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ABSTRACT  
A verified composition of predefined reusable 
simulation components such as BOM (Base Object 
Model) plays a significant role in saving time and cost 
in the development of various simulations. BOM 
represents a reusable component framework and posses 
the ability to rapidly compose simulations but lacks 
semantic and behavioral expressiveness required to 
match components for a suitable composition. 
Moreover external techniques are required to evaluate 
behavioral verification of BOM based components. In 
this paper we discuss behavioral verification and 
propose an approach to verify the dynamic behavior of 
a set of composed BOM components against given 
specifications. We further define a Model Tester that 
provides means to verify behavior of a composed model 
during its execution. We motivate our verification 
approach by suggesting solutions for some of the 
categories of system properties. We also provide a case 
study to clarify our approach. 

 
Keywords: Composability, model verification, 
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1. INTRODUCTION 
Verification is typically defined as the process of 
determining whether a model is consistent with its 
requirement specifications and whether it will satisfy 
the requirements of the intended application (Petty 
2009). Verification is concerned with the analysis of 
accurate transformation of the requirements into a 
conceptual model. Model Verification deals with 
building the model right (Balci 1998) and conceptually 
correct. Composability on the other hand is an 
important term used in modeling and simulation. It is 
the capability to select and assemble simulation 
components in various combinations into simulation 
systems to satisfy specific user requirements (Petty & 
Weisel 2003). One conceptual approach to increase the 
efficiency and effectiveness of complex model 
development is, based on reusable model components 
(Lehmann 2004). A composeable simulation model 
component thus can be defined as a reusable, self-

contained and independently deployed software unit 
that conforms to a component model (Bartholet et al. 
2004), has well defined functionality and behavior and 
is usable in a variety of contexts (Moradi 2008). Base 
Object Models (BOMs) provide a framework to define 
and characterize these components at a conceptual level. 
BOM is a SISO standard and encapsulates information 
needed to formally represent a simulation component 
(Gustavson 2006).  
  The term Composability carries varied meanings and 
views in research literature that differ primarily by its 
different levels.  It is essential to consider these 
different “levels” of composability, in order for them to 
be meaningfully composed. Medjahed et al (Brahim & 
Athman 2006) introduces a multilevel composability 
model in which the composability of Semantic Web 
Services is checked in four levels: Syntax, Static 
Semantic, Dynamic Semantic and Qualitative level. In 
Modeling and Simulation (M&S), these levels are also 
brought into consideration during the composition 
process of the model components. Syntactic 
Composability means that the components have the 
ability to fit together as is concerned with the matching 
of syntactic information, such as message name and 
number of parameters etc. Static Semantic 
Composability refers to a meaningful and 
computationally valid coupling of components whereas 
Dynamic Semantic Composability deals with the 
behavioral correctness of the composition. Composition 
of models becomes more challenging when models are 
heterogeneous in terms of their formal specifications 
i.e., when they have different structural and behavioral 
specifications (Sarjoughian 2006). 
Various approaches have been developed to evaluate 
different levels of composability. An interesting 
approach has been proposed in (TEO & SZABO 2008) 
that deals with the Syntactic and Semantic level of 
composability and proposes an integrated approach for 
model reuse across multiple application domains. In a 
similar work we suggested a rule-based seven-step 
process (Moradi et al. 2007) to calculate the 
composability degree of a particular composition. It 
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suggests that based on a given scenario, a set of BOM 
components can be discovered from a BOM repository 
and matched to analyze their composability degree at 
three different levels. It was however mainly focused on 
Syntactic and Static Semantic level of composition. We 
further proposed another method in (Mahmood et al. 
2009) which was mainly focused on matching the 
structure and behavior of the BOM components at 
Dynamic Semantic level. Our approach suggested in 
(Mahmood et al. 2009) was an elementary framework to 
match BOM state-machines by analyzing their structure 
and execute them in a runtime environment.  
In this paper we revisit and extend our state-machine 
matching process and apply it to perform Behavioral 
Verification analysis on a given model composition. In 
this extended framework we introduce a Model Tester 
to define and compare the requirement specifications 
for verification and use this Tester during the model 
execution to verify that the behavior of components 
being composed match each other and that they can 
correctly interact with each other to meet their 
collective objectives. Subsequently we aim to convene 
our methods with Case Study scenarios in order to 
provide the proof of concept. Essentially behavior 
verification problem looks at a goal oriented correct 
execution of a given composition of components. 
Solutions to such problem would enable simulation 
modelers to select and compose various reusable 
components and verify that their composition would 
work correctly and satisfy their requirements and 
intended objectives. We summarize the primary 
contribution of this paper as follows: 
We introduce behavioral verification of BOM based 
model composition and propose a model tester to 
represent requirement specification in form of states. 
We suggest using this tester with our revised state-
machine matching process to verify the composed 
model during execution through an instrumentation 
technique. Based on this approach, we further suggest 
the design of a behavioral verification framework that 
takes candidate BOMs and Tester as input and perform 
automatic verification. We also discuss different system 
specification properties and as an example contribute a 
solution for the verification of deadlock freedom and 
apply it in a case study. 
The rest of the paper is organized as follows:  Section 2 
formulates the discussion of Behavioral verification and 
its different methods. Section 3 contains our proposed 
behavioral verification process for BOM composition. 
Section 4 provides the details and implementation of the 
verification framework. A case study is presented in 
Sections 5 and Section 6 concludes the paper.  

 
2. BEHAVIORAL VERIFICATION 
In this section, we discuss Behavioral Verification in 
detail, highlight different methods for verification and 
describe various classes of system properties and their 
representation as requirement specifications. We further 
propose design of our model tester and its use.  
As previously defined, behavioral verification is a 
process through which we identify that a given set of 
model components possess correct behavior such that 
when they are composed they satisfy a given criteria.  
 
2.1. Methods of Verification 
Based on the techniques used, the methods of 
verification can be classified into four groups:  I) 
Informal, II) Static, III) Dynamic & IV) Formal (Balci 
1998). For each group various tools and techniques 
have been suggested within M&S community. Informal 
techniques are mainly based on inspections, domain 
expert reasoning and comparison with the similar 
existing verified models. Static verification techniques 
primarily focus on the assessment of static model 
design including structural, syntax and semantic 
analysis. They are called static because they can be 
performed without the execution. Dynamic verification 
techniques require the execution of the model and 
attestation of its behavior. These techniques are based 
on instrumentation, abstract level execution, cause-
effect graphing and reachability analysis. Formal 
verification techniques present high degree of difficulty 
while trying to prove correctness of the model using 
mathematical methods including induction techniques, 
inference models, deduction logic, predictive calculus, 
correction proofs, bisimulation, and model checking 
(Balci 1998).  
In this paper our focus is on two verification methods 
from the Static and Dynamic groups namely Structural 
Analysis and Model Instrumentation. Structural 
Analysis is used to examine the model structure using 
rule-based evaluation and to verify if it adheres to the 
principles of Finite State Automata. Model 
Instrumentation involves insertion of a “Tester” 
instrument in the composed model to observe the 
behavior during abstract level execution. We refer it as 
Dynamic verification. 

 
2.2. System Properties 
The system properties can generally be classified into 
following groups (Berard & Bidoit 2001): 
 
Reachability Properties: state that some particular 
situation can be reached. 
 



Safety Properties: express that under certain conditions, 
something never occurs. 
 
Liveness Properties: express that under certain 
conditions, something will ultimately occur. 
 
Fairness Properties:  state that under certain conditions, 
something will (or will not) occur infinitely often. 
 
 
For each group, various cases and their solutions are 
commonly discussed during the verification process. 
Reachability and safety properties are usually the most 
crucial to the system correctness. Safety properties 
represent characteristics of the system such that 
undesirable event will not occur. Deadlock freeness is a 
special property commonly categorized as safety 
property however theoretically its classification as 
safety or liveness property is debatable (Berard & 
Bidoit 2001). In this paper we discuss deadlock-
freeness as a safety property. We also propose solution 
to this common issue of verification in the later section. 
For verification purposes, the composed model under 
consideration needs to be accompanied with a set of 
requirement properties described in form of a model 
tester. Figure 1 illustrates this relationship: 

 

 
 

Figure 1: Behavioral Verification Relationship 
 
 
 

2.3. Model Tester 
In order to describe the requirement specifications, we 
define a “Model Tester”. The Model Tester should be 
conceptualized as a tester device which is attached to 
the system during its execution to detect faults. The 
Model tester mainly consists of the specifications of 
behavioral properties representing desirable or 
undesirable situations and incidences. The Model Tester 
design is specified by the modeler in the form of a state-
machine and consists of good or bad states that express 
a particular property and represent any of the families of 

system properties. Each state is guarded by a 
conditional trigger representing an event or a sequence 
of events (or global system change) which is sought to 
occur during the model execution. Good states are 
expected to be reached while bad states are not expected 
to be reached and thus the result of behavioral 
verification depends on the reachability (or un-
reachability) of these states in the model tester. 
Model tester is basically a passive component that only 
observes the interaction of the components of the 
composed model during the abstract level execution and 
changes its respective states once a desired or undesired 
behavior has been displayed by the composition hence 
verify the overall behavior. 
Most states in the tester are exitable and are 
accompanied with an internal state reachability counter. 
Once they are reached the counter is incremented and 
then the tester is reset to its initial state. This is useful to 
record the number of times a specific behavior has been 
displayed by the composition and thus can be 
eventually utilized to collect statistics. Some states in 
the tester are however un-exitable and once reached 
halts the tester. This means either the composition has 
reached a successful completion of its goal(s) or it has 
crashed abnormally or deadlocked. Presence of such 
states means that the system has one or more 
terminating conditions.  
We suggest the following general guidelines to create a 
Model Tester: 
 A Ready state is defined to initialize the model 

tester in a neutral state. 
 The desirable goals or objectives of a system usually 

expressed by reachability properties are defined as 
good states.  

 Unwanted situations are expressed as negative 
reachability properties and are defined as bad states. 
This should be noted that Model Tester doesn’t 
represent states of the member components of a 
composition; instead it contains states representing a 
global change or an effect of the combined behavior 
of the composition.  

 An event or a sequence of events from the 
composed model is defined as condition for 
reaching each of these states.  

 Commonly known correctness standards such as 
freedom of Deadlock as safety, absence of Livelock 
as liveness and Starvation freeness as fairness are 
general issues in verification process and are 
modeled in the tester as correctness standards 
depending on the domain of application whereas 
problems related to a specific business model are 
usually described as reachable properties and thus 
the objective of the verification is to test their 
satisfaction or violation. 
 

System Requirement 
Specification 

 

Composed Model Model Tester 

Behavioral 
Verification 

Satisfied Violated 



Overall structure of the model tester is a set of good or 
bad states representing common safety, liveness and 
fairness properties and scenario specific reachability 
properties. The trigger to reach states of common 
properties is the external signal caused by the detection 
module integrated in the framework whereas the trigger 
to reach scenario specific reachability states is caused 
by probing the trace of the sequence of events exchange 
during the interaction of the members of the 
composition.  Because for each correctness problem 
there are different detection algorithms and each varies 
based on the nature of the system however reachability 
can be detected by simply looking at the traces of the 
interaction. 
 The verification of the generic properties involves 
external solutions or integration of 3rd party model 
checking tools. Our proposed verification framework 
incorporates perpetual development and integration of 
similar external solutions and is open to alternatives 
because a variety of methodologies and techniques 
exists and each has its pros and cons in terms of 
suitability, accuracy and performance measures. Some 
solutions use Symbolic Model checking or Temporal 
Logic where as some use Graphs or Petri Nets. Our aim 
is to provide a generic runtime verification environment 
where a composed model can automatically be verified 
with the help of a model tester for context specific 
properties, while leaving the choice to the modeler to 
choose and integrate any external solution for system 
correctness verification. We however suggest a solution 
for deadlock detection as an example in the later 
section. 
 
3. BEHAVIORAL VERIFICATION PROCESS 
In this section we discuss our proposed Behavioral 
Verification Process and the framework in which this 
process has been implemented. A pre-condition for 
entering this process is that the components share the 
same semantic classes of the concepts used in the 
composition i.e., they have passed the static semantic 
matching phase as proposed in (Moradi et al. 2007). 
 
Our proposed process is an aggregation of previously 
proposed state-machine matching process(Mahmood et 
al. 2009) with an extension of features in the framework 
to facilitate verification. In (Mahmood et al. 2009) we 
aimed to propose an initiative for developing a runtime 
environment for state-machine matching where as in 
this paper we intend to apply it for verification purpose. 
 
Our verification process is based on a W3C compliant 
State-machine language and runtime environment called 
SCXML (State Chart Extensible Markup language) 

(State Chart XML (SCXML) 2009). This state-machine 
runtime environment has been used to perform abstract 
level execution of the composed model. The process 
consists of four steps as shown in Figure 2. First three 
steps in this process are preparatory and the fourth step 
is the execution step in which the state-machines are 
executed and their interaction is monitored with respect 
to the Model Tester. If the Model Tester doesn’t reach 
any bad state throughout the execution and has reached 
all (or some) of the good states then we conclude the 
composition to be positively verified with respect to the 
given requirement specifications.  
 
This process is briefly described as follows: 

  
3.1. Parsing 
As BOM state-machines are event driven, they are 
required to exchange events with each other to exit from 
current state and move to the next state, thus the events 
provide as guard to exit states. In the first step, BOM 
behavioral data (including state-machines, their states 
and corresponding events as exit conditions) of all the 
participating components are ingested by Parsing and 
their structure is loaded in the system. This step will 
produce a list of: 
 

• State-machines for each component 
participating in the composition 

• States for each state-machine 
• Events (Send/Receive) of each component  

 
 
  

 
Figure 2: Behavioral Verification Process 

 
3.2. Structural Analysis 
In the second step all state-machine objects are 
sequentially passed through a set of Rules for structural 

Step 1: Parsing 

Step 2: Structural Analysis 

Step 3: BOM → 
SCXMLTransformation 

Step 4: Dynamic Verification  



analysis. These rules are used to check whether a 
particular state-machine is structurally suitable for the 
composition or not.  If a state-machine is verified by 
these rules, only then the verification process proceeds 
otherwise the composition becomes invalid for the 
given set of components.  
 
Following is the proposed set of rules:  
 
Rule1: Existence of Exit Condition 
Each state in a state-machine must have an exit 
condition or otherwise it should be declared as final 
state.  
 
Rule2: Existence of a sender for each receiver 
In any of the participating state-machines for every 
Receiver waiting for an Event E there must exist a 
Sender that is supposed to send E. 
 
Rule 3: Terminal Condition(optional) 
If the composed model is terminating then there must 
exist at least one state marked as final in at least one 
state-machine among all the participants, such that at 
least one exit condition (event) leads the composed 
model to this state. 
Violation of Rule-1 means that the execution path of a 
participating state-machine is broken and does not lead 
to a final state. Breach of Rule-2 means that there may 
be a situation when the state-machine will wait for an 
event endlessly as no corresponding sender is present to 
send the desired event. Rule 3 optionally evaluates the 
terminating condition of the model and if satisfied 
expresses that the model has a termination point. There 
may be cases where an execution is non-terminal and 
the system runs for an indefinite time but for simplicity 
we do not consider them. If all three rules are validated, 
we can continue to the next step.  
 
3.3. Transformation (BOM to SCXML) 
In the third step, BOM objects are transformed to 
SCXML format. Each state-machine will be 
transformed to a separate SCXML document. The term 
transform refers to the fact that the objects are 
converted from BOM to SCXML format. Here we also 
provide Model Tester in SCXML format so that it can 
also be injected in our runtime framework. 

 
3.4. Dynamic Verification  
The fourth step deals with the abstract level execution 
of the state-machines and their verification with respect 
to the model tester. In this step all components are 
subjected to an execution environment using 

verification framework. We discuss the details of our 
proposed Verification Framework in the next section.  
In this step, all state-machines are set to their initial 
states. When the execution begins, each state-machine 
participates in a series of event exchange and as a result 
moves to its next state until it reaches its final state (if 
any, as not all members may possess final state). During 
this execution the verification framework uses external 
methods (if provided) to verify generic system 
properties and also monitors overall system behavior by 
observing events or sequence of events and trigger 
signals to the model tester for state change. As an 
example we suggested a method to detect deadlock in 
our framework. If the execution does not encounter any 
deadlock we verify that the composition satisfy the 
required safety property i.e. deadlock freedom. If both 
generic properties and context specific properties are 
satisfied during the entire execution time we infer that 
the given composition is verified with respect to 
behavior.  
 
4. BEHAVIORAL VERIFICATION 

FRAMEWORK 
In this section we discuss our proposed Behavioral 
Verification Framework design and its execution in 
detail. This framework uses SCXML to input and 
execute XML structure of a set of participating event 
driven state-machines. A finite state machine (FSM) is 
event driven if its inputs and outputs are modeled in the 
form of events or messages.  
 
4.1. Framework Design: 
Our framework consists of the following modules: 

 
• Message Controller (MC) 

This module is used as a communication platform. It is 
an asynchronous Message Controller used to send and 
receive multiple messages at a time. MC follows “Post 
Office” protocol and consists of an address space to 
accommodate each component for communication. 
Every component needs to register its name to be used 
as a unique identifier for the address so that it can be 
allocated with an INBOX. Each INBOX is a queue of 
Messages so that all the messages addressed to a 
component are stored in the INBOX in form of a FIFO 
queue and the component can process them one by one. 
Also there is a common OUTBOX for all outgoing 
messages, shared by all the components where they can 
place their outgoing messages addressed to each other. 
These outgoing messages are dispatched periodically 
and MC is responsible to place them in the pertaining 



recipient’s INBOX from where the receivers can 
retrieve and process them. 

 
• Component Executor (CE) 
A Component Executor module represents one instance 
of a component in the system and has a unique ID (i.e., 
the name of the component). Each CE has a SCXML 
engine object (State Chart XML (SCXML) 2009) to 
transact state-machine and can also communicate with 
the “Message Controller” to send and receive messages. 
CEs are implemented in form of Java Threads in order 
to perform parallel interaction between the components. 
They use SCXML document to initialize their internal 
SCXML engine and set the current state to their initial 
state. This is how a particular state-machine model is 
assigned to an executor thread in the system. Then an 
Event listener of each component is invoked and ready 
to fire events. Each time a suitable event is fired CE 
transacts its internal state-machine to the next state. A 
CE will stop its thread if it reaches its final state (if it 
has one as described by the SCXML model). If all CEs 
having final states are stopped, the process will 
successfully terminate. 

 
• Tester Executor (TE) 
This module is similar to Component Executor as it also 
has an SCXML state-machine model (representing our 
Model Tester) and SCXML engine. But it is passive and 
only receives events and changes its internal state. It 
also has a state reachability counter to count number of 
times a particular state (good or bad) has been reached. 
It can be modeled to have exitable or non-exitable, good 
or bad states. In case an exitable state if reached, the 
tester increments the counter and automatically resets 
back to the ready state to wait for any other event. 
 
• Event lookup Table 
This module contains a list of all the Events used in the 
composition and are parsed from BOM. This list of 
Events is accessible to each Component Executor so 
that being at a particular state they can locate the 
information of the next occurring event expected to be 
sent or received. This information is used to let a 
component either send an event to a specified recipient 
or wait for an event from a sender during each logical 
time step. 

  
• Monitor 
A monitor is used to observe global behavior of the 
composition. A monitor acts as a comparer between the 
member state-machines and the Model Tester. It 
monitors the overall execution, waits for the important 
exchange of events or sequences of events and fire 

necessary events for the Model Tester to update its 
state. 
 
• Deadlock Detector 
We propose this module as an example solution to one 
of the generic system property i.e., deadlock freedom. 
A deadlock can be defined as: A set of components are 
said to be in a deadlock if each of them is waiting for an 
event that only another component in the same set can 
cause.  
Deadlock is of two types: i) Total Deadlock ii) Partial 
Deadlock. If all components of the composition are in 
the waiting set then it leads to a total deadlock whereas 
if only some components are in the waiting set then it is 
a partial deadlock.  
We develop deadlock detector component to observe 
any possible detection of deadlock and notify the 
monitor. This detector periodically collects the list of 
those components which are waiting for any event to 
proceed and apply our proposed deadlock detection 
method.  

 
• Deadlock Detection Method 
This method assumes a set Q of tuples of waiting 
components called “Receivers” which are waiting for 
their corresponding “Senders”. This arrangement is 
used to establish a wait-for relationship for each waiting 
component. 

 
Q = {(r, s) | r ∈ Receiver, s ∈ Sender} 

 
Based on the information collected from the set Q, we 
construct a “Wait-for Graph” and fill it with vertices 
representing all the components from the waiting list at 
a particular instance of time. First a receiver will be 
inserted then its corresponding sender will be inserted. 
Then a directed edge is connected from the receiver to 
the sender showing “Wait-For” relation. When all the 
components from the waiting set have been inserted in 
the graph, we apply a standard Depth First Search 
(DFS) algorithm to find any possible cycles within the 
graph.  
A cycle is defined as a closed loop of two or more 
vertices connected in a closed chain. If there exists a 
cycle, it means that some components are waiting for 
each other in a chain and thus there is a deadlock. In 
practice cycle detection in a Graph is done using Depth 
First Search (DFS) coloring algorithm. Color markers 
are used to keep track of which vertices have been 
discovered. White marks vertices that have yet to be 
discovered, gray marks a vertex that is discovered but 
still has vertices adjacent to it that are undiscovered. A 
black vertex is discovered vertex that is not adjacent to 



any white vertices. Edges that lead to a new unvisited 
vertex are called Tree Edge whereas the edges that lead 
to an already visited vertex are called back-edges. By 
definition: "A directed graph G is acyclic if and only if 
a depth-first search of G yields no back edges". So DFS 
essentially detects any back-edge for finding a 
cycle(Skiena July, 1998). If we detect any cycle in the 
wait-for graph of a set of waiting components then we 
have found a deadlock which means there exists a 
cyclic chain of two or more components that are waiting 
for each other. If the number of waiting components in 
the set is equal to the total number of components 
participating in the composition then it will be a Total 
deadlock.  

 
4.2. Framework Execution: 
 
Figure 3 illustrate the verification framework: 
 

 
Figure 3: Behavioral Verification Framework 

 
When the execution begins all Component Executors 
(CE) initialize their SCXML state-machine model 
objects to their initial states and also register their IDs 
in the Message Controller (MC) for address space 
allocation. When all the participating components are 
ready, they start dynamic interaction with each other by 
sending or receiving event messages using MC. Based 
on their current state each CE identifies the next event it 
is supposed to send or receive using Event Lookup 
table. From this table each CE can fetch information 
about the event which is required to exit its current 
state. If it is an outgoing event (i.e., the source of this 
event is the CE itself) then the CE will act as a Sender 
whereas if it is an incoming event (i.e., CE is the target 
of this event then it has to wait as a receiver). 
In case of being a Sender a CE will prepare a message 
object by stamping its ID as a source, its recipient’s ID 
as target and message parameters taken from the Event 

Object (previously fetched from the Event lookup table) 
and transmit it using Message Controller. MC will place 
this message in the Outgoing queue which will be 
dispatched in the next time generation. This CE will 
also fire that event in its internal state-machine and go 
to the next state. 
If the CE is a receiver it will wait until it has received 
any message from the Message Controller. In case of 
multiple arrivals the first message from the INBOX is 
retrieved (as Queue is FIFO) and processed by firing the 
event internally and stepping to the next state. Each 
time there is a Sending or Receiving of an event, based 
on which a component transacts its state-machine to the 
next state, we let the system advance to next logical 
time step. 
Deadlock detector performs its routine on each time 
step and checks possible deadlock occurences. In case 
of detection, it alerts the monitor which in turn sends a 
signal to the Tester Executor (TE). TE moves to the 
corresponding bad state and halts the execution. 
Monitor is also responsible to observe the behavior 
which corresponds to context specific reachability 
properties in the Model Tester and in case of finding 
valid sequence of events; it triggers an alert to the 
Model Tester. There is a performance bottleneck when 
we perform deadlock detection routine at each time step 
thus we propose to schedule them after an N interval of 
time where N is defined by the modeler based on the 
size of the composition and system resources. 
The successful completion of the abstract level 
execution means that there is no violation of generic 
system properties and the context specific properties are 
reachable (or unreachable in case of negative 
reachability properties) and thus the behavior of the 
member components is verified. 
 
 
5. CASE STUDY 
In order to test our verification approach, we have 
considered a Restaurant Case Study. We discuss two 
scenarios in this case study. 

 
5.1. Scenario A 
The basic theme of the scenario is that customers arrive 
to a restaurant, order food, eat, pay their bills and then 
leave. There are 3 components in this scenario: 
Customer, Waiter and Kitchen. A sequence diagram in 
Figure 4 represents the pattern of interplay between 
these components. 
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Figure 4: Restaurant sequence diagram 

 
Figures 5, 6 & 7 represent the individual state-machines 
models of each component involved in the scenario. 
Green text with an up arrow represents a send event (as 
an exit condition) whereas blue text with a down arrow 
represents a receive event. 
In the first step of the verification of composed 
restaurant model the state-machines are parsed from the 
BOMs and state-machine objects are produced. In step 
2 the corresponding data is passed through structural 
analysis, which checks the state-machines against the 
rules and if passed the static analysis phase is declared 
as successful. 
In the next step SCXML documents are generated, each 
representing the corresponding state-machines of the 
customer, waiter and kitchen components. Also a Model 
Tester is defined in the form of SCXML as represented 
by figure 8. Each SCXML document is then executed in 
runtime environment. When the Component-Executors 
are initialized to their initial states they identify their 
next action The first CE which is responsible to send an 
action in the Message controller is Customer and the 
action is RequestMenu. Waiter component is waiting for 
this event and as soon as it receives RequestMenu, it 
moves on the next state and Send GiveMenu. On 
receiving GiveMenu, the Customer starts to OrderFood. 
Thus each component sends and receives events in the 
same manner until the Customer component (which is 
the only component having a final state) reaches 
“Leaving” state and thus the abstract level execution is 
successfully completed and this is how the three BOMs 
are verified and validated using dynamic analysis. 
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Figure 5: Customer state-machine 
 
 

 
 

Figure 6: Kitchen state-machine 
 
 

 
Figure 7: Waiter state-machine 

 
 

 
Sales and Dinning are considered to be good states as 
they promote business. Leaving the restaurant without 
payment is a bad state as it incurs loss. Deadlock is a 
bad-state marked in gray and is un-exitable which 
means if reached halts the execution. 
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Figure 8: Model Tester 
 
The state transition in Model Tester could occur due to 
a sequence of events exchange between the components 
e.g., in order to reach “dinning” state, the correct 
sequence of events is: 

Customer!OrderFood  → Waiter!ConveyOrder → 
Kitchen!FoodReady     → Waiter!ServeFood → 
Customer!RequestBill → Waiter!GiveBill → 
Customer!PayByCash  → Waiter!GiveReciept  

 
When this sequence is noticed by the monitor, it will 
fire “Dinning” event to the tester. Another sequence of 
events is: 
 

Waiter!ServeFood → Customer!RequestBill→ Customer!Balk 
 
When this sequence is noticed by the monitor, it will 
fire “Leave without payment” event which is a bad state 
because Waiter serves food but Customer after 
requesting bill goes to waiting state and leaves the 
restaurant without paying. Note the Balk event that can 
be fired from the waiting state.  
If during the entire execution of the restaurant scenario, 
no bad states have ever been reached and the number of 
times the good states are reached is greater than zero, 
then the composed restaurant model is said to be 
dynamically verified in terms of behavior and with 
respect to the given specifications.  
 
5.2. Scenario B 
In this scenario, we modify the behavior of waiter, i.e., 
after taking the order, he makes a Bill and gives it to the 
customer and waits for the payment. Once Customer 
pays the bill, only then he conveys the order to the 
kitchen. Figure 9 represents the modified waiter. 
This modification passes Structural Analysis because all 
the events are same only their order is changed. 
However when execute it in the dynamic verification 
step, it detects deadlock because the customer waits for 
the food to be served where as the waiter waits for the 
bill to be paid. Since two waiting components wait for 
each other so our deadlock detector detects a closed 
cycle in the wait-for graph and thus notifies the 

detection of deadlock to the monitor which in turn puts 
the Model Tester in the “Deadlocked” state and thus the 
composition is not verified due to deadlock. 
 
 

 
 

Figure 9: Waiter state-machine 
 

 
6. CONCLUSIONS AND FUTURE WORK 
In this paper we discussed Behavioral Verification and 
its different methods. We proposed a Model Tester to be 
used as an Instrumentation Technique for the dynamic 
behavioral analysis and proposed a verification 
framework using this technique. We also discussed 
different classes of the system correctness properties 
and suggested to represent them as good or bad states in 
the model tester. Deadlock Freedom being a commonly 
accepted correctness standard is suggested to be 
included in the model tester as a key requirement beside 
other scenario specific reachability properties. We 
further proposed a method to detect deadlock and 
implemented it as an integrated module in our 
verification framework. Similar modules can be 
developed and added to the framework to detect other 
safety or liveness properties thus increasing the 
credibility of the verification process. At the end we 
provided a restaurant case study as a proof of concept. 

With the help of Behavioral Verification Process we 
can verify any BOM composition and essentially help 
the modeler to study and analyze the behavior using 
model tester which is based on system properties. These 
properties from different classes cover a variety of 
verification aspects and evaluation standards. By 
verifying the behavior of a set of BOM we can assert 
that a necessary condition in the process of BOM 
composition is fulfilled. 
We are further interested to use formal methods such as 
Petri Nets and Linear Temporal Logic to verify the 



composition based on more complex requirement 
specifications including livelock freedom and starvation 
freeness. We further strive to generalize our verification 
approach for other component frameworks such as 
DEVS (Discrete Event System Specification) to match 
and verify model compositions. 
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