society of Information
Fusion, Sunnyvale, CA, USA, 1999, pp. 463–468.
[46] C. Sutton, C. Morrison, P.R. Cohen, J. Moody, J. Adibi, A Bayesian
blackboard for information fusion, in: P. Svensson, J. Schubert
(Eds.), Proceedings of the Seventh International Conference on
Information Fusion, June 2004, vol. II, International Society of
Information Fusion, Mountain View, CA, USA, 2004.

[47] C.G. Looney, Exploring fusion architecture for a common opera-
tional picture, Information Fusion 2 (4) (2001) 251–260.

[48] C.G. Looney, L.R. Liang, Cognitive situation and threat assessments
of ground battlespaces, Information Fusion 4 (4) (2003) 297–308.

[49] L.R.M. Johansson, N. Xiong, H.I. Christensen, A game theoretic
model for allocation of mobile sensors, in: Proceedings of the Sixth
International Conference on Information Fusion, Cairns, Australia,
International Society of Information Fusion, Sunnyvale, CA, USA,
2003, pp. 583–590.

[50] L.R.M. Johansson. Information acquisition in data fusion systems.
Licentiate thesis TRITA-NA-03-28, Technical report, Numerical
Analysis and Computer Science, Computer Vision and Active
Perception Laboratory, Royal Institute of Technology, Stockholm,
Sweden, 2003.
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