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Abstract - In this paper we develop a computationally
efficient multiple hypothesis association algorithm
for generation of alternative association hypotheses
regarding cluster memberships of intelligence reports
represented as belief functions. We have previously
an O(N2K2) clustering algorithm using a measure of
pairwise conflicts, and a fast algorithm for
classification of clusters using a more advanced
measure. As these measures are similar but not
identical and may have different minima we generate
additional multiple association hypotheses around
the solution found by the clustering algorithm. These
hypotheses may then be evaluated by the
classification algorithm in order to find the best
overall classification of all clusters. In order to
maintain the computational complexity we will
investigate algorithms that run in no worse than
O(N2K2) time.
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1 Introduction
In this paper we develop a computationally efficient

multiple hypothesis association algorithm that may

serve as an interface between a clustering algorithm

and a classification algorithm in order to evaluate

multiple different associations. When we cluster large

amounts of intelligence data with any efficient

clustering algorithm we usually find a good local

minimum. This is the case in Dempster-Shafer

clustering (DSC) [1−4], when intelligence reports

represented as belief functions [5−7] are clustered

based on their pairwise conflict [8] into subsets

corresponding to different events that should be

handled independently. In order to have a

computationally efficient algorithm we only use

pairwise information.

If the following classification of the intelligence

reports in each cluster is made with a more advanced

measure, not only taking pairwise information into

account, the minimum of this measure is not

guaranteed to exactly coincide with the overall

minimum of the pairwise conflicts used in the

clustering process. This is the reason we are

interested in finding a larger set of alternative

multiple hypothesis of the association of all

intelligence reports. With a larger set of alternative

association hypotheses the optimization of the

classification measure is improved. However, it is

important that the computational complexity of the

generation and evaluation of all association

hypotheses are no worse than the computational

complexity of the clustering algorithm used, so as not

to reduce the efficiency of the overall clustering and

classification method.

The computational complexity of DSC using Potts

spin [9, 10] mean field theory [11] is O(N2K2) [12−
15], where N is the number of intelligence reports and

K the number of clusters, both assumed fixed for the

problem. Problems where N is not fixed was studied

in [16], and problems where K is not fixed was

studied in [17], and problems where neither N nor K
was fixed was studied in [18].

We will in this paper investigate different schemes

to generate additional association hypothesis that

may be evaluated in O(N2K2) time and present an

algorithm that achieves the computational

requirement while maintaining a good balance

between the search depth (i.e., iterative changes) and

the search width of maintained alternative association

hypotheses.

The proposed multiple hypothesis association

algorithm, while general in scope, was developed as

an interface between two modules for clustering

intelligence reports and classification of clustered
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subsets in a force aggregation [19−21] method for an

information fusion demonstrator for tactical

intelligence processing [22, 23].

In Section 2 we discuss the idea of multiple

hypothesis association and possible algorithms. An

algorithm is then presented in Section 3, and its

computational complexity is discussed. In Section 4

we give for the sake of completeness a short overview

of the clustering and classification parts of force

aggregation describing how the multiple hypothesis

association algorithm can fit in. Finally (in Section

5), conclusions are drawn.

2 Multiple hypothesis association

2.1 Generation of multiple hypotheses

Let us start with the initial association hypothesis

given as output from the clustering algorithm. At this

level 0 we have one initial hypothesis with k clusters,

Figure 1.

Figure 1: Example with one initial hypothesis, four

clusters and nine reports (level 0).

At the next level we generate all possible hypotheses

with one association change. Since we have nine

reports and each report can be moved to any of the

other three clusters we have 27 new hypotheses, or

new hypotheses in the general case, where n
is the number of reports and k the number of clusters

in the initial hypothesis. In Figure 2 we observe the

first two of these 27 new hypotheses.

Note that the first hypothesis generates two new

clusters that must be evaluated, while the second

hypothesis (and all the other hypotheses generated by

moving the same report) generates only one

additional cluster. In total we have in this level 36

new clusters, or nk new clusters in the general case.

Let us now study an interesting phenomenon on

levels two and deeper. As an example we continue

with hypothesis one from level one, in Figure 3.

The report that was moved at the previous level

must now be excluded. Moving this report to any

other cluster would give a hypothesis at level 3

already generated at level 2 (or level 1, if it is moved

back to where it came from). For instance, if we

moved it to the blue cluster (top right in Figure 3) we

would obtain hypothesis number 2 at level 1, already

generated.

Figure 2: At level one we have  new

hypotheses and nk new clusters (green).

Figure 3: At level 2, the report just moved (red; in the

top left corner) is excluded from further moving as

that would only give a hypothesis already generated.

With one less report, we generate 24 new hypotheses,

i.e., , on level 3 starting from hypothesis 1 on

level 2, and not the 27 ( ) we were able to

generate on level 2.

In the general case, for any level p, we generate

new hypotheses starting from each

hypothesis on the previous level.

If this process is represented by a tree where each

node is an hypothesis and the first hypothesis at level

0 is the root, we will have a branching factor of

towards level 1, and a branching factor of

towards level 2, and in general a

branching factor of towards level p.

However, the branching factor and the number of

generated hypotheses and clusters on each level

overstates the problem size as the same hypothesis

may be reached through different branches. As an

example, if report 1 is moved from A to B on one

level and report 2 from C to D on the next level, this

gives the same hypothesis as if report 2 was moved

Level 0:

Hypothesis 1:

n k 1–( )

Level 1:

Hypothesis 1:

Hypothesis 2:

n k 1–( )

Level 2:

Hypothesis 1:

8 3×
9 3×

n p– 1+( ) k 1–( )

n k 1–( )
n 1–( ) k 1–( )

n p– 1+( ) k 1–( )



from C to D on the first level and report 1 from A to B

on the next level.

Taking this into account we may calculate the total

number of new hypotheses and clusters for all

branches at each level. For instance, for level 2 we

start out with the hypotheses at level 1 and

with a branching factor of , eliminating

for any duplicate generation of hypothesis in

different branches, we receive a total of

(1)

new hypotheses at level 2. The total number of

hypotheses for level 0 to 2 becomes

, (2)

etc. If this is continued until a depth of p < n we will

have a number of hypotheses equal to

. (3)

Similarly, the number of new clusters may be

calculated level by level. At level 1 we have nk new

clusters distributed over the hypotheses. At level 2 we

receive new clusters and if we

continue to a depth of p we have

(4)

number of clusters, Table 1.

When p is a constant and a full search to level p
has a computational complexity of which is

much worse than that of DSC. If we intend to develop

an O(n2k2) algorithm (the computational complexity

of DSC) for generation and evaluation of multiple

hypothesis association, this is only acceptable if

. However, such a wide but shallow search space

for finding a good solutions is hardly what we are

looking for. By reducing the width of the search we

may increase the depth to something more applicable.

2.2 Depth vs. width in hypotheses

Both the width and the depth of the search should be

some function of N, the number of intelligence

reports, and K, the number of clusters.

Let us investigate seven different algorithms with

different widths and depths, in Table 2. All

hypotheses at a particular level are evaluated. For

instance, L1wNK indicate the number of hypotheses

evaluated at level 1, etc. The selection is then made of

the top ranking hypotheses based on the evaluation.

L0w, L1w and L2w indicate the number of hypotheses

selected for that level (i.e., the width). This process is

repeated level-by-level until the specified depth.

We may observe in Table 2 that algorithms A1-A2 are

very fast, but with a width equal to one. A6 is much

too slow, while A3-A5 and A7 are computationally

reasonable. Here A3 has some width but is shallow.

A4-A5 have good width, but are both shallow. Only

A7 is fast with a good width and depth. To

summarize:

A1: Fast, no expansion.

A2: Faster, no expansion, but shallow.

A3: Fast, some expansion, but shallow.

A4: Fast, with expansion, but shallow.

A5: Good speed, expansion, but shallow.

A6: Slow, and deep.

A7: Good speed, expansion, and depth.

The computational complexity in the last row of

Table 2 is calculated as . For

most applications algorithm A7 seems appropriate.

Table 1: Total number of hypotheses and evaluated

clusters for each maximum depth.
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Table 2: Algorithms A1-A7, their widths, depths, and

their computational complexity (last row). Example

with N = 1000 and K = 10.

A1 A2 A3 A4 A5 A6 A7

width 1 1 K N/K N N/K

depth N K K K K N/K

L0w
1 1 1 1 1 1 1

L1wNK 10,000 10,000 10,000 10,000 10,000 10,000 10,000

L1w
1 1 10 100 1,000 100 100

L2wNK 10,000 10,000 100,000 1,000,000 10,000,000 1,000,000 1,000,000

L2w
1 1 10 100 1,000 100 100

L3wNK 10,000 10,000 100,000 1,000,000 10,000,000 1,000,000 1,000,000

...

O( ) O(N 2K) O(NK 2) O(NK 3) O(N 2K) O(N 2K 2) O(N 3K -1) O(N 2K 2)

p 2≤

NK

NK

.

depth width× NK×



2.3 Evaluation of multiple hypotheses

At each level all hypotheses are evaluated using some

problem specific measure of fitness. We assume that

the evaluation of all hypotheses (except for the first

evaluation at level L0) can be performed

incrementally in constant time.

For instance, the evaluation of the fitness of

a new hypothesis need only concern the two

clusters involved in the incremental change if we use

the previous fitness, . This makes the

computational complexity independent of K.

Similarly, the evaluation of the fitness of the two

clusters is preceded by an incrementally performed

combination and decombination between the belief

function moved and the belief functions

corresponding to the intelligence of the two clusters,

followed by the actual calculation of fitness, all

usually assumed independent of N. Thus, allowing

the evaluation to run in constant time, i.e.,

independent of N and K.

3 A multiple hypothesis association
algorithm
Let us present an algorithm (A7) for generation and

evaluation of multiple hypothesis association of

belief functions, Figure 4. We assume that all belief

functions have been clustered and we receive the

initial association hypothesis as the first

hypothesis u and input to the A7-algorithm.

In order to achieve a good balance between the

depth and the width of the search with an O(N2K2)

algorithm we choose depth = width = . All

clusters are classified and the fitness for each cluster

 and for the entire hypothesis  is calculated.

For each successive level is stored in a

hash list and is looked up before is

calculated in order to avoid duplicate evaluations.

The algorithm is presented in Figure 4. Here, n is a

belief function, k is a cluster (of belief functions) and

u is a hypothesis (of clusters). Let k(n) be the cluster

that n belongs to, u(k) the kth cluster of u. We have

u(k(n)), the cluster of u that n belongs to.

3.1 Computational complexity

We maintain the best hypotheses (using the

width) after evaluation at each level. Each of these

hypotheses generates NK new hypotheses on the next

level for a total of evaluations at each

level.

Performing the analysis to a search depth of

gives a computational complexity for the

A7-algorithm of .

4 Multi hypothesis force
aggregation
We have defined evidential force aggregation as the

combination of two processes: DSC using neural

Figure 4: A multiple hypothesis association algorithm

(Algorithm-A7).

clustering [14] followed by evidential classification

and matching (ECM) [20] of clustered subsets.

We now add the intermediate component of

multiple hypothesis association (MHA). Combining

the developed MHA in this paper with two previous

results, DSC and ECM, we achieve a multiple

hypothesis force aggregation, Figure 5.

Figure 5: Multiple hypothesis force aggregation.

We include the algorithms of DSC, Figure 6, and

ECM, Figure 7, here for the sake of completeness of

this paper. For a full description see [14, 20].

From DSC we receive a complete partitioning

of all intelligence into subsets. This will serve as the

initial association hypothesis in MHA. MHA will

generate a large but manageable number of alternative

associations around the initial solution with a

computational complexity not worse than DSC. These

alternative associations u are evaluated using ECM.

We have

, (5)

Γ u∗( )
u∗
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Figure 6: Clustering algorithm.

Figure 4, where

(6)

and is a set of templates and is the

fitness between template Ti and the combined belief

functions of , Figure 7.

This should improve the quality of the

classification algorithm and the overall force

aggregation performance.

5 Conclusions
We have shown that it is possible to start out from an

already performed partitioning of intelligence into

subsets, and from there generate and classify

additional multiple hypothesis associations around

the initial partitioning. This can be achieved with a

computational complexity no worse than that of DSC.

Figure 7: An evidential force aggregation algorithm.
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