
BEHAVIORAL VERIFICATION OF BOM BASED COMPOSED MODELS

Imran Mahmood(a), Rassul Ayani(b), Vladimir Vlassov(c) , Farshad Moradi(d)

(a) (b) (c)Royal Institute of Technology (KTH), Stockholm, Sweden
(d)Swedish Defense Research Agency (FOI), Stockholm, Sweden

(a)imahmood@kth.se, (b)ayani@kth.se, (c)vladv@kth.se, (d)farshad.moradi@foi.se

ABSTRACT
A verified composition of predefined reusable
simulation components such as BOM (Base Object
Model) plays a significant role in saving time and cost
in the development of various simulations. BOM
represents a reusable component framework and posses
the ability to rapidly compose simulations but lacks
semantic and behavioral expressiveness required to
match components for a suitable composition.
Moreover external techniques are required to evaluate
behavioral verification of BOM based components. In
this paper we discuss behavioral verification and
propose an approach to verify the dynamic behavior of
a set of composed BOM components against given
specifications. We further define a Model Tester that
provides means to verify behavior of a composed model
during its execution. We motivate our verification
approach by suggesting solutions for some of the
categories of system properties. We also provide a case
study to clarify our approach.

Keywords: Composability, model verification,
deadlock detection, BOM, SCXML, model execution

1. INTRODUCTION
Verification is typically defined as the process of
determining whether a model is consistent with its
requirement specifications and whether it will satisfy
the requirements of the intended application (Petty
2009). Verification is concerned with the analysis of
accurate transformation of the requirements into a
conceptual model. Model Verification deals with
building the model right (Balci 1998) and conceptually
correct. Composability on the other hand is an
important term used in modeling and simulation. It is
the capability to select and assemble simulation
components in various combinations into simulation
systems to satisfy specific user requirements (Petty &
Weisel 2003). One conceptual approach to increase the
efficiency and effectiveness of complex model
development is, based on reusable model components
(Lehmann 2004). A composeable simulation model
component thus can be defined as a reusable, self-

contained and independently deployed software unit
that conforms to a component model (Bartholet et al.
2004), has well defined functionality and behavior and
is usable in a variety of contexts (Moradi 2008). Base
Object Models (BOMs) provide a framework to define
and characterize these components at a conceptual level.
BOM is a SISO standard and encapsulates information
needed to formally represent a simulation component
(Gustavson 2006).
 The term Composability carries varied meanings and
views in research literature that differ primarily by its
different levels. It is essential to consider these
different “levels” of composability, in order for them to
be meaningfully composed. Medjahed et al (Brahim &
Athman 2006) introduces a multilevel composability
model in which the composability of Semantic Web
Services is checked in four levels: Syntax, Static
Semantic, Dynamic Semantic and Qualitative level. In
Modeling and Simulation (M&S), these levels are also
brought into consideration during the composition
process of the model components. Syntactic
Composability means that the components have the
ability to fit together as is concerned with the matching
of syntactic information, such as message name and
number of parameters etc. Static Semantic
Composability refers to a meaningful and
computationally valid coupling of components whereas
Dynamic Semantic Composability deals with the
behavioral correctness of the composition. Composition
of models becomes more challenging when models are
heterogeneous in terms of their formal specifications
i.e., when they have different structural and behavioral
specifications (Sarjoughian 2006).
Various approaches have been developed to evaluate
different levels of composability. An interesting
approach has been proposed in (TEO & SZABO 2008)
that deals with the Syntactic and Semantic level of
composability and proposes an integrated approach for
model reuse across multiple application domains. In a
similar work we suggested a rule-based seven-step
process (Moradi et al. 2007) to calculate the
composability degree of a particular composition. It

mailto:mail@uni.edu�
mailto:ayani@kth.se�
mailto:vladv@kth.se�
mailto:farshad.moradi@foi.se,�

suggests that based on a given scenario, a set of BOM
components can be discovered from a BOM repository
and matched to analyze their composability degree at
three different levels. It was however mainly focused on
Syntactic and Static Semantic level of composition. We
further proposed another method in (Mahmood et al.
2009) which was mainly focused on matching the
structure and behavior of the BOM components at
Dynamic Semantic level. Our approach suggested in
(Mahmood et al. 2009) was an elementary framework to
match BOM state-machines by analyzing their structure
and execute them in a runtime environment.
In this paper we revisit and extend our state-machine
matching process and apply it to perform Behavioral
Verification analysis on a given model composition. In
this extended framework we introduce a Model Tester
to define and compare the requirement specifications
for verification and use this Tester during the model
execution to verify that the behavior of components
being composed match each other and that they can
correctly interact with each other to meet their
collective objectives. Subsequently we aim to convene
our methods with Case Study scenarios in order to
provide the proof of concept. Essentially behavior
verification problem looks at a goal oriented correct
execution of a given composition of components.
Solutions to such problem would enable simulation
modelers to select and compose various reusable
components and verify that their composition would
work correctly and satisfy their requirements and
intended objectives. We summarize the primary
contribution of this paper as follows:
We introduce behavioral verification of BOM based
model composition and propose a model tester to
represent requirement specification in form of states.
We suggest using this tester with our revised state-
machine matching process to verify the composed
model during execution through an instrumentation
technique. Based on this approach, we further suggest
the design of a behavioral verification framework that
takes candidate BOMs and Tester as input and perform
automatic verification. We also discuss different system
specification properties and as an example contribute a
solution for the verification of deadlock freedom and
apply it in a case study.
The rest of the paper is organized as follows: Section 2
formulates the discussion of Behavioral verification and
its different methods. Section 3 contains our proposed
behavioral verification process for BOM composition.
Section 4 provides the details and implementation of the
verification framework. A case study is presented in
Sections 5 and Section 6 concludes the paper.

2. BEHAVIORAL VERIFICATION
In this section, we discuss Behavioral Verification in
detail, highlight different methods for verification and
describe various classes of system properties and their
representation as requirement specifications. We further
propose design of our model tester and its use.
As previously defined, behavioral verification is a
process through which we identify that a given set of
model components possess correct behavior such that
when they are composed they satisfy a given criteria.

2.1. Methods of Verification
Based on the techniques used, the methods of
verification can be classified into four groups: I)
Informal, II) Static, III) Dynamic & IV) Formal (Balci
1998). For each group various tools and techniques
have been suggested within M&S community. Informal
techniques are mainly based on inspections, domain
expert reasoning and comparison with the similar
existing verified models. Static verification techniques
primarily focus on the assessment of static model
design including structural, syntax and semantic
analysis. They are called static because they can be
performed without the execution. Dynamic verification
techniques require the execution of the model and
attestation of its behavior. These techniques are based
on instrumentation, abstract level execution, cause-
effect graphing and reachability analysis. Formal
verification techniques present high degree of difficulty
while trying to prove correctness of the model using
mathematical methods including induction techniques,
inference models, deduction logic, predictive calculus,
correction proofs, bisimulation, and model checking
(Balci 1998).
In this paper our focus is on two verification methods
from the Static and Dynamic groups namely Structural
Analysis and Model Instrumentation. Structural
Analysis is used to examine the model structure using
rule-based evaluation and to verify if it adheres to the
principles of Finite State Automata. Model
Instrumentation involves insertion of a “Tester”
instrument in the composed model to observe the
behavior during abstract level execution. We refer it as
Dynamic verification.

2.2. System Properties
The system properties can generally be classified into
following groups (Berard & Bidoit 2001):

Reachability Properties: state that some particular
situation can be reached.

Safety Properties: express that under certain conditions,
something never occurs.

Liveness Properties: express that under certain
conditions, something will ultimately occur.

Fairness Properties: state that under certain conditions,
something will (or will not) occur infinitely often.

For each group, various cases and their solutions are
commonly discussed during the verification process.
Reachability and safety properties are usually the most
crucial to the system correctness. Safety properties
represent characteristics of the system such that
undesirable event will not occur. Deadlock freeness is a
special property commonly categorized as safety
property however theoretically its classification as
safety or liveness property is debatable (Berard &
Bidoit 2001). In this paper we discuss deadlock-
freeness as a safety property. We also propose solution
to this common issue of verification in the later section.
For verification purposes, the composed model under
consideration needs to be accompanied with a set of
requirement properties described in form of a model
tester. Figure 1 illustrates this relationship:

Figure 1: Behavioral Verification Relationship

2.3. Model Tester
In order to describe the requirement specifications, we
define a “Model Tester”. The Model Tester should be
conceptualized as a tester device which is attached to
the system during its execution to detect faults. The
Model tester mainly consists of the specifications of
behavioral properties representing desirable or
undesirable situations and incidences. The Model Tester
design is specified by the modeler in the form of a state-
machine and consists of good or bad states that express
a particular property and represent any of the families of

system properties. Each state is guarded by a
conditional trigger representing an event or a sequence
of events (or global system change) which is sought to
occur during the model execution. Good states are
expected to be reached while bad states are not expected
to be reached and thus the result of behavioral
verification depends on the reachability (or un-
reachability) of these states in the model tester.
Model tester is basically a passive component that only
observes the interaction of the components of the
composed model during the abstract level execution and
changes its respective states once a desired or undesired
behavior has been displayed by the composition hence
verify the overall behavior.
Most states in the tester are exitable and are
accompanied with an internal state reachability counter.
Once they are reached the counter is incremented and
then the tester is reset to its initial state. This is useful to
record the number of times a specific behavior has been
displayed by the composition and thus can be
eventually utilized to collect statistics. Some states in
the tester are however un-exitable and once reached
halts the tester. This means either the composition has
reached a successful completion of its goal(s) or it has
crashed abnormally or deadlocked. Presence of such
states means that the system has one or more
terminating conditions.
We suggest the following general guidelines to create a
Model Tester:
 A Ready state is defined to initialize the model

tester in a neutral state.
 The desirable goals or objectives of a system usually

expressed by reachability properties are defined as
good states.

 Unwanted situations are expressed as negative
reachability properties and are defined as bad states.
This should be noted that Model Tester doesn’t
represent states of the member components of a
composition; instead it contains states representing a
global change or an effect of the combined behavior
of the composition.

 An event or a sequence of events from the
composed model is defined as condition for
reaching each of these states.

 Commonly known correctness standards such as
freedom of Deadlock as safety, absence of Livelock
as liveness and Starvation freeness as fairness are
general issues in verification process and are
modeled in the tester as correctness standards
depending on the domain of application whereas
problems related to a specific business model are
usually described as reachable properties and thus
the objective of the verification is to test their
satisfaction or violation.

System Requirement
Specification

Composed Model Model Tester

Behavioral
Verification

Satisfied Violated

Overall structure of the model tester is a set of good or
bad states representing common safety, liveness and
fairness properties and scenario specific reachability
properties. The trigger to reach states of common
properties is the external signal caused by the detection
module integrated in the framework whereas the trigger
to reach scenario specific reachability states is caused
by probing the trace of the sequence of events exchange
during the interaction of the members of the
composition. Because for each correctness problem
there are different detection algorithms and each varies
based on the nature of the system however reachability
can be detected by simply looking at the traces of the
interaction.
 The verification of the generic properties involves
external solutions or integration of 3rd party model
checking tools. Our proposed verification framework
incorporates perpetual development and integration of
similar external solutions and is open to alternatives
because a variety of methodologies and techniques
exists and each has its pros and cons in terms of
suitability, accuracy and performance measures. Some
solutions use Symbolic Model checking or Temporal
Logic where as some use Graphs or Petri Nets. Our aim
is to provide a generic runtime verification environment
where a composed model can automatically be verified
with the help of a model tester for context specific
properties, while leaving the choice to the modeler to
choose and integrate any external solution for system
correctness verification. We however suggest a solution
for deadlock detection as an example in the later
section.

3. BEHAVIORAL VERIFICATION PROCESS
In this section we discuss our proposed Behavioral
Verification Process and the framework in which this
process has been implemented. A pre-condition for
entering this process is that the components share the
same semantic classes of the concepts used in the
composition i.e., they have passed the static semantic
matching phase as proposed in (Moradi et al. 2007).

Our proposed process is an aggregation of previously
proposed state-machine matching process(Mahmood et
al. 2009) with an extension of features in the framework
to facilitate verification. In (Mahmood et al. 2009) we
aimed to propose an initiative for developing a runtime
environment for state-machine matching where as in
this paper we intend to apply it for verification purpose.

Our verification process is based on a W3C compliant
State-machine language and runtime environment called
SCXML (State Chart Extensible Markup language)

(State Chart XML (SCXML) 2009). This state-machine
runtime environment has been used to perform abstract
level execution of the composed model. The process
consists of four steps as shown in Figure 2. First three
steps in this process are preparatory and the fourth step
is the execution step in which the state-machines are
executed and their interaction is monitored with respect
to the Model Tester. If the Model Tester doesn’t reach
any bad state throughout the execution and has reached
all (or some) of the good states then we conclude the
composition to be positively verified with respect to the
given requirement specifications.

This process is briefly described as follows:

3.1. Parsing
As BOM state-machines are event driven, they are
required to exchange events with each other to exit from
current state and move to the next state, thus the events
provide as guard to exit states. In the first step, BOM
behavioral data (including state-machines, their states
and corresponding events as exit conditions) of all the
participating components are ingested by Parsing and
their structure is loaded in the system. This step will
produce a list of:

• State-machines for each component
participating in the composition

• States for each state-machine
• Events (Send/Receive) of each component

Figure 2: Behavioral Verification Process

3.2. Structural Analysis
In the second step all state-machine objects are
sequentially passed through a set of Rules for structural

Step 1: Parsing

Step 2: Structural Analysis

Step 3: BOM →
SCXMLTransformation

Step 4: Dynamic Verification

analysis. These rules are used to check whether a
particular state-machine is structurally suitable for the
composition or not. If a state-machine is verified by
these rules, only then the verification process proceeds
otherwise the composition becomes invalid for the
given set of components.

Following is the proposed set of rules:

Rule1: Existence of Exit Condition
Each state in a state-machine must have an exit
condition or otherwise it should be declared as final
state.

Rule2: Existence of a sender for each receiver
In any of the participating state-machines for every
Receiver waiting for an Event E there must exist a
Sender that is supposed to send E.

Rule 3: Terminal Condition(optional)
If the composed model is terminating then there must
exist at least one state marked as final in at least one
state-machine among all the participants, such that at
least one exit condition (event) leads the composed
model to this state.
Violation of Rule-1 means that the execution path of a
participating state-machine is broken and does not lead
to a final state. Breach of Rule-2 means that there may
be a situation when the state-machine will wait for an
event endlessly as no corresponding sender is present to
send the desired event. Rule 3 optionally evaluates the
terminating condition of the model and if satisfied
expresses that the model has a termination point. There
may be cases where an execution is non-terminal and
the system runs for an indefinite time but for simplicity
we do not consider them. If all three rules are validated,
we can continue to the next step.

3.3. Transformation (BOM to SCXML)
In the third step, BOM objects are transformed to
SCXML format. Each state-machine will be
transformed to a separate SCXML document. The term
transform refers to the fact that the objects are
converted from BOM to SCXML format. Here we also
provide Model Tester in SCXML format so that it can
also be injected in our runtime framework.

3.4. Dynamic Verification
The fourth step deals with the abstract level execution
of the state-machines and their verification with respect
to the model tester. In this step all components are
subjected to an execution environment using

verification framework. We discuss the details of our
proposed Verification Framework in the next section.
In this step, all state-machines are set to their initial
states. When the execution begins, each state-machine
participates in a series of event exchange and as a result
moves to its next state until it reaches its final state (if
any, as not all members may possess final state). During
this execution the verification framework uses external
methods (if provided) to verify generic system
properties and also monitors overall system behavior by
observing events or sequence of events and trigger
signals to the model tester for state change. As an
example we suggested a method to detect deadlock in
our framework. If the execution does not encounter any
deadlock we verify that the composition satisfy the
required safety property i.e. deadlock freedom. If both
generic properties and context specific properties are
satisfied during the entire execution time we infer that
the given composition is verified with respect to
behavior.

4. BEHAVIORAL VERIFICATION

FRAMEWORK
In this section we discuss our proposed Behavioral
Verification Framework design and its execution in
detail. This framework uses SCXML to input and
execute XML structure of a set of participating event
driven state-machines. A finite state machine (FSM) is
event driven if its inputs and outputs are modeled in the
form of events or messages.

4.1. Framework Design:
Our framework consists of the following modules:

• Message Controller (MC)

This module is used as a communication platform. It is
an asynchronous Message Controller used to send and
receive multiple messages at a time. MC follows “Post
Office” protocol and consists of an address space to
accommodate each component for communication.
Every component needs to register its name to be used
as a unique identifier for the address so that it can be
allocated with an INBOX. Each INBOX is a queue of
Messages so that all the messages addressed to a
component are stored in the INBOX in form of a FIFO
queue and the component can process them one by one.
Also there is a common OUTBOX for all outgoing
messages, shared by all the components where they can
place their outgoing messages addressed to each other.
These outgoing messages are dispatched periodically
and MC is responsible to place them in the pertaining

recipient’s INBOX from where the receivers can
retrieve and process them.

• Component Executor (CE)
A Component Executor module represents one instance
of a component in the system and has a unique ID (i.e.,
the name of the component). Each CE has a SCXML
engine object (State Chart XML (SCXML) 2009) to
transact state-machine and can also communicate with
the “Message Controller” to send and receive messages.
CEs are implemented in form of Java Threads in order
to perform parallel interaction between the components.
They use SCXML document to initialize their internal
SCXML engine and set the current state to their initial
state. This is how a particular state-machine model is
assigned to an executor thread in the system. Then an
Event listener of each component is invoked and ready
to fire events. Each time a suitable event is fired CE
transacts its internal state-machine to the next state. A
CE will stop its thread if it reaches its final state (if it
has one as described by the SCXML model). If all CEs
having final states are stopped, the process will
successfully terminate.

• Tester Executor (TE)
This module is similar to Component Executor as it also
has an SCXML state-machine model (representing our
Model Tester) and SCXML engine. But it is passive and
only receives events and changes its internal state. It
also has a state reachability counter to count number of
times a particular state (good or bad) has been reached.
It can be modeled to have exitable or non-exitable, good
or bad states. In case an exitable state if reached, the
tester increments the counter and automatically resets
back to the ready state to wait for any other event.

• Event lookup Table
This module contains a list of all the Events used in the
composition and are parsed from BOM. This list of
Events is accessible to each Component Executor so
that being at a particular state they can locate the
information of the next occurring event expected to be
sent or received. This information is used to let a
component either send an event to a specified recipient
or wait for an event from a sender during each logical
time step.

• Monitor
A monitor is used to observe global behavior of the
composition. A monitor acts as a comparer between the
member state-machines and the Model Tester. It
monitors the overall execution, waits for the important
exchange of events or sequences of events and fire

necessary events for the Model Tester to update its
state.

• Deadlock Detector
We propose this module as an example solution to one
of the generic system property i.e., deadlock freedom.
A deadlock can be defined as: A set of components are
said to be in a deadlock if each of them is waiting for an
event that only another component in the same set can
cause.
Deadlock is of two types: i) Total Deadlock ii) Partial
Deadlock. If all components of the composition are in
the waiting set then it leads to a total deadlock whereas
if only some components are in the waiting set then it is
a partial deadlock.
We develop deadlock detector component to observe
any possible detection of deadlock and notify the
monitor. This detector periodically collects the list of
those components which are waiting for any event to
proceed and apply our proposed deadlock detection
method.

• Deadlock Detection Method
This method assumes a set Q of tuples of waiting
components called “Receivers” which are waiting for
their corresponding “Senders”. This arrangement is
used to establish a wait-for relationship for each waiting
component.

Q = {(r, s) | r ∈ Receiver, s ∈ Sender}

Based on the information collected from the set Q, we
construct a “Wait-for Graph” and fill it with vertices
representing all the components from the waiting list at
a particular instance of time. First a receiver will be
inserted then its corresponding sender will be inserted.
Then a directed edge is connected from the receiver to
the sender showing “Wait-For” relation. When all the
components from the waiting set have been inserted in
the graph, we apply a standard Depth First Search
(DFS) algorithm to find any possible cycles within the
graph.
A cycle is defined as a closed loop of two or more
vertices connected in a closed chain. If there exists a
cycle, it means that some components are waiting for
each other in a chain and thus there is a deadlock. In
practice cycle detection in a Graph is done using Depth
First Search (DFS) coloring algorithm. Color markers
are used to keep track of which vertices have been
discovered. White marks vertices that have yet to be
discovered, gray marks a vertex that is discovered but
still has vertices adjacent to it that are undiscovered. A
black vertex is discovered vertex that is not adjacent to

any white vertices. Edges that lead to a new unvisited
vertex are called Tree Edge whereas the edges that lead
to an already visited vertex are called back-edges. By
definition: "A directed graph G is acyclic if and only if
a depth-first search of G yields no back edges". So DFS
essentially detects any back-edge for finding a
cycle(Skiena July, 1998). If we detect any cycle in the
wait-for graph of a set of waiting components then we
have found a deadlock which means there exists a
cyclic chain of two or more components that are waiting
for each other. If the number of waiting components in
the set is equal to the total number of components
participating in the composition then it will be a Total
deadlock.

4.2. Framework Execution:

Figure 3 illustrate the verification framework:

Figure 3: Behavioral Verification Framework

When the execution begins all Component Executors
(CE) initialize their SCXML state-machine model
objects to their initial states and also register their IDs
in the Message Controller (MC) for address space
allocation. When all the participating components are
ready, they start dynamic interaction with each other by
sending or receiving event messages using MC. Based
on their current state each CE identifies the next event it
is supposed to send or receive using Event Lookup
table. From this table each CE can fetch information
about the event which is required to exit its current
state. If it is an outgoing event (i.e., the source of this
event is the CE itself) then the CE will act as a Sender
whereas if it is an incoming event (i.e., CE is the target
of this event then it has to wait as a receiver).
In case of being a Sender a CE will prepare a message
object by stamping its ID as a source, its recipient’s ID
as target and message parameters taken from the Event

Object (previously fetched from the Event lookup table)
and transmit it using Message Controller. MC will place
this message in the Outgoing queue which will be
dispatched in the next time generation. This CE will
also fire that event in its internal state-machine and go
to the next state.
If the CE is a receiver it will wait until it has received
any message from the Message Controller. In case of
multiple arrivals the first message from the INBOX is
retrieved (as Queue is FIFO) and processed by firing the
event internally and stepping to the next state. Each
time there is a Sending or Receiving of an event, based
on which a component transacts its state-machine to the
next state, we let the system advance to next logical
time step.
Deadlock detector performs its routine on each time
step and checks possible deadlock occurences. In case
of detection, it alerts the monitor which in turn sends a
signal to the Tester Executor (TE). TE moves to the
corresponding bad state and halts the execution.
Monitor is also responsible to observe the behavior
which corresponds to context specific reachability
properties in the Model Tester and in case of finding
valid sequence of events; it triggers an alert to the
Model Tester. There is a performance bottleneck when
we perform deadlock detection routine at each time step
thus we propose to schedule them after an N interval of
time where N is defined by the modeler based on the
size of the composition and system resources.
The successful completion of the abstract level
execution means that there is no violation of generic
system properties and the context specific properties are
reachable (or unreachable in case of negative
reachability properties) and thus the behavior of the
member components is verified.

5. CASE STUDY
In order to test our verification approach, we have
considered a Restaurant Case Study. We discuss two
scenarios in this case study.

5.1. Scenario A
The basic theme of the scenario is that customers arrive
to a restaurant, order food, eat, pay their bills and then
leave. There are 3 components in this scenario:
Customer, Waiter and Kitchen. A sequence diagram in
Figure 4 represents the pattern of interplay between
these components.

Message
Controller

Event
Lookup
Table

Monitor

TE

Deadlock
Detector

CE1 CE2 CE2

Customer Waiter Kitchen

RequestMenu

GiveMenu

OrderFood

ConveyOrder

FoodReady
ServeFood

RequestBill

GiveBill

PayByCash

GiveReciept

Figure 4: Restaurant sequence diagram

Figures 5, 6 & 7 represent the individual state-machines
models of each component involved in the scenario.
Green text with an up arrow represents a send event (as
an exit condition) whereas blue text with a down arrow
represents a receive event.
In the first step of the verification of composed
restaurant model the state-machines are parsed from the
BOMs and state-machine objects are produced. In step
2 the corresponding data is passed through structural
analysis, which checks the state-machines against the
rules and if passed the static analysis phase is declared
as successful.
In the next step SCXML documents are generated, each
representing the corresponding state-machines of the
customer, waiter and kitchen components. Also a Model
Tester is defined in the form of SCXML as represented
by figure 8. Each SCXML document is then executed in
runtime environment. When the Component-Executors
are initialized to their initial states they identify their
next action The first CE which is responsible to send an
action in the Message controller is Customer and the
action is RequestMenu. Waiter component is waiting for
this event and as soon as it receives RequestMenu, it
moves on the next state and Send GiveMenu. On
receiving GiveMenu, the Customer starts to OrderFood.
Thus each component sends and receives events in the
same manner until the Customer component (which is
the only component having a final state) reaches
“Leaving” state and thus the abstract level execution is
successfully completed and this is how the three BOMs
are verified and validated using dynamic analysis.

Ready

Waiting

Request Menu
Selecting

FoodGiveMenu

Order Food

Eating

Serve Food

Request Bill

Paying
GiveBill

PayByCash

Leaving

GiveReciept

Balk
Waiting

For Food

Initial State

Final State

Figure 5: Customer state-machine

Figure 6: Kitchen state-machine

Figure 7: Waiter state-machine

Sales and Dinning are considered to be good states as
they promote business. Leaving the restaurant without
payment is a bad state as it incurs loss. Deadlock is a
bad-state marked in gray and is un-exitable which
means if reached halts the execution.

Dinning
Dinning

Sales

PaymentRecieved Reset

Reset

Leave Without Payment

Reset

LeaveWithoutPayment

ReadyDeadlocked
Deadlocked

Figure 8: Model Tester

The state transition in Model Tester could occur due to
a sequence of events exchange between the components
e.g., in order to reach “dinning” state, the correct
sequence of events is:

Customer!OrderFood → Waiter!ConveyOrder →
Kitchen!FoodReady → Waiter!ServeFood →
Customer!RequestBill → Waiter!GiveBill →
Customer!PayByCash → Waiter!GiveReciept

When this sequence is noticed by the monitor, it will
fire “Dinning” event to the tester. Another sequence of
events is:

Waiter!ServeFood → Customer!RequestBill→ Customer!Balk

When this sequence is noticed by the monitor, it will
fire “Leave without payment” event which is a bad state
because Waiter serves food but Customer after
requesting bill goes to waiting state and leaves the
restaurant without paying. Note the Balk event that can
be fired from the waiting state.
If during the entire execution of the restaurant scenario,
no bad states have ever been reached and the number of
times the good states are reached is greater than zero,
then the composed restaurant model is said to be
dynamically verified in terms of behavior and with
respect to the given specifications.

5.2. Scenario B
In this scenario, we modify the behavior of waiter, i.e.,
after taking the order, he makes a Bill and gives it to the
customer and waits for the payment. Once Customer
pays the bill, only then he conveys the order to the
kitchen. Figure 9 represents the modified waiter.
This modification passes Structural Analysis because all
the events are same only their order is changed.
However when execute it in the dynamic verification
step, it detects deadlock because the customer waits for
the food to be served where as the waiter waits for the
bill to be paid. Since two waiting components wait for
each other so our deadlock detector detects a closed
cycle in the wait-for graph and thus notifies the

detection of deadlock to the monitor which in turn puts
the Model Tester in the “Deadlocked” state and thus the
composition is not verified due to deadlock.

Figure 9: Waiter state-machine

6. CONCLUSIONS AND FUTURE WORK
In this paper we discussed Behavioral Verification and
its different methods. We proposed a Model Tester to be
used as an Instrumentation Technique for the dynamic
behavioral analysis and proposed a verification
framework using this technique. We also discussed
different classes of the system correctness properties
and suggested to represent them as good or bad states in
the model tester. Deadlock Freedom being a commonly
accepted correctness standard is suggested to be
included in the model tester as a key requirement beside
other scenario specific reachability properties. We
further proposed a method to detect deadlock and
implemented it as an integrated module in our
verification framework. Similar modules can be
developed and added to the framework to detect other
safety or liveness properties thus increasing the
credibility of the verification process. At the end we
provided a restaurant case study as a proof of concept.

With the help of Behavioral Verification Process we
can verify any BOM composition and essentially help
the modeler to study and analyze the behavior using
model tester which is based on system properties. These
properties from different classes cover a variety of
verification aspects and evaluation standards. By
verifying the behavior of a set of BOM we can assert
that a necessary condition in the process of BOM
composition is fulfilled.
We are further interested to use formal methods such as
Petri Nets and Linear Temporal Logic to verify the

composition based on more complex requirement
specifications including livelock freedom and starvation
freeness. We further strive to generalize our verification
approach for other component frameworks such as
DEVS (Discrete Event System Specification) to match
and verify model compositions.

REFERENCES
Balci, O 1998, 'Verification. Validation and Testing', in

Handbook of Simulation: Principles,
Methodology, Advances, Applications and
Practice, John Willey & Sons.

Bartholet, RG, Brogan, DC, Reynolds, PF & Carnahan,
JC 2004, 'In Search of the Philosopher’s Stone:
Simulation Composability Versus Component-
Based Software Design', Simulation
Interoperability Workshop, Orlando.

Berard, B & Bidoit, M 2001, Systems And Software
Verification, Springer.

Brahim, M & Athman, B 2006, 'A Multilevel
Composability Model for Semantic Web Services',
Journal of IEEE Transactions on Knowledge and
Data Engineering, vol VOL. 17, No. 7.

Gustavson, P 2006, 'Guide for Base Object Model
(BOM) Use and Implementation', Simulation
Interoperability Standard Organizations (SISO).

Lehmann, A 2004, 'Component-Based Modeling and
Simulation – Status and Perspectives', Eighth
IEEE International Symposium on Distributed
Simulation and Real-Time Applications.

Mahmood, I, Ayani, R, Vlassov, V & Moradi, F 2009,
'Statemachine Matching in BOM based model
Composition', 13th IEEE/ACM International
Symposium on Distributed Simulation and Real
Time Applications, Singapore.

Moradi, F 2008, 'Framework for Component Based
Modeling and Simulation using BOMs and
Semantic Web Technology', PhD Thesis,
KTH/ICT/ECS AVH-08/05—SE, 2008,
Stockholm.

Moradi, F, Ayani, R, Mokerizadeh, S, Shahmirzadi, GH
& Tan, G 2007, 'A Rule-based Approach to
Syntactic and Semantic Composition of BOMs',
11th IEEE Symposium on Distributed Simulation
and Real-Time Applications.

Petty, MD 2009, 'Verification and Validation', in
Principles of Modeling and Simulation, John
Wiley & Sons.

Petty, MD & Weisel, EW 2003, 'A Composability
Lexicon', Proceedings of the Spring Simulation,
Orlando, FL.

Sarjoughian, HS 2006, 'Model Composability',
Proceedings of the Winter Simulation Conference.

Skiena, SS July, 1998, The Algorithm Design Manual ,
Springer.

'State Chart XML (SCXML)' 2009, W3C.
TEO, YM & SZABO, C 2008, 'CODES: An Integrated

Approach to Composable Modeling and
Simulation', 41st Annual Simulation Symposium,
Ottawa.

	Introduction
	Behavioral Verification
	Methods of Verification
	System Properties
	Model Tester

	Behavioral Verification Process
	Parsing
	Structural Analysis
	Transformation (BOM to SCXML)
	Dynamic Verification

	Behavioral Verification Framework
	Framework Design:
	Framework Execution:

	Case Study
	Scenario A
	Scenario B

	Conclusions and future work

