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Abstract
We describe how specialized database technology and data
analysis methods were applied by the Swedish defense to
help deal with the violation of Swedish marine territory by
foreign submarine intruders during the Eighties and early
Nineties. Among several approaches tried some yielded
interesting information, although most of the key questions
remain unanswered. We conclude with a survey of belief-
function- and genetic-algorithm-based methods which were
proposed to support interpretation of intelligence reports and
prediction of future submarine positions, respectively.

Introduction
In 1980, for a period of several weeks the Swedish navy
hunted what it later judged to be two foreign submarines
operating in the country’s inner territorial waters, near Swe-
den’s largest naval base.

This event commenced a more than decade-long period
of political uneasiness and increasing military, as well as
public, vigilance. The period was characterized by an
inflow of final event intelligence reports to the Swedish
military headquarters, which during the years of 1986-88
reached a peak of about 1000 per year.

Until the Submarine Commission report (Ubåtsfrågan
1981-1994 1995) was published, very little was known to
the public about the size and character of the intelligence
material that had been gathered.The work to be described
below started in 1986, then considered a top secret activity
whose mere existence could not be revealed.

The report of the 1995 Submarine
Commission

In February 1995, the Swedish government formed an inde-
pendent commission “with the task of assessing and analyz-
ing the underwater violations and indications of these that
have existed since the beginning of the 1980’s...” (ibid).

Most of the collected reports, roughly 80%, are of human
observations. Of these, 80% were made by civilians. With
regard to these reports, the commission states that “in our
opinion, credible observations of foreign submarine activity
have been made”. The more than 6000 reports were classi-
fied by the defense authorities in four quality categories,

plus the categories “No submarine activity” and “Not
decidable”. More than 1500 reports claim a target distance
of less than 100 m. Of these, about 400 had been classified
as belonging to the categories 1-3, and 40 to category 1.

The Commission report declares that “in our opinion, it
is not possible to state the number of credible observations,
and, by doing so, to draw a line between these and other
observations”. In the classification scheme used by the mil-
itary, the top category “Confirmed activity” was intended to
include only such observations that were provably true in a
legal sense. As the above citation shows, the relevance of
this classification was rejected by the commission.

The Database and its Toolset
Late in 1986, the naval intelligence analysts had tried a reg-
ular C3I system but found it too inflexible for their purpose.
By coincidence, our group was able to offer them unique
new technology, a system called Cantor (Svensson and Nei-
der 1991, Andersson 1992, Karasalo and Svensson 1986).

Cantor is designed to efficiently manage, analyze, trans-
form, and visualize large sets of data, including spatially
and spatio-temporally distributed point observations. It has
many properties which make it easier to use for a small
group of analysts than a mainstream relational DBMS, such
as simple and logical means to define, populate, and display
object types and values. It also possesses a more powerful
data model and query language (called SAL) than the SQL
standard of the late 1980’s, allowing, e.g., scalar, tuple, and
set-valued objects, parameterized views, and view material-
ization.

The database input was organized as a collection of mea-
surement tables, containing general observation metadata,
such as time, area, position, observation quality, id number
etc., observation type data, such as submarine, diver,
waves, etc., and detailed observation features, such as size,
speed, and heading, shapes, colors, sound character, light-
ing character, and bottom track characteristics.

Groping for the Right Questions
The submarine intrusion problem represents a class of data
analysis problems where observations form a complex
structure, in relation to which it is unknown where and how
to find useful information.

On the lowest level of aggregation one faces, e. g., prob-
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Fig 3 Number and type (originally color
coded) of observations per day during
one year

Fig 1 Observation density as a function of
arclength along Sweden’s coastlline

Fig 2 Map of the two-dimensional distri-
bution of of observations within the south-
ern archipelago of Stockholm
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lems of constructing possible paths from uncertain point
data, of “counting” the number of targets using only indi-
rect evidence such as time and distance in relation to proba-
ble speed, and of finding indirect support for target
detection from coincident, more easily observable pro-
cesses such as radio signals from non-submarine sources.
On a more aggregated level, one wants to find spatio-tem-
poral patterns that might be used to predict future behavior.

Below, we will briefly describe techniques for mapping
both point data and aggregate spatial information, for visu-
alizing and analyzing statistically the temporal pattern of
observations, and for discovering and analyzing clusters in
space and time.

One of our first tasks was to show how various observa-
tion categories were distributed along the Swedish coast-
line. Fig 1 depicts the coastline curvilinear distribution of
all observations made during a certain time period. The
highest peak corresponds to observations in the Stockholm
archipelago. In general, the peaks in Fig 1 seem to corre-
spond to areas of naval interest rather than major popula-
tion centers.

Next, the two-dimensional distribution of observations
was mapped as shown in Fig 2. To highlight “hot spots”
non-linear pixel coloring was chosen. Stationary acoustical
and magnetic sensors are scarce resources which were often
installed to guard passages into areas of particular defense
interest, commonly giving rise to such hot spots. Since
these sensors were more or less on constant alert, they may
provide a measure of the temporal distribution of visits to
such areas.

A key question when analyzing data from suspected

intrusions is whether the observations form a non-random
distribution over time (see next section). To begin investi-
gating such questions, the graph of Fig 3 was produced.

Each of these diagrams represent a large family of possi-
ble visualizations since the data being displayed can be
selected at will, e.g., to show only high-quality civilian
sightings of submarine type, or reports from stationary sen-
sor installations.

Statistical Analysis of the Database
A shallow statistical analysis of the database was per-
formed. It was based on human observations of the catego-
ries 1-3 in the period 1986-1991. This set includes roughly
800 reports. The purpose of the statistical analysis was to
examine whether the observations occur randomly in time
and space. Even if they do not, other explanation factors
have to be eliminated before we are able to draw the con-
clusion that the set of observations arises from foreign sub-
marine intruders.

Cluster formations in the time dimension may arise dur-
ing summer holidays and weekends because more people
are then visiting the archipelago, possibly leading to an
increase in the number of observations (whether true or
false). Clusters in the spatial dimension may arise in areas
with many observers. A mass media effect may also be
present, i.e. individuals may show a greater tendency to
observe and report phenomena in the sea when mass media
have announced an ongoing suspected submarine activity.

To examine if the observations fall randomly in time two
kinds of tests were performed. The first test was based on
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the exact time the observation was made and provided the
strongest test results. The second test considers instead the
time between successive observations. Jointly, the two tests
provide additional information.

For each seasonal period considered, the result stated that
the hypothesis of randomness should be rejected.

After having established that the observations do not rep-
resent a random distribution, it remains to find out which
factors may have caused the non-randomness.

To determine the influence of the number of observers in
the archipelago the hypothesis “observations occur with the
same frequency workdays and weekends” was tested and
consistently accepted.

Another task was to examine, if, when, and where there
are clusters in time or space. For this purpose the cluster
analysis program CLUSTAN (Wishart 1987) was used. To
take into account the fact that several intrusions may be
going on simultaneously, and that the same area may be vis-
ited more than once during any given time period, the
observation set was visualized in two different ways:

1. The observations were clustered with respect to space
and the observations within each cluster were shown on a
time scale.

2. Similarly, clustering first with respect to time, then to
space was studied.

The cluster analyses show that well supported conclu-
sions regarding simultaneous clustering in time and space
require a very large and reliable data set. Even if that
requirement is not met, however, such studies may provide
valuable indications and input to further analysis.

Using Evidential Analysis to Associate
Intelligence Reports

When several similar submarines are operating concur-
rently, reports never tell which submarine they refer to.
Therefore, methods are needed which enable an analyst to
separate the intelligence reports into subsets according to
which submarine they are referring to (Schubert 1993).
Having applied this method, one can then analyze the
reports for each submarine separately, e.g., using methods
described in (Bergsten and Schubert 1993).

To treat this problem, we use the concept of conflict in
Dempster-Shafer theory (Shafer 1976) between the propo-
sitions of two intelligence reports as a measure of the prob-
ability that the two reports are referring to different
submarines.

In Fig 4 these subsets are denoted by χ
i and the conflict

when all pieces of evidence in χ
i are combined by Demp-

ster’s rule is denoted by ci. When the number of subsets is
uncertain there will also be a “domain conflict” c0 which is
a conflict between the current hypothesis about the number
of subsets and our prior belief.

The cause of the conflict can be non-firing sensors placed
between the positions of the two reports, the required veloc-
ity to travel between the positions of the two reports at their
respective times in relation to the assumed velocity of the

submarines, etc.
We use the minimizing of a criterion function of overall

conflict (the metaconflict function) as the method of parti-
tioning the evidence into subsets representing the events.

The method of finding the best partitioning is based on
an iterative minimization of the metaconflict function. In
each step the consequence of transferring a piece of evi-
dence from one subset to another is investigated. After this,
each subset of intelligence reports refers to a different target
and the reasoning can take place with each target treated
separately.

We may also specify each piece of nonspecific evidence
by observing changes in cluster and domain conflicts when
moving a piece of evidence from one subset to another
(Schubert 1996). Without this extension the most plausible
subset would take this piece of evidence as certainly
belonging to the subset.

Finally, we established a posterior probability distribu-
tion regarding the number of subsets (Schubert 1995).

Making Tactical Predictions from
Learned Patterns

We developed a machine-learning system for making short-
term predictions, based on methods which recognize an
incoming sequence of intelligence reports as belonging to a
certain category of sequences. Having found such a cate-
gory we obtain probabilities for different future develop-
ments given the current situation.

By use of a genetic algorithm, our system learns the cate-
gories of sequences of (simulated) intelligence reports.
When we receive a new scenario it is analyzed using the
learned categories. If the system finds a category of
sequences with a beginning similar to the current sequence,
the remainder of the historical sequences are used to give a
prediction about the future.

We show in Fig 5 a sequence of three intelligence
reports. The latest report from area E5 is placed to the right
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on the time scale at T0, and the two earlier reports from
area I4 and F4 are placed in their respective time intervals,
T5 and T3.

In learning we will now try to predict the next event.
Suppose it will happen in area E7 two time intervals into
the future, Fig 6. Our aim is to find a rule that predicts this
event based on the earlier information. Such a rule can be
highly specific in both precedent and prediction:

If [I4 & T5] [F4 & T3] [E5 & T0] then [E7 & T-2],
or it may throw a much wider net, e.g.:
If [HIJ345 & T456] [EF34 & T1234] [DEF456 & T0] then
[CDEF67 & T-1-2], Fig 7.

Both alternatives and all other combinations with a cer-
tain specificity in the precedent, or parts of it, and another
specificity in the prediction are possible and automatically
tested during the learning phase. The disadvantage of a spe-
cific prediction is that the prediction rule tends to become a
special case and may also get a low probability. A less spe-
cific rule has a higher probability but is not as useful in the
individual case. The learning mechanism uses a scoring
method that takes this into account and finds a suitable bal-
ance.

A statistical analysis based on a simulation of the method
showed that the probability of a correct prediction was at
best 54%, with an accuracy in predicted position of 5 kilo-
meters and in predicted time of 48 minutes. Prediction rules
with a probability and an accuracy such as these should be
very useful if they can be approached in practice.

Conclusions
The submarine intelligence database contains a huge
amount of information of varying credibility. Even if a
large part of the data is of low credibility, this part comple-
ments the picture obtained from the more reliable data.

The specialized knowledge and software technology
needed for state-of-the-art data mining and analysis needs
to be mastered by the analyst group itself rather than by
their consultants, in particular when dealing with top-secret
information. To be able to exploit these complex techniques
fully, analysts need to be fully in charge of their work and
its tools.

Much of the power of data analysis lies in the opportu-

nity to explore, more or less immediately, any promising
idea that is generated by the mind of the analyst. In the
absence of such dedicated, full-time access, the work
reported here has only scratched the surface of a veritable
mountain of information.
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