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Abstract -

The new types of opponents and new kinds of situations that
the Swedish defence forces are facing today calls for new infor-
mation fusion methods. In order to provide commanders with
the ability to predict the enemy’s future actions, tools for au-
tomatic plan recognition are needed. In this paper, we take the
first step towards constructing such a method based on recogniz-
ing plans using information about the capabilities of the enemy.
The method combines our previous work on plan recognition
using bayesian networks based on comparing enemy movements
to their doctrines and methodology for force aggregation using
capabilities. We describe how the plans of the enemy are built up
so that their intended effects are achieved. The relations between
these, their resources and the context in which they are acting
are used to construct the plan recognition network. We discuss
the need for including termination states in the plan recogni-
tion method and describe ontologies that are aimed to support
the construction of the bayesian networks needed for capability-
based plan recognition. We conclude with a discussion of possi-
ble extensions of the method.

Keywords: plan recognition, operations other than war, predic-
tive situation awareness, bayesian networks, ontologies

1 Introduction

The vastly increased amount of sensors that are used in to-
day’s battlefield make it necessary for commanders to use
computer tools in order to get sufficient situational aware-
ness and increase the quality of their decisions.

An important part of decision-making for commanders
in the field is to have some sort of predictive situation
awareness. This is achieved when, in addition to knowing
where own and opposition forces are located, the comman-
ders are also able to pose and rank hypotheses regarding
the enemy’s future behaviour. Such hypotheses, of course,
are always uncertain, since we can never be sure what the
enemy’s goals are.

One aim of threat assessment, or level 3 information fu-
sion [1], is to produce computer tools that help commanders
reason about possible future plans of actions for the enemy.
In this paper, we present an extension of a previously intro-
duced [2] method for plan recognition. Recognizing the
enemies plans as soon as possibly after they start acting
on them enables commanders to act pro-actively instead of
passively reacting to enemy actions.

Previous work on plan recognition has been based on
using doctrinal knowledge to determine plans based on the
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movement patterns of enemy units. In the military opera-
tions other than war (MOOTW) that the Swedish defence
forces are performing now and in the future, we will face
new kinds of opponents. Instead of a technologically ad-
vanced adversary that follows rigid doctrines for their be-
haviour, we meet gangs, clans, militias and other loosely
organized groups whose behaviour is more governed by re-
ligion, culture, and feelings than by military doctrine. Of-
ten, we will be in situations where there are several oppos-
ing sides, none of which follows a clear doctrine, and where
we need to predict the behaviour of all the different parties,
taking into account the reactions of the other sides to the ac-
tions of one. Such complicated interaction between several
antagonistic and/or neutral sides might possibly be modeled
using game theory.

In this paper, we concentrate on the problem of deter-
mining possible plans of actions for the enemy based on
what capabilities that they are seen to have. Capabilities,
which will be further discussed in section 7, can be seen as
as resource of some kind that is at the right place and time
(i.e., in the right context) to be used. The simple idea un-
derlying the work presented here is that by looking at what
equipment the enemy is bringing, we can infer what their
plans are. For example, if we in a riot situation see a group
of people with a grenade-launcher, it might be reasonable
to conclude that their aim is the presidential palace, since
the grenade-launcher can be used to attack it even though it
is surrounded by walls and a garden. This simple example
illustrates the importance of the context in which we see
a particular resource. If there is no appropriate target for
a grenade-launcher in the area, then the presence or non-
presence of it tells us nothing about the enemy’s intentions.

Capabilities have previously been used to classify clus-
tered groups of objects in MOOTW situations [3], provid-
ing one component of a force aggregation method which is
applicable when the enemy’s unit structure does not follow
a known doctrine. In this paper, we define the concept of ca-
pability more precisely. By combining the plan recognition
with the aggregation presented in that paper, the first ver-
sion of an information fusion system for operations other
than war scenarios could be built.

This paper is outlined as follows. Section 2 gives the
idea behind the plan recognition presented here and dis-
cusses how it can be combined with previous work to get
a more robust estimation of the enemy’s plans. Sections 3
and 4 discusses the relationship between plans, intentions
and effects. The following sections discuss the need for
termination states in the bayesian networks used for plan



recognition and describe the ontology that is needed to map
capabilities via plans to effects. How to get capabilities
from observations is discussed in section 7, which is fol-
lowed by a discussion and suggestions for future work.

2 Plan recognition in several ways

By observing a group of agents, we can infer their future
actions (their plans) in three different ways.

1. By looking at the way that the agents move around
in the environment, we can determine if they are ag-
gressive and also try to predict where they are headed.
For example, a crowd that moves randomly will pose
less of a threat than a crowd which purposefully moves
towards their goal. In addition, if the crowd tries to
sneak around police patrols, we get additional infor-
mation regarding their behaviour.

2. A more difficult way of inferring goals is to look at
what kind of equipment and resources that the agents
are carrying. This will impose limits on what they are
capable of doing. For instance, if we observe a person
in the crowd carrying dynamite, we know that they
are capable of blowing things up. This kind of plan
recognition is the focus of this paper. Instead of just
looking at the equipment and resources that an enemy
possesses, we will use information about the capabili-
ties that they have. The method that infers plans based
on the observed capability of the enemy will be called
CDbPIR (for capabilities-based plan recognition) in the
following.

3. The most robust plan recognition is obtained by com-
bining the two methods. This will be done in future
work.

If we are given several different estimates of the en-
emy'’s future actions, it is useful to compare them and see in
what way the outputs of the different methods differ [4, 5].
Doing this gives us more confidence in the results of the
plan recognition method and also allows us to concentrate
on those plan alternatives for which the methods produce
significantly different probabilities. The comparison could
also be used to guide information gathering resources, so
that the dissimilarity between the outputs is minimized.

3 Plan recognition for Effect Based
Assessment

The new concept of effect based operations (EBO) is a
way of thinking where desired effects (higher order goals
at strategic level) are put into focus when planning, execut-
ing, and assessing military operations. EBO forces decision
makers to look at outcomes and their explanations more so
then actions taken [6], [7]. The focus of EBO is on causal
explanations (models of mechanisms) that represent rela-
tions between action and cause (effect). Plan recognition is
methodology that is aimed to facilitate an EBO process by
modeling adversary (agents) activities and thereby provide

predictive situation awareness for the user (own force tacti-
cal commander). Plan recognition is one of the methodolo-
gies that that is aimed to transform information about ad-
versary into usable knowledge for EBO. Plan recognition
gives focus of attention (alert) to the user, identifies threat-
ening behaviors of an agent or group of agents and gives
a clue about the (most probable) effects that agents may
cause.

In this paper, we assume that the behaviour of the enemy
can be modelled using an EBO approach. Thus, we assume
that there are relations between the plans that the enemy
follows and their effects, even if the enemy does not plan
according to the EBO process.

By agent we mean everything that can act using its
actors and perceive using its perceptors. An agent or group
of agents acts in a certain environment. Plan recogni-
tion is the process of inferring (reasoning about) agents
plans given a priori knowledge about agent’s behavior, our
current observations and knowledge about the environment.

By W we denote all possible states of interest of the
agents. w € W will denote a current (actual) states.

We divide state w into five components. The 2 com-
ponent contains states that are influencing the agent’s deci-
sions and e are the states that are assumed to be controlled
and/or achieved by the agent. This division of actual world
state w seems to be a natural choice considering the defini-
tion of agents where both perceiving part (in analogy to x)
and acting/effecting part (in analogy to e) are present. E.g.
x can be weather conditions, what other agents do and e are
the effects to be achieved (e.g., making opponent agents to
believe in certain hypothesis or staying at same place and
protecting an important road).

More explicitly, we will write

w = [z, e,ps,rs,ts] @)

Local effects e; caused by different agents in a certain
situation produce eventually aggregated (global) effects.
When an agent is executing a certain plan it changes en-
vironment or reveals itselfs. Those states, influenced by
plans, we call reveling states (rs). A way of executing
plans in military terms is called doctrines. Knowledge
about agent doctrines can provide hints about what plans
are most probable given certain behavior patterns. Precon-
dition states (ps) are states that are plan material and what
the agent is capable of doing. Those states are closely re-
lated to what agents, their physical resources, positions and
eventually capabilities are. In an expanded way the fac-
tors as the motivation are taken into concern. Termination
states (ts)are conditions that prevent certain plan alterna-
tives from being possible. In this paper we focus on pre-
condition states and the termination states that are related
to capabilities. Those state descriptions are of use in plan
recognition in a MOOTW setting. We will construct a con-
ceptual framework in the form of ontologies that integrate
various state descriptions.

However, each plan does not automatically lead to the
desired effect due to frictions. The mission (war) frictions
can be divided into environmental and agent based. Change
in environment such as weather change or lacking knowl-
edge about the environment may prevent achieving desired



states. By agent based frictions we mean that other agents
influence or prevent desired outcomes. Therefore even ef-
fects are a probability distribution where each effect is com-
bination of all agents actions (both hostile and enemy) and
the environment where agents are acting.

4 Plan recognition and intentions

The implementation of a plan can be seen as the changing
function of current state w; to a future state w; ;. A se-
quence of states (wq, ..., w, ..., wr) eventually leading to
the end, desired, state wr = end_goal that reflects agent’s
intention. To avoid to be too predictable in military ap-
plications it is undesired in some situations to execute the
same plan more than once. The main difference between
intention and plan is that intention is some desired (end)
state while a plan is a way for transforming state w, into
new state wy,1. Executing the plan eventually leads to
the desired (intended, goal) state w.,qs. Most often case
is that no plan w/=s2r*[1] is exactly alike as other plan
mi=start[2]. Therefore it is important to describe a space
of possible plans in a generic manner that captures recogni-
tion of plans in a robust manner but also makes it possible
to distinguish between plan alternatives. In [2] it was shown
that, by using the soft computing methodology, it is possi-
ble to find the best matching candidates to plan alternatives
m = (alty, ..., alt,, ..., alt,) given relevant states w. What
is output from the method if a distribution

P(mi|w) ()

if possible plans given the observed actions.

The method uses observations, a model of the environ-
ment, strength balance and other agents perception prop-
erties to derive these distributions. The plan recognition
model was designed to use both dynamic on-line observa-
tions and static knowledge in order to find out about the
agents plans.

Instead of modeling plans as all possible sequences of
actions and sub plans we assume that a markov property
holds for the plans: only the plans and actions at the imme-
diately preceeding step influence the current values. The
method uses dynamic bayesian networks to estimate plans
at current time step, ¢, by using information about plans
on plans at previous time step, ;1. Thanks to the markov
property, the modeling process and on-line inference be-
comes tractable.

The plan recognition method introduced in [2] is a soft
computing method that used both fuzzy sets and Dynamic
Bayesian networks (DBN) [8]. A DBN with a proper de-
scription offers flexibility beyond hierarchical modeling in
a consistent manner.

In Figure 1 the multi-agent plan hierarchy consists of the
plan of the company at the top level, the platoon plans at the
next level and the tank plans. Our DBN modelling approach
is that the company plan causes change in platoon plans and
platoon plans cause change in group (tank) plans. One of
the key variables that reveal agent plans is their formation,
the spatial pattern they form. It is represented as a Bayesian
node in the network. According to the model in Figure 1,
the variable “Observed Formation”, grey node, depends on
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Figure 1: A schematic illustration of the DBN used for plan
recognition based on enemy movements.

the actual formation. Due to environment, uncertain obser-
vations and possible agent’s coordination problems we are
not always able to observe its formation pattern. A fuzzy
set function takes the estimates of the tank positions as in-
puts and as output returns the distribution of the observed
formation’s values. The result is entered as soft evidence
in the variable “Observed Formation”. By Bayes rule it has
influence, backwards, on the value “Formation”. As we see
In Figure 1, platoon plans and company plan are connected
over time because of higher inertia than inertia of tank plans
(actions). If the whole company is attacking at one time
step there is a significant probability that the company will
continue to execute its plan alternative attack in the next
time step.

5 Termination state that depend on
capability

Plan recognition in previous approaches has been exem-
plified for non-urban military applications. Agents were
acting in an open-terrain environment. Here, we shift fo-
cus from classical warfare in open terrain environments, to
military operations other than war in urban environments.
Urban environments offer many opportunities for agents to
act. However, the urban environment has more crisp/hard
restrictions than open field terrain. For example, the pas-
sages between buildings allows only a limited number of
rioters to pass at once; in crowd situations this restriction
becomes more obvious. In open terrain, hard restrictions
are rare and they were modeled in soft manner in [2] (e.g.
carrying of the terrain in plan recognition is a soft variable
with the probability that tanks can pass).

In [9], a plan recognition model has been introduced for
recognition of agent’s plans in an office environment; one
of the assumptions in that an agent can not have plan al-
ternative (activity) of copying papers if there is no copying
machines available in the room where the agent is. This part
of their plan recognition model is called termination vari-
able (node in an abstract hidden markov model (AHMM))
that represent a stopping condition (state) for certain plans
(also called policies in the paper [9]). The (crisp) stopping,
termination, condition was not modeled in [2]. Instead,
soft precondition states in open terrain environment were
used. Hence, we propose to use such termination states
in CBPIR for MOOTW in urban areas. The benefit of in-
troducing termination states in plan recognition is twofold.



The first benefit is that by using termination state and ex-
cluding certain plan alternatives, we reduce computational
complexity; the complexity is lower if we remove certain
plan alternatives from conditional probability tables rather
than put zero values depending on termination states. The
second benefit is that the user (tactical commander in our
case) gets a smaller number of hypotheses (guesses about
agents plans) to consider. (An alternative way of achiev-
ing this is to group alternatives into classes: most proba-
ble, less probable and least probable, or by using equiva-
lence classes of plans[10, 11].) In CBPIR, if the agents do
not have a capability that is crucial for executing a certain
plan, then that plan alternative should be not be considered.
An example of this could be that if an agent moves to a
place where its capability cannot be used, some plan alter-
natives can no longer be carried out, (see Cont ext for
Depl oynent class in Figure 2). Another example is that
an agent during an ongoing operation uses up its resources
and thereby losses a capability or several capabilities that
are necessary for execution of certain plan alternative. The
risk and disadvantage with termination states is that it re-
duced the robustness of the method. Hence, termination
states should be used only in situations where we are cer-
tain that certain precondition states do or do not exist.

6 Ontology for Capability Based
Plan Recognition

The concept of Multi-Entity Bayesian networks (MEBN),
described in [12], is a first step in direction of building
Bayesian networks (BN) [13] in a flexible manner. MEBN
are based on separate graphical models. Those models are
reusable pieces that during the process of situation-specific
BN construction produce a sequence of BNs contextual
variables. MEBN has the ability to absorb new facts about
the world, incorporate them into existing theories, and/or
modify theories in light of evidence. MEBN fragments,
network entities, specify local dependencies among a col-
lection of related hypotheses. Consequently, they specify
joint probability distributions over unbounded and possibly
infinite number of hypotheses. These properties lead us to
propose MEBN as the key methodology when designing
knowledge fragments for CBPIR.

In particular, here we focus on giving an ontology for
MEBN that support CBPIR at different abstraction and soft-
ware development levels. In [14] a generic ontology for
MEBN has been proposed. Ontology stands for a specific
perspective, or an assumption, about the target application
area to be represented. The reason ontologies are becoming
so popular has to do in large part with what they promise:
a shared and common understanding of some domain that
can be communicated among people and application sys-
tems [15].

Here we present the following generic ontologies for ca-
pability based plan recognition:

1. Upper ontology that can be used both inside but also
outside the scope of CBPIR. (represented in UML)

2. Mid-level ontology whose purpose is to be a con-
ceptual framework for dynamic integration of MEBN

(represented in BN)

3. MEBN specific description on how fragments are put
together (an example of connected MEBN).

6.1 Upper-level ontology for
Based Plan Recognition

In [16] an upper (generic) ontology for C2 was introduced
in Unified Modeling Language (UML) [17]. It was later
modified to suit development and interoperability between
plan recognition systems in [18].
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Figure 2: Upper-level ontoloogy in UML

In Figure 2 we introduce higher-level ontology, repre-
sented in UML, that can be used beyond capability based
plan recognition domain. It is meant to enable a common
understanding of terms and most representative relations.
The use is twofold. An upper ontology is a knowledge rep-
resentation model in a structured manner; this implies that
level of common understating, model reuse and interoper-
ability become much higher by using a common ontology.
It is also a guideline for how to implement middle ware and
low-level ontologies that are intended to be machine inter-
pretable to a much higher degree.

In [18] a capability class was not represented. To sup-
port CBPIR by ontologies, here we introduce capability as
a class. We see capability as a class that can be aggregated,
i.e. a capability can consist of other capabilities. How-
ever, for a capability to exist requires both possession of
resources and the right context to use them. Depending on
what capabilities an agent has, different plan alternatives
can be realized. A plan can be subordinated to a task and
can be superior to other tasks, see [19].

As exemplified in [20] a resource can be physical and
organizational. A resource or resources in "right” place and
time constructs a capability. Generally, a capability is more
dynamic (situation-dependent) than a resource.

6.2 Middleware ontology for MEBN

A plan structure often follows an organizational structure.
Such structure can in MOOTW case be obtained from ca-
pability based aggregation [3]. The plan spaces (hypoth-
esis spaces) in capability based plan recognition is based
on what capabilities agent or agents has in the given con-
text. Next step is composing MEBN structure based on



force aggregation that is aimed to recognize plans (activi-
ties) of agents in a dynamic environment. Composing such
structure needs a human or some rule based program that
uses this ontology, a set of predefined rules and finally com-
pose a context-specific MEBN. As a last step, such MEBN
is fed input and produces qualified guesses of agents activ-
ities (plans).
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Figure 3: Aggregated DBN

To enable this process of matching MEBN fragments we
introduce a middleware ontology that is expressed as an ag-
gregated dynamic Bayesian network, see Figure 3. Its pur-
pose is to classify MEBN fragments for insertion into the
plan recognition DBN. It consists of plan networks that de-
scribe organizational structure. The capability networks are
combinations of network fragments describing capability
resource and context dependencies. Influenced (revealing)
states describe dependencies between evidence we observe
and relations to hidden states, that are in next turn related
to certain plan alternatives.

6.3 Lower level ontology for MEBN

Lower level ontology describes properties of fragments,
which type of nodes a certain fragment consists of and in-
formation about their validity in different domains. This
was described in [14]. In contrast to upper-level ontology
that is meant to be tool for common understanding between
software developers and domain experts the focus of lower
level ontology is to support machines to interpret this on-
tology. The lower-level ontology is a border case between
a ontology and rule based model.
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Figure 4: Bayesian network fragment belonging to pre-
condition states.

The aggregated node of precondition states described in
middle-ware ontology consists of different BN-fragments.
In Figure 4 we show two of the BN-fragments. BN-
fragment one (BN-frag 1) is aimed to describe causal re-
lation between how capability B influence capability A. As
explained in upper-level ontology section a capability is not
only dependent on resources deployed. Capability is also
dependent on (influenced by) the context in which the re-
source is used. A basic example, depicted in Figure 4, is
how close a resource is to the presumed target beta.

The middle-level ontology classify and model allowed
connections from precondition state fragments to the ag-
gregated nodes plans and observations.

7 Capabilities and observations

Resources can be observed and identified by human or
some automatic classification process. Eventually, capabil-
ity could be deduced by human or some data base where
capabilities are matched to resources. However, a re-
source does not entail the same capabilities in all situations
(contexts). In other words, capability is not only tactical
strength of the resource or joint strength of resources. It is
also dependent on the context in which agents are operating.
A resource can be very useful in some situations and use-
less in others. BN-fragments can encapsulate knowledge
about local relations between capabilities resources and en-
vironment where agents are acting. However, evidence that
enter states in MEBN need to be context dependent. l.e. a
process of contextualizing data into relevant evidence has
to be performed. For example, data available about posi-
tion of the agent and its presumptive target beta couldd be
contextualized into classes “Far” and “Near”. This contex-
tualization can be achieved by using fuzzy functions [21].
In similar manner, the capabilities can be derived from data
about agents resources and type of the environment where
agent is acting.
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Figure 5: Capabilities in relation to resources and type of
environment.

In Figure 5, we show an example where the capability of
destroying depends on strength of resources and environ-
ment. For example, some anti-tank weapons can be easier
deployed in urban environment and achieve greater impact
than in open field. Rural environment is something between
urban and open field. The fuzzy functions can be discreti-
sized regarding type of environment (qualitative situation



parameters such as different types of environment). In other
words, in a certain type of environment a certain fuzzy func-
tion is valid. Capabilities achieved by fuzzy functions can
be used in next turn in the BN-fragments that aggregate
capabilities regarding observations and put them into plan
recognition context.

8 Discussion and future work

In this paper, we discussed a method to help commanders
achieve predictive situation awareness by recognizing op-
ponents plans. The plan recognition was based on what
capabilities the enemy units and groups are seen to have
instead of on their movements. Early warning of what the
opponents are planning gives our commanders the opportu-
nity to act pro-actively instead of just reacting to events as
they occur. It also gives them the possibility of prioritizing
among the hostile units that are present, in order to be cer-
tain that the most harmful opponent does not get a chance
to achieve their goals.

A system based on the ideas presented here could be
used not only in MOOTW situations, but also in battle
against a technologically advanced opponent. It could also
be useful for police in riot situations, which are often very
confusing and difficult to determine which parts of the area
of responsibility that should receive the most attention. By
defining appropriate capabilities and goals, the concept pre-
sented here could also be extended to be used for plan
recognition on a strategic level. This would enable intel-
ligence analysts to more quickly reach conclusions regard-
ing, for example, the intents of a country that suddenly
starts producing a resource that can be used for producing
weapons of mass destruction.

There is ample opportunity for future work in this area.
It would be very interesting to integrate the idea of mixed
initiative reasoning [22, 23] with the current method. The
human operator could for instance influence in real-time the
ontologies that describe how capabilities relate to plans, or
the bayesian networks and fragments that are used in the
actual plan recognition.

Future challenges are modeling purpose of action, i.e.
why the agent wants to achieve certain goal by using a cer-
tain plan. As described in [18], a plan stands in relation
to goals in following manner. A task/goal is superior or
a plan a task can involve several actions, other plans and
tasks. In an AHMM, abstraction levels represent abstrac-
tion of plans. In abstraction of plans is closely connected to
level in command and control, i.e. organizational structure.
In [3] the plan structure is depending on the capability force
aggregates (more loose connections than classical warfare
agents C? structures). Goal lattices [24] describe prioriti-
zation structure between sensor actions and the user goals;
the edges in the goal lattice are weighted and priorities from
higher order goals are propagated down to sensor actions.
The issue for future research of plan recognition would be
to connect plan recognition with goal lattices representing
agents’ doctrinal (behavior) knowledge. In MOOTW case
such doctrines are very hard to describe and differ. Ma-
chine learning of different (behavior) models where both
agent’s goals and priories are represented by goal lattices
could greatly utilize efficient plan recognition.

It would also be interesting to extend the framework pre-
sented here so that it could utilize also negative information,
i.e., if the enemy does not have a certain capability, we can
limit the set of hypotheses regarding their future actions.
Since we can never be sure that a non-observation is due
to the fact that the enemy does not have the capability or if
it’s caused by our lack of sensor observations, care must of
course be taken so that the set of hypotheses is not limited
too much.

Another possibility for future work is to combine the
new plan recognition method with resource allocation. This
could be done in a similar way as in [25, 26], where the ob-
jective is to direct our sensor platforms so that we get as
good a plan recognition as possible. Another alternative
would be to use the present method as a component of a
planning system, which helps our commander to plan the
deployment of soldiers and other resources. Such a system
could show how the enemy’s plans might change given that
our movements provide them with new opportunities to use
their capabilities against us.
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