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a b s t r a c t

Neural network architectures that implement support vector machines (SVM) are investigated for the
purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms
including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules
adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal
for storing and retrieving support vectors. Several different CQM-based neural architectures are exam-
ined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing
for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full
ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architec-
tures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry
is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception
has evolved as an internalized motor programme.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Many living organisms learn new behaviors from one single ex-
posure to significant sensor inputs. For example, snails learn food
aversion froma single experience (Teyke, 1995). This formof learn-
ing is called one-shot learning or one-trial learning (Guthrie, 1935)
and is common in nature but is hard to explain in neural net-
work models since Hebbian learning requires many repetitions of
appropriate stimuli before a new pattern is added to an existing
repertoire of recognizable patterns. A mechanism where the brain
remembers noteworthy sensory inputs and runs a background
loop of simulated experiences would help to provide the repeti-
tive training that is required for Hebbian learning. Such regurgi-
tation could perhaps be performed in sleep when normal sensor
inputs are disabled. A driving motivation for the present work is to
find viable neural architectures for modeling biological one-shot
learning according to this concept.

Support vector machines (SVMs) are pattern recognition algo-
rithms with a firm foundation in optimization and generalization
theory and a good track record of practical applications. SVMs are
easy to use for non-experts and the performance of a standard SVM
often rival that of expertly hand-crafted ANN. An interesting prop-
erty of SVMs is that the learning state consists of a special set of
training examples called support vectors. Significant new training
examplesmay join the set of support vectors. Therefore, it appears
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that neural implementations of SVMs could be interesting as mod-
els of one-shot perceptual learning in nature.

The reasons for considering neural network implementations of
SVMs are (1) finding efficient hardware implementations of SVMs,
in particular as analogue circuits, and (2) using SVMs as models of
biological neural functions. This paper follows the latter approach
but we will here briefly review the literature of both branches. The
SVM classification function is a weighted sum of kernel function
values in which the input vector is one of the arguments to the
kernel function. Neural networks can implement any continuous
multivariate functionwith arbitrary accuracy (Cybenko, 1989) so it
is not surprising that the SVM classification function readily is ex-
pressed as neural networks (Schölkopf & Smola, 2002). As pointed
out by Yang, He, and Hu (2012), SVM training is a quadratic pro-
grammingproblemand recurrent neural networks are able to solve
such problems. Hence it is feasible to implement both SVM classi-
fication and supervised iterative SVM training as artificial neural
networks.

Anguita, Ridella, and Rovetta (1998) showed that SVMs can be
realized as recurrent electronic circuits. Anguita and Boni (2003)
reviewed VLSI implementations of SVMs. A two-layer artificial
neural network that implements a 1-norm SVM was defined by
Tan, Xia, and Wang (2000) and simplified with respect to the
bias calculation by Anguita and Boni (2002). Xia and Wang (2004)
demonstrated a one-layer recurrent ANN implementing a 1-norm
SVM for which Perfetti and Ricci (2006) as well as Liu and Liu
(2009) and Yang et al. (2012) proposed improvements intended to
further optimize electronic circuit implementations. For compari-
son to the present work, it should be noted that these hardware-
oriented implementations are in the context of supervised learning
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in which an iterative update rule acts on a series of externally pro-
vided training examples and is hence not intended for modeling
biological one-shot learning.

Support vector machines are used extensively for automating
classification in computational biology (for a review see e.g. Noble
(2004)). The literature on support vector machines as models of
biological phenomena is, however, scant. Galán, Sachse, Galizia,
andHerz (2003, 2004) analyzed the olfactory code of the honey bee
and noted that the interaction between the antenna lobe and the
mushroom body can be regarded as a biological realization of the
classification function of a support vector machine. Odours trigger
neural attractors in the antenna lobe and the pattern of activated
attractors is classified by themushroombody according to an SVM-
like process. Viéville and Crahay (2004) introduced a biologically
plausible SVM-like neural network classifier aiming at explaining
the fast (100–150 ms) classification process in the visual cortex.
The key idea is to classify based on distance to a set of known class
prototypes. The prototypes are similar to support vectors and the
Hebbian learning mechanism is guided by Vapnik learning theory
(Vapnik, 1998). The present paper differs from Viéville and Crahay
(2004) in that it explores neural network architectures for standard
SVMs and that it focuses on explaining biological one-shot learning
rather than the speed of visual perception.

Previous work by the author of this paper shows that a
particular SVM algorithm (zero-bias ν-SVM) can be expressed as
a biologically plausible ANN that is capable of one-shot learning
(Jändel, 2010a). The architecture and dynamics of this model have
been compared to the olfactory system (Jändel, 2010a) and also to
the burst dynamics of the thalamocortical system (Jändel, 2009).
Jändel (2011) point to an evolutionary path along which a neural
SVM could emerge from ubiquitous neural components.

Section 2 of the present paper defines an ensemble of SVM
algorithms. Section 3 introduces the major neural building blocks,
derives training rules and finally analyzes several different neural
architectures for each SVM algorithm. Discussion and conclusions
are found in Section 4.

2. Support vector machine algorithms

We consider SVMs for binary classification that execute in two
different modes: classification and learning. In the classification
mode, they receive a test vector x and output the predicted va-
lence y ∈ {1, −1} of the test vector (bold letters signify vectors).
In the learning mode, they use a set of training examples for opti-
mizing internal parameters called weights. Each training example
{x, y} consists of a training vector and the associated known va-
lence. All input vectors are considered to be real-valued vectors of
equal length. The goal of training is to achieve optimal robust clas-
sification performance (see Cristianini and Shawe-Taylor (2000)
for details about SVMs).

For future reference, we describe eight well known types of
SVMs where each definition consists of the following four parts.
(I) The classification function,

f (x) =

m
i=1

yiαiK(x, xi) + b, (1)

where K is the positive definite kernel function, αi are weights and
b is a real-valued bias factor. The input vector is classified to be of
positive valence if f (x) ≥ 0 and to be of negative valence other-
wise.
(II) The (dual) objective function W (α) where α is the weight
vector.
(III) A set of constraints. The positivity condition,

∀i : αi ≥ 0 (2)
is satisfied for all SVMs. Biased (b > 0) SVMs always include the
constraint,

m
i=1

yiαi = 0. (3)

The constraints (2) and (3) are understood to hold even if they are
not repeated in the following SVM definitions.
(VI) An algorithm for computing the value of the bias factor b.
The optimal set of weights is found by maximizing W (α) with
respect to α under the relevant set of constraints. After computing
the bias factor the classification function is used for predicting the
valence of test vectors.

Support vectors are training examples with weights αi > 0. The
remaining trivial examples with αi = 0 do not contribute to the
classification function. Support vectors are either regular support
vectors or outliers where the former are support vectors that are
correctly classified with sufficient margin. The precise definition
of regular support vectors differs between the various SVM types.

For future use we define the classification margin of a training
example (xi, yi),
Mi = yif (xi). (4)
The margin is positive if the example is correctly classified and
negative otherwise. Some of the SVM algorithms specify a target
marginMT for support vectors.

We further define the unbiased classification function,

h(x) = f (x) − b =

m
i=1

yiαiK(x, xi). (5)

Introducing Kronecker delta functions,

δ+(y) =


1 if y = 1
0 if y ≠ 1 , δ−(y) =


1 if y = −1
0 if y ≠ −1, (6)

and the set of regular support vectors SV R, averages over positive
and negative valence regular support vectors are defined according
to,

h̃∗ =
1
m̃∗


i∈SVR

δ∗(yi)h(xi), (7)

where m̃∗ =


i∈SVR
δ∗(yi) and the symbol∗ refers to either+ or−.

The eighth types of SVMs to be defined come in four pairswhere
each pair includes a zero-bias (b = 0) and a biased SVM. The biased
SVMs are first described.

2.1. Maximum-margin SVM

Themaximum-margin SVM is a hard-margin SVMwhichmeans
that all support vectors are regular withMT = 1 and the remaining
trivial examples have margins MT > 1. Training will succeed only
if these conditions are satisfied after optimization of the objective
function,

W (α) =

m
i=1

αi −
1
2

m
i=1,j=1

yiyjαiαjK(xi, xj), (8)

under the standard constraints (2) and (3). The bias factor can be
computed according to,

b = −
1
2
(h̃+ + h̃−). (9)

2.2. 1-norm SVM

The 1-norm SVM is a soft-margin SVM where support vectors
may violate the target margin MT = 1. A slack variable that
measures how much the margin is surpassed is defined for each
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training example. The objective function and the constraints are
derived from a Lagrangian optimization problem where the sum
of the slack variables is incorporated in the Lagrangian. The objec-
tive function is the same as for the maximummargin SVM (Eq. (8))
but there is an extra constraint,

∀i : αi ≤ C, (10)

where C is a positive parameter. Regular support vectors have
weights in the interval 0 < αi < C . The bias factor is computed us-
ing the same expression (Eq. (9)) as for themaximummargin SVM.

2.3. The 2-norm SVM

The 2-norm SVM is a soft margin SVM where the sum of the
squares of the slack variables is optimized in the underlying La-
grangian problem. The resulting objective function is,

W (α) =

m
i=1

αi −
1
2

m
i=1,j=1

yiyjαiαj


K(xi, xj) +

δij

C


(11)

where δij is a Kronecker delta function and no extra constraint is
applied. The parameter C is positive. All support vectors are regu-
lar. The bias factor can be computed according to,

b = −
1
2


h̃+ + h̃− +

α̃+ − α̃−

C


(12)

where α̃+ and α̃− are the average weights of positive and negative
valence support vectors respectively.

2.4. The ν-SVM

The ν-SVM is a soft margin SVM where the trade-off between
generalization and precision is governed by a single dimensionless
parameter ν (0 < ν < 1) (Schölkopf, Smola, Williamson, &
Bartlett, 2000). The objective function is,

W (α) = −
1
2

m
i=1,j=1

yiyjαiαjK(xi, xj). (13)

There are two extra constraints

∀i : αi ≤
1
m

(14)

and
m
i=1

αi = ν. (15)

The latter constraint is usually written as
m

i=1 αi ≤ ν but Chang
and Lin (2001) shows that the stricter constraint (15) applies to all
solutions of the ν-SVM problem. Regular support vectors have
weights in the interval 0 < αi < 1

m . The bias factor is given by
Eq. (9).

2.5. Zero-bias SVMs

For each of the four SVMs defined in Sections 2.1–2.4 there is
a zero-bias companion with b = 0. Cristianini and Shawe-Taylor
(2000) demonstrates that zero-bias SVMs are valid pattern recog-
nizers although there in general is a negative impact on conver-
gence and generalization ability. Starting from a biased SVM it is
always possible to absorb the bias factor in a redefined kernel. This
is equivalent to clamping the bias to zero while adding a constant
factor to the kernel function. The objective function of each of the
zero-bias SVM is identical to that of the associated biased SVM. The
set of constraints is also the same expect the constraint (3) is inval-
idated.
3. Neural network implementations of SVMs

Any biological realization of an SVMmust implement fourmain
processes. The primary task of the SVM is to perform classifications
that are used by the perception system of the organism. In addition
the system must be able to acquire relevant training examples,
learn appropriate weights and, for biased algorithms, compute the
bias factor. In this section we first describe the key architectural
elements and then introduce the four processes starting with the
most generic cases.

3.1. Key components

3.1.1. Sensor system and sensory memory
All pattern recognition processes depend on the system’s ability

to capture data from the external world. Advanced biological or-
ganisms have many sensory modalities. In the following we focus
on a generic modality that will be described at a high level of ab-
straction but with explanatory references to the olfactory system.

The sensor system (SS) acquires data from the external world,
performs preliminary signal processing and outputs the primary
input vector x′′. The receptor neurons in the olfactory epithelium
together with the olfactory bulb would be the SS of the olfactory
system.

It is assumed that the classifications are computed during a
time interval Teval that in the following will be called an evaluation
cycle. The system includes a time-keeping function that triggers
regular cycling of consecutive evaluation cycles. Sniffing cycles in
the olfactory system is an example of similar behavior in biological
organisms (Macrides, Eichenbaum, & Forbes, 1982).

The primary input vectorwill often fluctuatewildly e.g. because
of the unpredictable density variations of chemical compounds in a
plume of scent spreading in the wind. This makes sensorymemory
(SM) a crucial part of the system (see Fig. 1). The task of sensory
memory is to take a snap-shot of the primary input vector at the
beginning of each evaluation cycle and hold it unchanged over the
evaluation cycle so that downstream systems can analyze a stable
input. The input vector x is the output of sensory memory. Both x′′

and x is in the following modeled as real-valued vectors.

3.1.2. Competitive Queuing Memory
For implementing SVMs as neural networks we need a compo-

nent for learning, storing and retrieving training examples (in par-
ticular support vectors) and the associated weights. Competitive
QueuingMemory (CQM) is class of neural network algorithms that
is ideal for this purpose. CQM learns and displays time sequences of
output vectors. Bullock (2004) argues that the brain uses CQM-like
modules for learning and generating the motor action sequences
that underlie smooth skilful actions. In the following we will con-
sider a high-level functional CQMmodel that is appropriate for the
purpose of this paper.

A CQM consists of a memory layer and a choice layer. The
memory layer stores a set {{x1, y1}, {x2, y2}, . . . {xm, ym}} of
patterns where each pattern is a training example. A weight αi is
associated with each pattern {xi, yi}. The choice layer outputs one
single pattern. When the CQM is triggered into action, the choice
layer selects the pattern with the largest weight and displays it for
a time interval that is proportional to the weight of the pattern.
At the end of this interval the selected pattern is disabled and the
pattern with the next highest weight is selected for display—again
for a time that is proportional to theweight. The CQMwill continue
to operate in this manner until all patterns have been showed
once and the display sequence stops. A new trigger signal resets all
disabled patterns so that the time sequence can be traversed again.

Consider a CQM that holds SVM training examples andweights.
As the CQM displays the stored sequence each training example
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Fig. 1. Generic mechanism for computing SVM classifications in single-CQM neural network architectures. Symbols are explained in Section 3.2.1.
{xi, yi} is exhibited for a time period Ti that will be called the
endurance time of the training example. The endurance time is
proportional to the SVM weight according to,

Ti = ραi. (16)

The endurance time is hence the physical representation of the
SVM weight in the neural system. The total time for showing the
stored time sequence of a CQM is the evaluation time Teval =m

i=1 Ti wherem is the number of patterns in the CQM.We further
assume that the CQM has an interface for modifying the weights
and for adding new patterns.

Although the present model is described at a functional level,
detailed ANN implementations of CQM with similar functional
features are described by Boardman and Bullock (1991), Brad-
ski, Carpenter, and Grossberg (1994) Bullock and Rhodes (2003),
Grossberg (1978), Houghton (1990) and Rhodes and Bullock
(2002).

3.2. Single-CQM systems

We will first consider SVM-implementations with one single
CQMthat holds all the training examples of the classifier. The archi-
tecture and operation of the system are described by considering
each of the main processes in turn. The processes are Classifica-
tion, Learning training examples, Learning weights and Learning
the bias factor.

In this sectionwewill first introduce the basic operations of the
systems by describing a simplified architecture and the processes
for classification and learning training examples. These processes
apply to all eight types of SVMs and all the different architectures
to be discussed in the following.

The process for learning weights and the bias factor differ
depending on SVM type and the architectural options. Gradient
ascent weight learning rules for the various SVMs will first be dis-
cussed in general and then be applied to two different system con-
cepts. Finally bias learning is described. At appropriate points we
will discuss the complexity of the various systems from the point
of view of biological implementation.

3.2.1. The classification process
Classifications are computed in the same manner in all of the

eight SVM variants under consideration (see Fig. 1). The system
performs one classification during each evaluation cycle. External
inputs are captured by the sensor system (SS) and forwarded to
the sensory memory (SM). The SM captures the input vector x and
holds it unchanged for the duration of the evaluation cycle.

At the beginning of each evaluation cycle the CQMstarts playing
the stored sequence of training examples. TheK -unit computes the
SVM kernel function and outputs yiK(x, xi) where the arguments
to K are the input vector and the presently displayed training
example from the CQM.

The unbiased classification function is calculated by temporal
integration in the I-unit according to, t0+Teval

t0
yiK(x, xi(t))dt = ρ

m
i=1

yiαiK(x, xi)

= ρh(x) = g(x) (17)
where t0 is the start of the evaluation cycle. The integral is propor-
tional to the sum in Eq. (1) since each training example is displayed
for a time that is proportional to the associated SVM weight. The
expression (17) will be referred to so frequently in the following
that we give it a special name g(x).

The B-unit adds a constant that is proportional to the bias in
Eq. (1) and produces the final output ρf (x) = ρ(h(x) + b). It is in-
consequential that the constant ρ from Eq. (16) multiples the out-
put since only the sign of ρf (x) matters for classifications.

3.2.2. Learning new training examples
The system needs a mechanism for adapting to new environ-

ments by learning new training examples and thus extending the
inventory of support vectors. For this purpose we assume that a
Trainer selects suitable training examples from the input stream
and supplies appropriate valence values (see Fig. 2).

Immediately after an evaluation cycle is an appropriate time for
learning new training examples since the Trainer can use the result
of the classification to judge if the input vector that just has been
evaluated and still lingers in sensory memory is suitable as a new
training example. Consider e.g. an animal that just has evaluated
a poisonous speck as edible based on scent alone. Chewing on the
morsel reveals a bitter taste thus enabling the Trainer to provide
a correcting training example. The method for selecting training
examples is not crucial for the system architecture but will be
briefly discussed in Section 4.

3.2.3. Learning optimal weights
After learning new training examples, the CQM endurance

times are not guaranteed to represent optimal SVM weights. In
this section generic learning rules are first explored and then ap-
plied to two different system concepts. The learning rules will be
expressed in terms of the innate quantities of the system notably
the endurance times.
Generic gradient ascent learning

We will explore learning rules of the form,
∀k : Tk → Tk + ∆Tk, (18)
based on gradient ascent with respect to the objective function
W and taking into account the applicable linear constraints. En-
durance times are hence incremented according to,

∆T = γ ρŨ (19)



M. Jändel / Neural Networks 49 (2014) 39–50 43
Fig. 2. Generic mechanism for learning new SVM training examples in CQM-based neural network architectures. The CQM receives a stream of input vectors x from sensory
memory (SM). The Trainer provides the correct valence y and signals when the CQM shall imprint the input vector as a new training example.
Fig. 3. Weight learning in the single-CQM outer-loop architecture. Symbols have the same meaning as in Fig. 1 or else are explained in Section 3.2.3. The Switch confirms
when a pattern from the CQM is captured.
where γ is a dimensionless learning rate and Ũ is the appropriate
gradient. Bold symbols Ũ, T,∆T etc. denotem-dimensional vectors.

The family of SVMsunder consideration includesmemberswith
zero, one or two linear constraints. The gradient Ũ takes different
forms depending on the linear constraints. If there are no linear
constraints we get,

Ũ = U = gradα(W ) =


∂W
∂α1

,
∂W
∂α2

, . . . ,
∂W
∂αm


. (20)

The constraints define hyperplanes in T-space and the gradient
ascent should follow the projection Ũ of the gradient U on the
constraint hyperplane. For one linear constraint we hence get,

Ũ = U − (eC · U)eC , (21)

where eC is a unit vector that is perpendicular to the constraint
hyperplane.

For two linear constraints we write the gradient as,

Ũ = U − (eA · U)eA − (eB · U)eB. (22)

The unit vectors eA and eB define an orthonormal base spanning
the subspace of the perpendicular unit vectors that identify the
constraint hyperplanes. The unit vectors corresponding to the
constraints (3) and (15) are ey =

1
√
m (y1, y2, . . . , ym) and

e1 =
1

√
m (1, 1, . . . , 1) respectively.

To simplify the notation in Tables 1 and 2 we define
gk = ρh(xk), ĝ =

1
m

m
k=1 gk and ˆ̂g =

1
m

m
k=1 ykgk where h is de-

fined in Eq. (5). The average valence ŷ =
1
m

m
k=1 yk is also used in

the tables.
The learning rules for the zero-bias SVMs are summarized

in Table 1. No linear constraints applies to the Maximum mar-
gin, 1-norm and 2-norm SVMs so the learning rules are obtained
from Eqs. (19) and (20). Applying the ν-SVM objective function
Eq. (13) and the linear constraint Eqs. (15)–(21) produces the
learning rule in Eq. (26). We note that Eq. (26) can be rewrit-
ten γ ρ(( 1

m

m
i=1 Mi) − Mk). The learning rule strives therefore to

equate the margin of the present example to the average margin.
This will succeed for regular support vectors while the weights of
trivial examples and outlier support vectors are driven to the ex-
treme values α = 0 and α = 1/m respectively. The non-linear
Table 1
Learning rules for zero-bias SVMs.

SVM type Learning rule Non-linear constraints

Maximummargin ∆Tk = γ (ρ−ykgk) (23) None
1-norm ∆Tk = γ (ρ−ykgk) (24) ∀k : Tk ≤ Tmax = ρC
2-norm ∆Tk = γ (ρ−ykgk−

Tk
C ) (25) None

ν ∆Tk = γ ( ˆ̂g−ykgk) (26) ∀k : Tk ≤ Tmax = ρ/m

constraints of each SVM have been expressed as constraints on the
endurance times. Since SVMweights are represented by endurance
times Eq. (2) is satisfied by design in all considered architectures.

Table 2 gives the learning rules for the biased SVMs where the
linear constraint in Eq. (3) applies in all cases. Eqs. (19) and (21)
have been employed for calculating the learning rules for theMax-
imum margin, 1-norm and 2-norm SVMs while Eqs. (19) and (22)
together with both of the linear constraints (3) and (15) lead to the
learning rule for the ν-SVM.
Outer-loop architecture

The outer-loop architecture (see Fig. 3) is our first example of
a complete SVM implementation. Wewill therefore first introduce
concepts that apply to weight learning in all CQM-based architec-
tures. The basic idea is that training examples from the CQM re-
place external inputs. The system ignores hence external stimuli
while learning. A long series of training examples are classified just
as if theywere external inputs. The CQMendurance times aremod-
ified according the learning rules of Section 3.2.3 using feedback
from the classification process.

The system has two main modes that can be compared to the
waking state and the sleeping state of a living creature. Classifica-
tion and learning of new training examples are performed in the
waking state while processing sensor data. Weight and bias opti-
mization is performed in the sleeping state in which sensory data
is replaced by regurgitated training examples from the CQM. The
terms waking state and sleeping state are convenient mnemonic
devices but are not intended to imply that the system implements
all aspects of wakefulness and sleep in biological organisms. The
idea that sleep is related to memory consolidation has, however,
been discussed since ancient times (Quintilianus, 95).

To enable switching between the two modes we introduce a
new system component—the Switch (see Fig. 3). The CQM copies
the stream of training examples to the Switch during each evalu-
ation cycle. In the sleeping state the Switch captures an example
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Table 2
Learning rules for biased SVMs.

SVM type Learning rule Non-linear constraints

Maximummargin ∆Tk = γ (ρ − ρŷyk + yk(ĝ − gk)) (27) None
1-norm ∆Tk = γ (ρ − ρŷyk + yk(ĝ − gk)) (28) ∀k : Tk ≤ Tmax = ρC
2-norm ∆Tk = γ (ρ − ρŷyk + yk(ĝ − gk) − Tk/C) (29) None
ν ∆Tk = γ ( ˆ̂g − ykgk −

yk−ŷ
1−ŷ2

(ŷ ˆ̂g − ĝ)) (30) ∀k : Tk ≤ Tmax = ρ/m
vector x′ according to some policy that ensures that all examples
have some probability of being selected. In the following we shall
assume that the Switch captures a new example each evaluation
cycle at a time given by a uniform probability distribution. The
Switch is transparent to the sensor signal x′′ in the waking state
and opaque in the sleeping state. This makes the system in Fig. 3
consistent with the system displayed in Fig. 1.

The SM works precisely as in the classification process. At the
beginning of each evaluation cycle it locks on the vector x′′ that
is provided by the Switch and outputs the trapped vector for the
duration of the evaluation cycle. The vector that is held by the SM
is labeled xk in Fig. 3 and in the following explanations.

We know turn to the specific features of the outer-loop archi-
tecture (see Fig. 3). It is based on the notion that the output g(xk) of
the classification is feed back to the CQM and used as input to the
weight learning process. It is the weight of the example xk that is
held in sensorymemory that is the subject ofmodification. One en-
durance time Tk is thusmodified at the endof each evaluation cycle.

We need a mechanism for informing the CQM about which ex-
ample that is due to have its weight updated. In the outer-loop
architecture the Switch therefore sends a confirmation signal caus-
ing the CQM to activate a pointer to the training example that was
selected by the Switch. Note that the CQMmustmanage two point-
ers: one marking the weight to be updated after the present eval-
uation cycle and the other marking the weight to be updated after
the next evaluation cycle. This rather complex mechanism makes
the outer-loop architecture somewhat less credible for biological
modeling.
Zero-bias outer-loop system

Applying the outer-loop architecture to the zero-bias SVM we
find that the identical learning rules (Eqs. (23) and (24)) that apply
to the Maximum margin and the 1-norm SVMs are readily imple-
mentable since gk is feed back to the CQMand yk is in CQMmemory.
Note that the parameter ρ is defined only by the learning rule since
there is nothing else in the system that constrains its value.

The ν-SVM learning rule (Eq. (26)) also uses the feedback
quantity but the CQMmust in addition compute the average of ykgk
which adds complexity but is quite feasible in a neural network
context.

The 2-norm learning rule (Eq. (25)) is somewhatmore problem-
atic since it assumes that the CQM can access the endurance time
of the example that is subject to update. Since the learning rule is
applied at the end of the evaluation cycle this would require that
endurance times are stored in a separate register which is possible
but rather contrived for a neural network.

The 1-norm SVM and the ν-SVM have non-linear constraints
requiring that all endurance times fall below a maximum value. It
is quite conceivable that biological neural neurons are depleted by
persistent firing so that memory patterns only can be sustained for
a maximum time (see Jändel (2010a) for a discussion).
Biased outer-loop system

Applying the outer-loop architecture to biased SVMs we note
that all learning rules in Table 2 are seriously complicated by
including the constraint (3). The dual linear constraints of the
ν-SVM give a particularly complex algebraic form of the learning
rule. In addition to the hurdles previously mentioned the CQM
must keep track of the average valence ŷ and the average of gk.
Since the CQM has access to gk and all valences it is, however,
feasible to form the required aggregates by neural computation.
Stability of linear constraints in the outer-loop architecture

The outer-loop architecture, as described in the preceding
sections, works well if there are no linear constraints in the SVM
definition. Zero-bias maximummargin, 1-norm and 2-norm SVMs
will hence, for a sufficiently small learning rate, find the optimal
weights within whatever accuracy that is called for.

The other SVMs have at least one linear constraint. All biased
SVMsmust fulfill the linear constraint (3) and the ν-SVMmust con-
serve the sum of weights. The linear constraints would be satisfied
if endurance times were incremented simultaneously according
to T → T + ∆T where ∆T is given by a learning rule in Table 1
or Table 2. The outer-loop architecture updates, however, the en-
durance times one by one and it is obvious that thismay violate lin-
ear constraints. Starting from initial weights fulfilling Eq. (3) it can
be shown that outer-loop learning causes the state to drift away
from the α-space hyperplanes given by the linear constraints.

The constraint (3) that applies to all biased SVMs is hence very
difficult to accommodate in the present architecture. The Sequen-
tial Minimal Optimization (SMO) algorithm handles this problem
by selecting a pair of weights formodification and constraining the
increments to cancel each other in Eq. (3) (Platt, 1998). Outer-loop
systems update, however, weights piecewise and need a different
type of patch. Intermediate states in the learning process could be
allowed to violate the constraints e.g. by using the relaxed condi-
tion −µ ≤

m
i=1 yiαi ≤ µ and successively decrease µ to zero

as the computation converges to optimal weights. This and simi-
lar approaches are, however, rather contrived as biological models
and will not be considered further.

It is easier to handle the ν-SVM constraint (15) without giving
up biological realism. The constraint would be enforced by a CQM
that distributes a constant amount of activation over the stored
patterns. In the outer-loop architecture this would again require
the complexity of gradually enforcing a soft constraint ν − µ ≤m

i=1 αi ≤ ν + µ. The inner-loop architecture offers, as we shall
see, a much more natural implementation of zero-bias ν-SVM.
Inner-loop architecture

In the inner-loop architecture learning feedback is provided by
the K -unit and weights are updated each time the CQM switches
output pattern (see Fig. 4). This removes the need for feedback con-
firmation from the Switch to the CQM. Pointers to weights that are
due for update are also not required. Apart from these simplifica-
tions the architecture and operation are similar to the outer-loop
system.

During each evaluation cycle, the CQM presents the sequence
of training examples one by one. Each example becomes the out-
put of the CQM during one presentation interval. Learning rules
are applied at the end of each presentation interval. At a given pre-
sentation interval the only pattern that has a special status is the
one that is on display. Learning rules can hence apply either to the
endurance time of the presently displayed example or indiscrimi-
nately to all endurance times. The former individual update is de-
nominated δT (ind) and the latter collective update is called δT (coll).
More complex update schemes could be devised but we strive for
simplicity that facilitates biological implementation.
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Fig. 4. Weight learning in the single-CQM inner-loop architecture. Symbols have the same meaning as in Fig. 3.
Table 3
Learning rules for zero-bias SVMs in the inner-loop architecture. The index j refers to the training example that is held in sensory memory
while the index i indicates the presently displayed training example in the CQM. δT (coll)

= 0 if not defined explicitly.

SVM type Learning rule Non-linear constraints

Maximummargin δT (ind)
= γ (ρ − TevalyiyjK(xi, xj)) (33) None

1-norm δT (ind)
= γ (ρ − TevalyiyjK(xi, xj)) (34) ∀k : Tk ≤ Tmax = ρC

2-norm δT (ind)
= γ (ρ −

Ti
C − TevalyiyjK(xi, xj)) (35) None

ν δT (ind)
= −γ TevalyiyjK(xi, xj) (36) ∀k : Tk ≤ Tmax = ρ/m

δT (coll)
=

1
m γ TevalyiyjK(xi, xj) (37)
During an evaluation cycle each training example is subject to
the individual update once and the collective update m times. The
average increment for training example k during an evaluation cy-
cle is hence

⟨∆Tk⟩ =

m
j=1

pj
m
i=1

(δT (ind)δik + δT (coll)), (31)

where pj is the probability of having the example (xj, yj) in sensory
memory. In the following we apply the convention that the exam-
ple held in sensory memory has index j and that the example pre-
sented by the CQM has index i. The increments δT (ind) and δT (coll)

maydepend on i and j. In (31)we apply the probability distribution,

pj =
Tj

Teval
, (32)

where Teval =
m

i=1 Ti. This distribution would arise if the Switch
captures examples from the CQMwith a uniform random distribu-
tion over time. To learn optimal weights, δT (ind) and δT (coll) should
be selected so that ⟨∆Tk⟩ is proportional to the learning rules of
Tables 1 and 2.
Zero-bias inner-loop architecture

Table 3 provides learning rules for inner-loop zero-bias SVMs.
Note that only information that is available to the CQM according
to Fig. 4 is used in the table and that the otherwise free parameter
ρ is defined by the learning rules.

It is straightforward to demonstrate that Table 3 and Eq. (32)
applied to Eq. (31) produces the learning rules of Table 1. For the
maximummargin case we get e.g.

⟨∆Tk⟩ =

m
j=1

pj(γ (ρ − TevalyiyjK(xi, xj)))

= γ ρ


1 − yk

m
j=1

yjαjK(xk, xj)


= γ (ρ − ykgk).

Inserting Eqs. (36) and (37) in Eq. (31) reproduces the ν-SVM
learning rule (26) of Table 1,

⟨∆Tk⟩ = γ Ttot
m
j=1

pj


− ykyjK(xk, xj)

+
1
m

m
i=1

yiyjK(xi, xj)


= γ ( ˆ̂g − ykgk).
Note that the linear constraint (15) now is precisely satisfied in all
ν-SVM iterations. The sum of weights is conserved since any in-
crement, according to Eq. (36) is exactly compensated by opposite
sign increments distributed over all examples according to Eq. (37).
Biased inner-loop architecture

Table 4 provides learning rules for inner-loop biased SVMs.
Again we note that adding another linear constraint generates
more complex learning rules. The system now has to keep track of
the aggregated quantities ĝ , ˆ̂g and ŷ. This increases the complexity
of the systembut is otherwise quite feasible in a bio-realistic neural
network. Valences are available internally in theCQMand the other
aggregates can be estimated by averaging over the feedback input.

As in the previous section it is easy to show that the inner-loop
learning rules and Eq. (32) applied to Eq. (31) produce the biased
SVM learning rules of Table 2. Note that the rules of Tables 3 and
4 are not unique. Constants can e.g. be included in either of δT (ind)

and δT (coll).
Stability of linear constraints in the inner-loop architecture

The conclusion about the stability of linear constraints in the
inner-loop architecture is similar to the outer-loop case. The zero-
bias maximum margin, 1-norm and 2-norm SVMs have no linear
constraints and can thus be realized according to Fig. 4 without
stability concerns.

Zero-bias ν-SVM offer a pleasant surprise since the inner-loop
learning rules turn out to conserve the linear constraint locally in
each iteration. Stable zero-bias SVMs are hence supported by the
inner-loop architecture. This is one of the reasons why zero-bias
ν-SVM (using oscillating associative memory) has been chosen as
a prime candidate for biological modeling (Jändel, 2009, 2010a,
2011).

Biased inner-loop SVMs share the same stability concerns as
biased outer-loop SVMs since updating endurance times sequen-
tially means that the solution drifts away from the constraint hy-
perplane.

3.2.4. Learning bias
The B-module is needed only for biased SVMs where it works

in the sameway both for outer-loop and inner-loop systems. It has
a classification mode in the waking state and a learning mode in
the sleeping state. In the classification mode it will just output the
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Table 4
Weight learning rules for biased SVMs in the inner-loop architecture. The index j refers to the training example that is held in sensory
memory while the index i indicates the presently displayed training example in the CQM. δT (coll)

= 0 if not defined explicitly.

SVM type Learning rule Non-linear constraints

Maximummargin δT (ind)
= γ (ρ − TevalyiyjK(xi, xj) + yi(ĝ − ρŷ)) (38) None

1-norm δT (ind)
= γ (ρ − TevalyiyjK(xi, xj) + yi(ĝ − ρŷ)) (39) ∀k : Tk ≤ Tmax = ρC

2-norm δT (ind)
= γ (ρ −

Ti
C − TevalyiyjK(xi, xj) + yi(ĝ − ρŷ)) (40) None

ν δT (ind)
= −γ (TevalyiyjK(xi, xj) + yi(

ŷ ˆ̂g−ĝ
1−ŷ2

)) (41) ∀k : Tk ≤ Tmax = ρ/m

δT (coll)
=

γ yjTevalK(xi,xj)
m(1−ŷ2)

(yi − ŷ) (42)
input incremented by the constantρb. In the learningmode itmust
find the correct value of ρb.

Algorithms for computing the bias factor are provided in Sec-
tion 2. Maximummargin, 1-norm and ν-SVM share the same algo-
rithm,

ρb = −
1
2
(g̃+ + g̃−), (43)

where g̃∗ = ρh̃∗, h̃∗ is given by Eq. (7) and the symbol ∗ refers
either to + or −. The main learning task of the B-unit is hence to
identify the regular support vectors and compute the aggregated
quantities of Eq. (43).

Once the weight learning process has converged only support
vectors will be displayed for classification in the SM. Endurance
times of trivial examples vanish at the optimum. Support vectors
can, however, be regular or outliers. The B-unit performs therefore
a clustering operation with respect to the inputs g(xj). This will re-
veal two main clusters marking the values of g̃+ and g̃− with out-
liers scattered around the centers. There is no need for identifying
the valence of the clusters since Eq. (43) requires only the sum of
cluster centers.Wenote that neural networks readily performclus-
tering (Kohonen, 2001) and that themethod is insensitive to filter-
ing out some regular support vectors and to including some trivial
examples. Weight learning must therefore not converge com-
pletely before the method can be applied.

Finally, for the 2-norm case the bias is computed according to,

ρb = −
1
2


g̃+ + g̃− +

T̃+ − T̃−

C


(44)

where T̃+ and T̃− are the average endurance times of positive
valence and negative valence support vectors respectively. The
aggregates ĝ+ and ĝ− are obtained with clustering as before but
computing T̃+ and T̃− requires knowledge of the endurance time
of the training example that presently is held in the SM. Any sys-
tem that provides that information to theB-unit appears to be quite
awkward as a neural network architecture.

3.2.5. Conclusions on single-CQM systems
Table 5 summarizes advantages and disadvantages of the

single-CQM SVMs that have been discussed so far. We note that
only some of the zero-bias solutions are stable and thus credible
for biological modeling.

3.3. Bisymmetric systems

Biased SVMs have a superior generalization ability but hith-
erto we have found no implementations that appear promising
for modeling pattern recognition in the brain. The problem is that
there is no innate mechanism for enforcing the linear constraint of
Eq. (3). All biased single-CQMmodels require complex and implau-
sible patches for imposing the constraint. This is in sharp contrast
to how the linear constraint (15) is built into the structure of the
Table 5
Advantages and disadvantages of single-CQM implementations of SVM algorithms.

SVM type Comment

Zero-bias: reduced generalization power

Maximummargin Outer- and inner-loop architecture stable
Brittle for noisy data. Weights can increase without
limit

1-norm Outer- and inner-loop architecture stable
2-norm Outer- and inner-loop architecture stable

Requires endurance time register in the CQM
ν Outer-loop architecture not stable. Complex

learning rule
Inner-loop architecture stable. Simple learning rule

Biased: full generalization power

Maximummargin Outer- and inner-loop architecture not stable
Brittle for noisy data. Weights can increase without
limit
Bias learning simple

1-norm Outer- and inner-loop architecture not stable
Bias learning simple

2-norm Outer- and inner-loop architecture not stable
Requires endurance time register in CQM
Bias learning complex

ν Outer- and inner-loop architecture not stable.
Complex learning rules
Bias learning simple

inner-loop ν-SVM resulting in a simple learning rule and a credi-
ble biological model. We would like to find an architecture where
Eq. (3) likewise is integrated seamlessly.

As a prelude we reconsider the form of the linear constraints
using the definition

T ∗

tot =

m
i=1

δ∗(yi)Ti, (45)

where the symbol ∗ takes the values + or −. Expressing the con-
straint in terms of endurance times Eq. (3) can now be written,

T+

tot = T−

tot , (46)

where T+

tot and T−

tot are the sum of endurance times for positive and
negative valence examples respectively. Similarly the linear con-
straints (3) and (15) together is expressed as,

T+

tot = T−

tot =
ρν

2
. (47)

A structure that inherently includes the linear constraints should
have separate CQMs for examples with positive and negative va-
lence respectively. Hence we require that CQM+ holds all the pos-
itive valence examples and CQM− holds all the negative valence
examples. It is further required that both CQMs display the com-
plete inventory of examples in one evaluation cycle so that T+

tot =

T−

tot = Teval. According to Eq. (47) this system automatically fulfils
both of the linear constraints. Bisymmetry is ubiquitous in nature
so this concept is not unnatural from a biological point of view.

It is easy to show that the bisymmetric architecture is of no ad-
vantage in most of the cases that we have considered. It increases
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Fig. 5. Generic mechanism for computing SVM classifications in bisymmetric CQM-based neural network architectures. Symbols have the same meaning as in Fig. 1 or are
else explained in Section 3.3.1.
architectural complexity but gives no benefit to zero-bias systems
where Eq. (3) does not apply andwhere Eq. (15) anyway is embed-
ded in the ν-SVM inner-loop architecture. Requiring that T+

tot and
T−

tot are constant adds a new constraint to biasedmaximummargin,
1-norm and 2-norm SVMs so the bisymmetric architecture is not
a valid implementation of these algorithms. Bisymmetry is hence
only applicable to the biased ν-SVM. This section presents there-
fore the details of a bisymmetric biased ν-SVM by describing the
same three processes as in Section 3.2. Bias learning in the bisym-
metric architecture is conducted just as described in Section 3.2.4.

3.3.1. The classification process
Fig. 5 demonstrates how classifications are computed in a slight

simplification of the full bisymmetric architecture. The sensory
memory captures a snap-shot of the external input and holds it
stable for the duration of an evaluation cycle. The CQM units play
synchronously the sequence of stored examples. The stream of
positive valence training examples x+ from CQM+ merges with
the input vector in the K+-unit that outputs the kernel function
K(x, x+). The CQM− and the K−-unit mirror this behavior to pro-
duce K(x, x−). There is no need to signal the valence of the ex-
amples explicitly since valence is implicit in the source. The I-unit
computes, t0+Teval

t0
(K(x, x+) − K(x, x−))dt = ρ

m
i=1

yiαiK(x, xi)

= g(x), (48)

and the B-unit adds ρb to produce the final output which is pro-
portional to the classification function (Eq. (1)) of a biased support
vector machine.
3.3.2. Learning new training examples
Learning new examplesworks just as described in Section 3.2.2.

The only difference being that The Trainer keeps track of the
valence of new training examples and adds them to the appropriate
CQM.

3.3.3. Learning weights
The gradient ascent learning rules of Section 3.2.3 apply also

to the bisymmetric case but should be expressed in quanti-
ties that can be computed locally in the bisymmetric architec-
ture. For that purpose we define ĝ∗ =

1
m∗

m
i=1 δ∗(yi)gi and

ˆ̂g∗ =
1
m∗

m
i=1 δ∗(yi)yigi where gk = ρh(xk), ∗ can take the values

+ or − as before and m+ and m− denote the number of positive
and negative valence examples respectively. It is straightforward
to express all the learning rules of Tables 1 and 2 using the new
aggregates. We focus, however, on the biased ν-SVM. Writing Eq.
(30) as two separate rules applying to the CQM+ and the CQM−

respectively we get,

∆T ∗

k = γ ( ˆ̂g∗ − ykgk) (49)

where ∆T+

k applies to the CQM+ and ∆T−

k applies to the CQM−.
The non-linear constraint ∀k : Tk ≤ Tmax = ρ/m holds for all en-
durance times. The quite complex expression in Eq. (30) simplifies
hence in the bisymmetric architecture to local learning rules of the
same form as the corresponding zero-bias learning rule of Eq. (26).
Such simplifications do not emerge for any of the other SVM types.
Outer-loop architecture

The overall operation of the bisymmetric system is very simi-
lar to the single-CQM case (see Fig. 6). Weight optimization is per-
formed in the ‘‘sleeping state’’ where internally generated training
examples replace external inputs. The operation of the Switch in



48 M. Jändel / Neural Networks 49 (2014) 39–50
Fig. 6. Weight learning in the bisymmetric outer-loop architecture. Symbols have the same meaning as in Fig. 5 or are else explained in Section 3.3.3. The switch confirms
to the source CQM when a pattern is captured.
the sleeping state is slightly different compared to the single-CQM
case. Both CQMunits send a stream of positive valence x+ and neg-
ative valence x− examples respectively to the Switch. The Switch
selects one example vector x′ each evaluation cycle. The probabil-
ity for selecting an example is proportional to the endurance time
of the example. The Switch confirms its choice to the source of the
selected example so that the parent CQM can mark the chosen ex-
ample for weight update in the next evaluation cycle. The SM locks
on the output of the Switch at the beginning of each evaluation cy-
cle and holds the trapped example xk stable for the duration of the
cycle.

Each CQM operates just as a single CQM in the corresponding
zero-bias outer-loop case. The output g(xk) of the integrator is feed
back to both of the CQMs and is used to update the endurance time
Tk of the selected example according to Eq. (49). Just one endurance
time in one CQM is hence modified at the end of each evaluation
cycle. Note that the aggregates ˆ̂g+ and ˆ̂g− respectively are just the
average of the active feedback signal for each CQM (with the ap-
propriate sign).

Biased ν-SVM weight learning is greatly simplified in the
bisymmetric outer-loop case compared to the corresponding
single-CQM architecture. The linear constraints are, however still
violated as updates are applied sequentially and the stability issues
of the single-CQM systems apply in equal measure.
Inner-loop architecture

The bisymmetric inner-loop architecture (see Fig. 7) is quite
similar to the outer-loop case but weight learning feedback from
the K -units connects directly to the associated CQM (Jändel,
2010b). The confirmation signal from the Switch (see Fig. 6) is not
needed but the system must carry information about the valence
of the example that is held in sensory memory.

Inner-loop learning works otherwise as described in Sec-
tion 3.2.3 with each CQM in the duo mirroring the operation
of the single CQM in Section 3.2.3. Both CQMs work hence in-
dependently each updating the endurance time of the presently
displayed example at the end of each presentation period. Two
endurance times are thus modified, according to Eq. (31), for each
of them presentation periods in each evaluation cycle.

Both CQMs apply a slightly modified version of Eqs. (36)–(37),

δT (ind)
= −γ Tevaly∗yjK(xi, xj) (50)

δT (coll)
=

1
m∗

γ Tevaly∗yjK(xi, xj) (51)

where y∗ is +1 or −1 for CQM+ and CQM− respectively while
yjK(xi, xj) is the feedback signal from the K -unit and the non-
linear constraint ∀k : Tk ≤ Tmax = ρ/m is applied. Again
we note that the biased bisymmetric system locally works as the
corresponding zero-bias single-CQM system. The match between
Eqs. (50)–(51) and Eq. (49) is demonstrated using the samemethod
as in Section 3.2.3.

3.3.4. Conclusions on the bisymmetric architecture
The bisymmetric ν-SVM fulfils our goal of expressing both of

the linear boundary conditions as innate constraints of the archi-
tecture. Each CQMconserves the local sumof endurance times. The
constraint (15) is therefore fulfilled. The sum of positive valence
endurance times equals the sum of negative valence endurance
times thus satisfying the linear constraint (3). In the inner-loop
bisymmetric ν-SVM the constraints are applied in each iteration
of the learning rules. The system is therefore stable with respect to
the linear constraints and employs also simple learning rules that
readily could be implemented in the brain.

4. Discussion and conclusions

For the ultimate purpose of modeling pattern recognition with
one-shot learning in living creatures we have investigated CQM-
based neural network architectures for eight different SVM algo-
rithms. Eight different architectural options have been considered
for each algorithm. Most of the 64 investigated configurations are,
however, deemed to be unsuitable. A major problem is that many
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Fig. 7. Weight learning in the bisymmetric inner-loop architecture. Symbols have the same meaning as in Fig. 6.
configurations cannot handle linear constraints in the SVM algo-
rithms. Complex auxiliary machinery with poor biological credi-
bility would be required for implementing the constraints. For the
single-CQMarchitecturewenote in Table 5 that all biased solutions
are unstable with respect to the linear constraint (3). Only zero-
bias models with reduced generalization ability remain. The max-
imum margin algorithms are excluded since they cannot handle
the noisy inputs that are expected in a natural context. Zero-bias
1-norm SVMs lack a linear constraint so both the outer- and inner-
loop variants are feasible. Table 5 further notes that 2-norm learn-
ing rules (35) and (40) require a separate register of endurance
times that appears to be hard to implement in neural networks. The
outer-loop zero-bias ν-SVM cannot handle the linear constraint
(15) but the inner-loop ν-SVM learning rules (35) and (37) en-
force Eq. (15) in each iteration. Bisymmetric models cause only
additional complexity in the zero-bias case but provide a unique
opportunity to build a simple and elegant biased model. This is,
however, feasible only for the inner-loop ν-SVM where architec-
tural constraints and particularly benign learning rules (50) and
(51) seamlessly implement both linear constraints. Hence only four
promising options for biological modeling emerge:

– Single-CQM zero-bias inner-loop ν-SVM
– Single-CQM zero-bias outer-loop 1-norm SVM
– Single-CQM zero-bias inner-loop 1-norm SVM
– Bisymmetric biased inner-loop ν-SVM.
Note that the four preferred neural network architectures that

we have found are not competitive as computer implementations
of SVM and are only proposed for the purpose of biological mod-
eling. With regard to the biological feasibility of the four favored
models we will argue that they are built from components that
realistically could be implemented in living tissue. Sensor sys-
tems and sensory memory are well known features of the brain.
The routing function in the Switch can be understood as inhi-
bition/activation of alternative neural pathways. Similar routing
functions are e.g. found in the thalamic relay matrix (Sherman &
Guillery, 2006).

Bullock (2004) reviews substantial evidence that the brain em-
ploys CQM for learning fluent action sequences. The four mod-
els that we have selected are characterized by particularly simple
learning rules (Eqs. (24), (34), (36), (37), (50), (51)) that credibly
could be realized in a biological CQM. The kernel module imple-
ments a multivariate function and it is known that feed-forward
three-layer neural networks can implement any continuous mul-
tivariate function with arbitrary accuracy (Cybenko, 1989). SVM
Kernels must be positive definite which poses an additional re-
quirement on the biological substrate but even kernels that violate
positive definiteness may work well in practice (Ong, Mary, Canu,
& Smola, 2004). Temporal integration is approximately realized in
living neurons by temporal summation (Johnston &Wu, 1995). The
clustering operation that is central to the bias computation can be
performed by neural networks in the form of self-organizing maps
(Kohonen, 2001).

The zero-bias inner-loop 1-norm SVM is very similar to cor-
responding ν-SVM—a constant term is the only difference in the
learning rules (compare Eqs. (34)–(36)). This slight difference
causes, however, significantly different behavior. The duration of
an evaluation cycle is constant in the ν-SVM but the 1-norm eval-
uation time differs depending on the current selection of support
vectors. It is, however, advantageous for an organism that the eval-
uation time is kept within a narrow range so that pattern recog-
nition latency is predictable for higher-levels systems. Rodent
olfactory sniffing cycles are e.g. in phase with the limbic θ rhythm
(Macrides et al., 1982). Hence ν-SVM was selected as a prime can-
didate for biological modeling (Jändel, 2010a).

The architectures that we have analyzed do not depend on any
particular strategy for selecting training examples from the stream
of sensory data. Any organism using SVM-based pattern recogni-
tion would, however, need to manage the cache of stored training
examples carefully to avoid performance degradations caused by
an ever increasing load of data. Jändel (2010a) suggest that only
misclassified examples should be captured into the CQM and triv-
ial examples (with zero weight) after a suitable period of grace
should be deleted. This simple policy ensures that only good sup-
port vector candidates are selected for storage and that eventually
only support vectors remain in memory.

A zero-bias inner-loop ν-SVM using randomly oscillating asso-
ciative memory rather than CQM has been discussed extensively
in Jändel (2010a). This approach supports one-shot learning and
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models qualitatively important aspects of the structure and dy-
namics of the olfactory system. Bursts in the thalamocortical sys-
tem have speculatively been explained, within the framework of
the ν-SVM model, as a signature of a thalamic pattern recognition
mode (Jändel, 2009). Replacing associativememorywith CQMpre-
serves all functional features of themodel and also thematch to the
anatomy and dynamics of the olfactory system. Jändel (2010a) can
therefore be read as an in-depth discussion of the biological signif-
icance of single-CQM zero-bias inner-loop ν-SVMs.

Using CQM rather than associative memory solves a serious
problem that was discussed in Jändel (2010a). Temporal summa-
tion in a given evaluation cycle converges rather slowly if support
vectors are presented randomly by an oscillating associativemem-
ory. This means that the maximum number of support vectors in a
given pattern recognition module is about ten which is an uncom-
fortably small number given the complexity of pattern recognition
in nature. A CQM presents all support vectors in sequence during
the evaluation cycle which guarantees precise computation of the
classification function. This removes the convergence problem and
allows for applying 50–100 support vectors in realistic biological
models.

It is intriguing that the same neural structure that is thought
to be vital for learning action sequences (Bullock, 2004) also can
be the foundation of trainable pattern recognition. Speculatively it
is thus proposed that advanced pattern recognition with one-shot
learning first evolved as an adaption of motor systems. As bisym-
metry is common in organisms it is conceivable that bisymmetric
motor modules provided a rather direct evolutionary path to the
bisymmetric biased inner-loop ν-SVM (Jändel, 2011).

This paper does not provide any numerical experiments be-
cause theoretical arguments in Section 3 demonstrate that the four
biologically relevant architectures fully implement the associated
SVM algorithms as defined in Section 2. The classification func-
tion (1) is precisely implemented, the bias parameter is correctly
computed and SVMweights are learnt according to gradient ascent
with respect to the proper objective functionunder the appropriate
boundary conditions. Theoretical reasoning has likewise demon-
strated that the majority of the studied architectures are not cred-
ible biological models for support vector machines. The relevant
numerical experiments should study biologically realistic imple-
mentations of the four preferred models where the quintessential
components that are assumed in Section 3.1 are replaced by sys-
tems of simulated bio-realistic neurons. In future research we
would like to explore whether the promising architectural models
that we have found will provide sufficiently good approximations
of support vector machines in detailed and biologically realistic
neural network simulations. A key issue in such experiments is to
understand how much the resulting classifiers can deviate from
ideal support vector machine algorithms and still be sufficiently
useful for low-level perception.
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