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ABSTRACT: The Defence Conceptual Modeling Framework (DCMF) is the Swedish Defence Research Agency’s (FOI)
proposal for conceptual modeling in the military domain. The purpose of DCMF is to enable conceptualization, composition,
visualization, and reuse of knowledge for modeling and simulation. To achieve this, DCMF requires that its final products -
conceptual models represented in the Base Object Model (BOM) format - are enriched with semantics. In this paper we focus
on the composition part of the framework and show how composition of BOMs can be achieved using ontologies to account
for the semantics of information. We demonstrate this through a prototype which incorporates BOM matching techniques
along with our proposal for semantic enrichment. We discuss how the current BOM representation could be extended so that
it becomes more suitable for tasks that involve reasoning over modeled knowledge.

1. Background

The development of a knowledge base, prior to the de-
velopment of a simulation model, is a time-consuming and
costly process. Moreover, the knowledge that a model rep-
resents is often not properly saved for future reuse. Even
if the model is accurately stored it is difficult to reuse it in
other contexts. This is primarily because knowledge of how
a model was created is not documented to the extent neces-
sary. In other words, for potential reuse of a model, relevant
facts about knowledge acquisition are missing and hence so
is the traceability to the knowledge source.

The Defence Conceptual Modeling Framework (DCMF)
is a framework developed by the Swedish Defence Research
Agency (FOI) for creating and representing conceptual mod-
els [13]. Conceptual models in this context are formalized
descriptions of real world processes, entities, associated rela-
tionships, and interactions that constitute military missions,
operations, or tasks. They are the final artifacts of the DCMF
process, intended as means of representing requirements for
simulation model development.

To enable a satisfactory analysis of domain knowledge
and its shared understanding among people and software sys-
tems, DCMF requires that conceptual models are formalized
and explicitly specifies the semantics of information. In this
paper we discuss one such formalization developed by utiliz-
ing the Base Object Model (BOM). BOM (see next section)

was created by the Simulation Interoperability Standards Or-
ganization (SISO) to enable composability and reuse of con-
cepts intended for design of simulation models, interacting in
High Level Architecture (HLA) federations [3]. The IEEE-
standard Federation Development and Execution Process
(FEDEP) defines the process for developing and supporting
federations conforming to HLA [4]. FEDEP proposes seven
major steps: Define Federation Objectives, Develop Federa-
tion Conceptual Model, Design Federation, Develop Federa-
tion, Integrate and Test Federation, Execute Federation, and
Analyze and Evaluate Results.

When using BOM to conceptualize the artifacts in DCMF,
the framework can be seen as a well-defined approach sup-
porting Step 2 in FEDEP, i.e., for guiding development of
conceptual models for federations. However, when consid-
ering the BOM for conceptual model representation in the
DCMF process, a need arose to find a way to enrich the BOM
specification with formal semantics. This became especially
important when considering the composition and reuse of
BOMs stored in a repository. An example of such an en-
richment of BOM has already been proposed, BOM++ [10].

Giving this background, the remainder of the paper is or-
ganized as follows. Section 2 gives an overview of basic
concepts underlying our work. In Section 3, we describe
the method chosen for putting into practice the concepts de-
scribed in Section 2 and how our prototype supports this. In
Section 4, we show a case study that demonstrates our pro-



totype. Section 5 concludes the study and describes further
research.

2. Theory

In the following sections an overview of two basic con-
cepts underlying our work, BOM and DMCF, are presented.

2.1. BOM

The BOM proposal was created by SISO to encourage and
support reuse, interoperability, composability, and to help
enable rapid development of HLA simulations. BOM was
standardized by SISO in 2006 [6].

At a high level, BOMs are reusable packages of infor-
mation representing independent patterns of simulation in-
terplay and are intended to be used as building blocks in the
development and extension of simulations. These compo-
nents can also be composed to form more extensive models
e.g., BOM Assemblies. Additionally, interplay within a sim-
ulation or federation can be captured and characterized in the
form of reusable patterns. These are sequences of events be-
tween simulation entities. Implementation of these patterns
using the HLA Object Model Template (HLA OMT) is also
captured in the BOM [9].

Structured in five major parts, a BOM is an XML docu-
ment that encapsulates the information needed to describe a
simulation component. From the perspective of DCMF, the
second part of the BOM, the Conceptual Model, is the most
interesting. The Conceptual Model contains information that
describes the patterns of interplay of the component. This
part includes what types of actions and events that take place
in the component, and is described by a pattern description, a
state-machine, and a listing of conceptual entities and events,
which, when taken together, describe the flow and dependen-
cies of events and their exceptions.

The BOM Conceptual Model is further divided into four
different sub-models [7]:

• Pattern of Interplay,

• State Machine,

• Entity types and

• Event types.

2.1.1. Pattern of Interplay

The Pattern of Interplay (POI) describes the recurring
behavior used to accomplish a common objective, capa-
bility, or purpose, as carried out by a real world entity,
phenomenon, process or system. It contains actions, entity
types, and event types that take part during one interaction

between two components. It also contains variations and
exceptions that could happen as alternatives to the normal
flow of events. These actions form a flow that is sorted by
the Sequence Number associated to each of them. Along
with the Sequence, a Name, a Sender, and a Receiver are
also specified.

2.1.2. State Machine

The State Machine model is a mechanism for modeling
how entity types move from one state to another via actions.
State Machines are made of states and conditions that must
occur to hop to the next state, and are related to a specific
conceptual entity.

2.1.3. Entity Types

Entity types represent real-world objects; they are used in
POIs in order to define Senders and Receivers. Entity types
also describe the conceptual entities that are used within
State Machines, and have Attributes associated with them.

2.1.4. Event Types

Event types are used by conceptual entities to make tran-
sitions from one state to another and are employed within
the POI model. There are two kinds of Events: Triggers and
Messages. Triggers are sent by some entities without a spe-
cific receiver, while Messages do have a specific recipient.

2.2. DCMF

The DCMF [13] includes a process whose main objective
is to address how knowledge can be acquired for a particular
purpose, as well as how it can be structured, modeled and for-
matted according to predefined criteria. It also addresses how
knowledge can be used, or reused, given diverse applica-
tions. The process consists of four main phases: Knowledge
Acquisition (KA), Knowledge Representation (KR), Knowl-
edge Modelling (KM) and Knowledge Use (KU).

Figure 1. Four Phases of DCMF [11].

Information is first gathered within the Knowledge Ac-
quisition phase. The Producer role processes unstructured



knowledge and transforms it into structured knowledge. To
accomplish this, a parsing method must be used. During the
Knowledge Representation phase, smaller sections of this
data are structured as Knowledge Instances (KI) and vali-
dated for storage in the repository by the Controller role. KIs
are useful for some purposes, but they are not reusable since
they are specific to a particular scenario. To get reusable
knowledge, KIs are abstracted to the type level, modeled
as Knowledge Components (KC) and then validated in the
third phase, called Knowledge Modeling. These components
are, upon Consumer requests, composed to form Conceptual
Models (CM) in the fourth and final phase, Knowledge Use.
All artifacts produced are stored in a repository for use and
reuse.

In this paper we focus on the KU phase and present a
prototype which incorporates the composition algorithm dis-
cussed in [2]. We also go further and enhance the prototype
with explicit semantics of information, enabling “semantic
validation”. We extend the composability definition in [2]
with the concept of semantic validation, which states that
two models are “composable” if they match “statically”, “dy-
namically” and are “semantically valid”.

3. Method

The main purpose of the prototype is to investigate
how knowledge components (KC), represented as BOM-
models [8], can be matched in order to create a larger com-
position model. Figure 2 shows a basic overview of the pro-
totype. The approach is discussed in [2] where statemachine-
matching is a fundamental issue.

The matching module performs the BOM matching and
sends the result to the semantic module for semantic vali-
dation. The result is visualized by the graph module. The
matching result shown by the visualized graph is either se-
mantically valid or invalid.

Using the prototype, we can quickly see which models
that fit together. If a person would perform the same task
manually it would require much more time. Note that a
match between two models simply means that the models
can be combined into a larger model in a straightforward
manner. A composition model gives a more complex de-
scription of a e.g. behaviour.

Given a repository where knowledge components are
stored, the prototype searches through BOMs that potentially
may be assembled together. The prototype goes through each
model and tries to determine if the model can be linked to
other models. The composition (matching) is done using a
composition algorithm [2] where a set of rules must be ful-
filled. If the prototype is able to find matches between differ-
ent models, the user is notified.

Figure 2. Overview of the prototype.

3.1. Prototype Architecture

The prototype consists of three modules:

• Matching module

• Graph module

• Semantic module

The matching module has an implementation of the com-
position algorithm which consists of four different steps.
When matching is being performed, potential BOMs that can
be relevant for composition are identified (this is verified at
the end of the process). The four key steps in the matching
module are:

1. Parsing

2. Static matching

3. Transformation

4. Dynamic matching

In the first step the BOMs’ state machines are simply read
into memory along with entities, events and patterns of inter-
play. The second step performs a so-called “static matching”.
The static matching ensures that three specific rules are met:

• The first rule says that for each state in the state ma-
chines (loaded in step 1) there should be an exit crite-
rion. The exit criterion ensures that the state machine
doesn’t get trapped in an individual state.

• The second rule says that for every sender of a mes-
sage (action in patterns of interplay), there must be a
receiver.



• The third rule says that there should exist at least
one end-state among the state machines that are being
matched. This is needed in order to avoid infinite loops.
When all rules are met, the static matching is completed
and the program can continue to the third step.

The third step performs a transformation, where the BOM
information (states and messages) are transformed into State
Chart XML (SCXML)1, a special XML-based2 format which
is used for execution of state machines.

The fourth and final step performs the dynamic matching.
Here the BOMs are executed in parallel, in separate threads,
in order to test model interaction in real-time. The interaction
is basically messages that are sent back and forth between
models. This execution is needed in order to identify po-
tential deadlocks in run-time and also to check if end-states
can be reached. Figure 3 shows an overview of the matching
module.

Figure 3. Overview of the matching module.

The graph module receives the matching result which
consists of a data structure (a graph structure). The graph
structure shows the models that can be assembled together.
The graph module is also responsible of visualizing the graph
structure, see Figure 4. In this figure we see that the models
“Engine”, “Wheel” and “Car” are matched in a simple con-
figuration.

The semantic module which is our main contribution has
a special purpose in the prototype. So far we have checked
if the BOMs can be composed statically and dynamically.
The semantic module is the next step in checking whether
the BOMs can be composed. This is done using ontologies

1SCXML: http://en.wikipedia.org/wiki/SCXML
2XML: http://en.wikipedia.org/wiki/XML

Figure 4. Visualized graph structure.

represented in OWL3 and rules which are employed using a
reasoner engine [1]. The semantic module checks if certain
rules for specific entities, represented as “individuals” in an
ontology, are met. We call this “semantic validation”. By us-
ing semantic validation we can put external restrictions that
must be fulfilled in order for the BOMs to be composable,
e.g. a Car requires at least four Wheels, but only one En-
gine (not more or less). The reason why we use ontologies is
because we want to be able to reason about facts that aren’t
perhaps explicitly specified in our knowledge base. Ontolo-
gies are also important from a machine learning perspective,
that is, computers can easily understand standard ontologies.

3.2. Semantic Validation

BOMs have a field called “conceptual model” which con-
tains different conceptual elements. All of those elements
have a property field called “semantics”. We use this prop-
erty field for the semantic enhancement. We propose a spe-
cific format for the semantics property field using an URI4

and validation sets.
The format we propose for the semantics field is:

[URI s1 ... sn], where URI points to an ontology and si is a
validation set. Figure 5 gives an example of how a semantics
field could look like in a BOM file.

<s e m a n t i c s>
h t t p : / / some− l o c a t i o n / some−o n t o l o g y . owl
Happy
</ s e m a n t i c s>

Figure 5. Example of a semantics field in a
BOM.

In Figure 5 the semantics field states that the element (e.g.
an entity) which has the < semantics > property must ex-
ist in the validation set Happy, in order to be semantically
valid. What this means is that we can construct rules in our
ontology that specify different conditions that must be ful-
filled in order for the element to be “semantically valid”.

3OWL: http://en.wikipedia.org/wiki/Web Ontology Language
4URI: http://en.wikipedia.org/wiki/Uniform Resource Identifier



A rule in our ontology can look something like this:
A(x) ∧ B(x) ⇒ C(x). Here we say that if an individual is
in set A and in set B, then the individual is also in set C. For
example, if x = “John”, and x is “Playing” and “Winning”,
then x is also happy. Ontology rules are of course not lim-
ited to these simple constructions. In this case we could have
a rule that specifies different conditions that lead to Happy,
e.g. Playing(x) ∧Winning(x)⇒ Happy(x).

Let us assume the BOM element is an entity which repre-
sents a person. In our ontology we must also have the same
representation, so-called “individual”, see Figure 6. Reason-
ing is performed on individuals. E.g., if “John” is an entity in
the BOM (which is represented as an individual in the ontol-
ogy) and after reasoning we see him in the Happy set, then
we say that the element is semantically valid. Note that the
element must exist in all of its validation sets, e.g. if entity
“John” has Happy and Married as its validation sets, then
he must exist in those two sets after reasoning in order to be
semantically valid. If all elements in a BOM are semantically
valid, then we say that the BOM is semantically valid.

Figure 6. BOM and ontology mapping.

3.3. Algorithm for Semantic Validation

We propose a simple algorithm for semantic validation,
see Algorithm 1 [12]. In this algorithm we go through all
BOMs in a repository (Φ) and for each BOM (β) we go
through all elements that contain semantic information. For
each element (ε) we extract information about which ontol-
ogy (ω) the element uses and also its validation sets (Ω). Af-
ter this we call the reasoner with the following input: the
ontology, the element’s validation sets and also an identifier
to locate the corresponding individual in the ontology.

The reasoner returns a result containing the inferred set
(λ). For each validation set (υ) we check if it is a subset of
the inferred set, if it is not we mark the element as false
and break. If one element in a BOM is marked as false, we
mark the whole BOM as false, meaning it is not semanti-
cally valid.

4. Case Study

The test was based on a scenario that occured in
Afghanistan in late 2009 [12]. A Swedish patrol unit was

Algorithm 1 Semantic Validation
1: Φ is the BOM repository
2: ∀β ∈ Φ, where β is a BOM
3: ∀ε ∈ β, where ε is an element (with sem. info)
4: mark ε true
5: ω← ε.getOntology()
6: {Ω} ← ε.getValidationSets()
7: {λ} ← reasoner(ω, Ω, ε)
8: ∀υ ∈ Ω, where υ is a validation set
9: IF υ /∈ λ
10: mark ε false
11: break
12: IF ε == false
13: mark β false
14: break

sent out to patrol an area outside of the city of Mazar-i-
Sharif. At a certain point the patrol unit hit an IED which
resulted in casulties. After alerting headquarters a medical
unit was sent and the casualties could be dealt with.

We tested our prototype on a repository containing mili-
tary BOMs based on this scenario. The BOMs represented
different parts of the military organisation within the sce-
nario. Our objective was to test if the prototype could find
any matches and if the matches could be semantically vali-
dated, that is, if the models could be composable. We cre-
ated a simple ontology using Protege [5]. The ontology con-
sisted of made-up facts about individuals and rules which
were needed for validation. One example of a rule was: “a
helicopter is a valid rescue helicopter if it can fly within a
100 km radius from its base and has medical equipment on-
board”. We used the format shown in Figure 5 to point to the
individuals in the ontology from the entities in the BOMs.
We also tested how mis-matches could be produced, that is,
how we could break different checks (static matching, dy-
namic matching and semantic validation).

Searching in the repository looking for potential BOMs
fulfilling the reqirements from the given scenario, we found
three BOMs that matched: CommandUnit, PatrolUnit and
MedicalUnit. The models matched because they included
senders and receivers for key actions and the actions could be
executed without deadlock issues. The connecting sequence
of actions were:

1. PatrolUnit sends EmergencyHumanCallAction to
CommandUnit.

2. CommandUnit sends OrderMedAction to
MedicalUnit or MedDeniedAction to PatrolUnit.

3. If OrderMedAction occurs then MedicalUnit sends
ConfirmMedicalAction back to PatrolUnit.



4. When rescue mission is over MedicalUnit sends
MedNotifyAction back to CommandUnit.

Figure 7, 8 and 9 show each individual sequence of ac-
tions. Each sequence diagram corresponds to the patterns of
interplay in one BOM, e.g. the sequence diagram in Figure 8
corresponds to the behaviour of the MedicalUnit BOM. The
BOMs were also semantically valid. Each BOM contained
an entity with a semantic tag and the tags pointed to our on-
tology which held the rules. We had one validation rule for
each entity. When the rules where executed each individual
(entity) occured in its validation set, hence the BOMs be-
came valid.

Figure 7. Sequence diagram for
CommandUnit.

Figure 8. Sequence diagram for MedicalUnit.

After we found this semantically valid match combina-
tion, we tried to break the matching conditions in order
to see how the prototype would react. For example, we
removed EmergencyHumanCallAction from the PatrolUnit
BOM. The prototype displayed a condition violation at the
static matching level. We also reordered the sequence of the
actions, e.g. we changed the order of ConfirmMedicalAction

Figure 9. Sequence diagram for PatrolUnit.

to occur earlier. This resulted in a condition violation at the
dynamic matching level.

We manipulated the facts in our ontology, e.g. we
changed a prerequisite property (“medical equipment”) for
a MedicalUnit. The prerequisite property was needed for a
MedicalUnit in order to perform its services. When we re-
moved this property, the rule: “if a medical unit has medical
equipment, then it is a valid medical unit” became false (in-
dividual did not occur in inferred set). The result of this was
that the entity and the BOM became semantically invalid.

5. Conclusions & Future Work

The case study shows how BOMs are matched and under
which conditions a set of BOMs are composable according
to our definition in Section 2. The example highlights when
static and dynamic matching fails, and shows that by chang-
ing property values for the individuals in the ontology we can
get different inferred results, hence indicating if an element
in the BOM is semantically valid or not.

The algorithms used for BOM matching and semantic val-
idation are at some level straightforward, this creates com-
plexity issues. The more BOMs that exist in a repository, the
more time consuming the matching process becomes. For
future work it would be interesting if matching and valida-
tion could be done using faster algorithms (perhaps through
heuristics). Complexity issues have to be resolved either by
introducing new algorithms or reducing the size of data us-
ing different filtering techniques. Otherwise the technology
is not applicable in a real world application.

The relationship between a BOM and an ontology raises
an important technical question. Is the current BOM format
good enough for representing the semantics of information?
If we look at the current format there is only a simple text
field for expressing this. It is therefore not unreasonable to
think that the BOM format could be expressed entirely in
OWL. This way we would not only store the old BOM re-
lated information, but also the semantic aspect of informa-
tion in an explicit manner. This type of combination cre-
ates a much richer BOM for future use in e.g. simulations.



BOM++ [10] is an example of such a proposal that has al-
ready been suggested by FOI.
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