
Constructing Multiple Frames of Discernment

for Multiple Subproblems

Johan Schubert

Division of Information Systems,
Swedish Defence Research Agency,

SE-164 90 Stockholm, Sweden
schubert@foi.se

http://www.foi.se/fusion/

Abstract. In this paper we extend a methodology for constructing a frame
of discernment from belief functions for one problem, into a methodology for
constructing multiple frames of discernment for several different
subproblems. The most appropriate frames of discernment are those that let
our evidence interact in an interesting way without exhibit too much internal
conflict. A function measuring overall frame appropriateness is mapped onto
a Potts spin neural network in order to find the partition of all belief functions
that yields the most appropriate frames.
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1 Introduction

In this paper we extend a methodology for constructing a frame of discernment for one
problem [1] into a methodology for constructing multiple frames of discernment from
a set of belief functions [2, 3] for several different subproblems. These belief functions
are assumed to concern different subproblems that should be handled separately.
Previously, we have developed methods for clustering belief functions that are mixed-
up [4−8] based on their pairwise conflicts. These methods were developed to manage
simple support and consonant belief functions. The case with nonconsonant belief
functions can be handled by decomposition into simple support functions followed by
clustering of the decomposed parts [9]. If the number of clusters K (in Fig. 4.) is
unknown, it can be estimated by observing the change in the logarithm of a meta frame
appropriateness function (MFA) for different number of clusters [10, p. 90], or inferred
using specification [5] and a priori information [11], or managed by particle filtering
methods [12].

The methodology for constructing a frame of discernment is extended by adopting
a measure of frame appropriateness for a single problem into handling multiple
subproblems. This new function is mapped onto a Potts spin neural network. We reuse
a previously developed methodology for clustering large amounts of belief function in
such a manner as to find the best frames of discernment for these subproblems. When
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the mixed-up belief functions are partitioned into subsets corresponding to the different
subproblems, a frame of discernment is constructed within each subproblem using the
methodology developed for a single problem [1].

In Sec. 2 we study the problem of construction alternative frames of discernment.
In Sec. 3 we extend this methodology to multiple subproblems. In Sec. 4 we review
Potts spin theory. We then put everything together by mapping the multiple frame
construction problem onto Potts spin (in Sec. 5). In Sec. 6 we present an algorithm for
constructing multiple frames. Finally, in Sec. 7 conclusions are drawn.

2 Constructing Alternative Frames of Discernment

Let us assume we have a set of evidence that originates from one problem
with yet undetermined representation. The focal elements of each belief function mi
contain pieces of that representation. Our task is to find the most appropriate frame of
discernment that lets our evidence “interact in an interesting way” without “exhibit too
much internal conflict” in the words of Glenn Shafer [3, p. 280].

This will usually not be the union of all cores of mi as different cores may hold non-
exclusive elements. For example, one belief function may assign support to a focal
element “Red” in relation to the color of a car. Another belief function may assign
support to a focal element “Fast” in relation to speed of that car. Obviously, “Red” and
“Fast” are not both elements of the frame of discernment as they are not exclusive.
However, the “(Red, Fast)” pair might be an element of the frame.

Our task of finding the most appropriate frame of discernment becomes finding the
most appropriate cross product of different unions of cores. Let us begin by introducing
the representation needed to construct a frame of discernment from input data.

For an example of the material in Sec. 2 see [1].

2.1 Representation

Assume we have a set of evidence χ. We observe the core Ci of each available belief
function mi. We assume that the core of each belief function is a subset of exclusive but
not exhaustive elements of a so far unconstructed frame of discernment.

Let be the set of all cores of χ, where Ci is the core of mi, the ith piece
of evidence. We have

(1)

where Aj is a focal element of mi.
Let be the set of all possible set partitions of C (the set of all cores),

where Ωk is the kth possible partition of C. We have

(2)

where the ωl’s are disjoint subset of C, i.e.,  such that

(3)

and  whenever .
Let be the set of all possible cross products relating to Ω, such that Θk

is the cross product of all unions of elements of the partition Ωk, (2). We have

χ mi{ }=

C Ci{ }=

Ci A j mi A j( ) 0>{ }
j

∪=

Ω Ωk{ }=

Ωk ωl{ }=

l∀ . ωl C⊆

ωl
l

∪ Ci{ } C≡=

ωm ωn∩ ∅= m n≠
Θ Θk{ }=
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(4)

where θl is the union of the elements in ωl, , and θl must be an exclusive set of
elements. We have

(5)

such that
(6)

where all θl’s observe two different crucial type conditions:

Type Condition 1. No element of any θp may belong to any other cross product
elements θq, i.e.,

, (7)
whenever .

This will eliminate any frame that obviously distributes elements of the same type over
different cross product elements.

Type Condition 2. Every cross product element θl must be an exclusive set, i.e.,

, (8)
whenever .

2.2 Abridgment

For all possible frames of discernment {Θk}, where |Θk| > 1, we may include further
assumptions that make the frames tighter. This may lead to more interesting interaction
between the belief functions and lead to firmer conclusions provided that the conflict
does not increase in any significant way. Every frame is based on assumptions. The
frame we begin with is based on the assumption that the elements of that frame are all
disjunct possible alternatives, and that no other possibilities exists. Whether a tighter or
looser frame is to be preferred is a matter of appropriateness. Most often this will be a
point of balance where meaningful interaction is weighted against too much conflict.

Let us study one particular frame of discernment Θi from the remaining set of
possible frames Θ that observe both type condition 1 and 2, (7) and (8), respectively.
We have At least one cross product element θl must be abridged to
construct a new abridged frame of Θi. We have a set of all possible abridgments of Θi,

(9)

where  and  is the power set of θl, , and .

2.3 Enlargement

We may make enlargements to any frame of discernment {Θk}. The only enlargement
we can perform is to enlarge a particular cross product element θl with an element of
unstated meaning. Let us denote these elements Λl, one for each θl.

Let us again look at For each cross product element θl there is one
possible enlargement: enlarging θl by Λl. At least one cross product element θl must be
enlarged to construct a new enlarged frame of Θi. The set of all possible enlargements

Θk θl{ }×=

ωl Ωk∈

l∀ . θl ωl∪ Ci Ci ωl∈{ }
i

∪= =

θl
l

∪ ωl∪{ }
l

∪ Ci{ }
i

∪ C∪= = =

θ p θq∩ ∅=
p q≠

em en∩ ∅=
m,n∀ l .∃ em en, θl∈

Θi θl{ }.×=

Θi
′ Θij

′{ } j θlj
′{ }× }{ j= =

θlj
′ 2θl∈ 2θl θlj

′ ∅≠ j∃ . θlj
′ θl≠

Θi θl{ }.×=
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of Θi becomes where and
.

2.4 Appropriate Representation

We evaluate the alternative frames of discernment on the grounds of being appropriate
for yielding interesting interactions among the available belief functions without
exhibiting too much internal conflict. A measure of frame appropriateness was defined
in [1]. This measure gives an equal weight to both conditions were both must be
appropriate simultaneously (see [1]).

Definitio .n 1 Let Θk be a frame of discernment and let {mj} be a set of all available
belief functions defined on Θk. We define a measure of frame appropriateness of Θk,
denoted as FA(Θk), by

, (10)

where Con is the conflict in Dempster’s rule and AU is the functional called the
aggregated uncertainty. We have Con ∈ [0, 1], AU ∈ [0, log2|Θk|] and FA ∈ [0, 1].

The aggregated uncertainty functional AU [13−15] is defined as

, (11)

where {px}x ∈ Θ are all probability distributions such that px ∈ [0, 1] for all x ∈ Θ,

(12)

and
(13)

for all .

2.5 An Algorithm for Computing AU

An algorithm for computing AU was found by Meyerowitz et al. [16]. For the sake of
completeness we cite the algorithm here, in the way it is described by Harmanec et al.
[17], Fig. 1. The computational time complexity of AU is .

Input: a frame of discernment X, a belief function Bel on X.
Output: AU(Bel), {px}x∈X such that AU(Bel) = − ∑x∈X pxlog2 px, pi ≥ 0, ∑x∈X px = 1, and
Bel(A) ≤ ∑x∈X px for all ∅ ≠ A ⊆ X.
Step 1. Find a non-empty set A ⊆ X, such that Bel(A) / |A| is maximal. If there are more than
such sets A than one, take the one with maximal cardinality.
Step 2. For x ∈ A, put px = Bel(A) / |A|.
Step 3. For each B ⊆ X−A, put Bel(B) = Bel(B ∪ A) − Bel(A).
Step 4. Put X = X − A.
Step 5. If X ≠ ∅ and Bel(X) > 0, then go to Step 1.
Step 6. If Bel(X) = 0 and X ≠ ∅, then put px = 0 for all x ∈ X.
Step 7. Calculate AU(Bel) = − ∑x∈X pxlog2 px.

Fig. 1. An algorithm for computing AU(Bel)

Θi
″ Θij

″{ } j θlj
″{ }× }{ j= = θlj

″ θl θl Λl{ }+,{ }∈
j∃ . θlj

″ θl≠

FA Θk m j{ }( ) 1 Con ⊕ m j Θk{ }( )– 1
AU ⊕ m j Θk{ }( )

log2 Θk
----------------------------------------–=

AU Bel( ) max

px{ }
x Θ∈

p x( )log2 p x( )
x Θ∈
∑–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

p x( )
x Θ∈
∑ 1=

Bel A( ) p x( )
x A∈
∑≤

A Θ⊆

O 2 Θ( )
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2.6 An Algorithm for Constructing a Frame of Discernment

Using the results of the preceding sections we develop an algorithm for constructing
and evaluating all possible frames of discernment. This algorithm will first generate the
possible frames using different partitions of the set of all cores. From these possible
frames we generate abridgments and enlargements. The frames are evaluated using FA,
(10), in Fig. 2. The most appropriate frame that maximizes FA is then selected.

Input: a set of belief functions χ.
Output: Possible frames of discernment {Θi}, { }, { }. Frame appropriateness
FA(Θi|χ), FA( |χ), FA( |χ).
Step 1.  generate Ci using (1). Set C = {Ci}.
Step 2.  generate Ωk using (2). Set Ω = {Ωk}.
Step 3.  generate Θk using (4). Set Θ = {Θk}.
Step 4. generate { , } using (9).
Step 5. If  then  generate . Set  = { }j.
Step 6. Compute frame appropriateness FA(Θi|χ), FA( |χ), FA( |χ) using (10).

Fig. 2. An algorithm for generating and evaluating appropriate frames of discernment

Brute force implementation of FA has a computational time complexity of .
Implementing step 2−4 in an iterative way may reduce the term of the time
complexity.

3 Constructing Multiple Frames of Discernment

In this section we extend the methodology from Sec. 2 into a new methodology for
constructing several multiple frames of discernment for different subproblems. This is
done by extending FA (10) to several subsets. Let us define such a function of overall
frame appropriateness.

Definitio .n 2 Let the meta frame appropriateness function,

, (14)

over several subproblems be the product of the frame appropriateness functions FAa
for these subproblems .

In order to find the best frames of discernment for these subproblems we maximize
,

. (15)

For computational reasons the actual maximization of MFA is done in several steps.
First, let us map MFA onto a Potts spin neural network that will cluster all belief

functions into subsets using an approximation of MFA as a distance measure in such a
manner that MFA is maximized. This will partition the belief functions into subsets that
should be handle separately is such a way that it gives us the best overall frames of
discernment for the subproblems.

Secondly, for each subproblem separately, a frame of discernment is constructed
using the algorithm for constructing an appropriate frame of discernment, Fig. 2. With

Θij
′ Θij

″ ij.∀
Θij

′ Θij
″

i.∀
k .∀
k .∀
ij.∀ Θij

′ kl .∀ Con ⊕{m j Θkl
′ }( ) 1< Θkl

′ Θij
′⊃

k .∀ Con ⊕ m j Θk{ }( ) 0> j.∀ Θij
″ Θi

″ Θij
″

ij.∀ Θij
′ Θij

″

O χ χ 2 Θ( )
χ χ

ΔMFA χa{ }
a

( ) FAa
a

∏=

χa
χa

MFA χa{ }
a

( )
max MFA χa{ }

a
( ) max FAa

a
∏=
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these frames of discernment each subproblem can be solved separately by combining
all belief functions in the subset.

4 Potts Spin Theory

The Potts spin problem [18] consists of minimizing an energy function

(16)

by changing the states of the spins Sia’s, where Sia ∈ {0, 1} and Sia = 1 means that belief
function i is in cluster a. This model serves as a clustering method if is used as a
penalty factor when report i and j are in the same cluster.

The minimization is carried out by simulated annealing. In simulated annealing
temperature is an important parameter. The process starts at a high and continues by
gradually lowering the temperature. As the temperature is lowered the spins gradually
become more influenced by the interactions Jij’s so that a minimum of the energy
function (16) is reached. This gives us the best partition of all belief functions into the
clusters with minimal energy function.

For computational reasons we use a mean field model, where spins are
deterministic with , Via ∈ [0, 1]. The Potts mean field equations are
formulated [19] as

(17)

where

. (18)

In order to minimize the energy function, (17) and (18) are iterated until a stationary
equilibrium state has been reached for each temperature. Then, the temperature is
lowered step−by−step by a constant factor until in the stationary
equilibrium state.

The time complexity of Potts spin clustering was shown to be in terms of
the number of belief functions N (= |χ|) and the number of clusters K [7].

5 Mapping a Multiple Frame Construction Problem

onto Potts Spin

In order to map the meta appropriateness function MFA onto a Potts spin network we
need to rewrite MFA as a sum of terms similar to the energy function being minimized
in (16). To find the best set of frames of discernment we maximize . This
can be rewritten as a sum of terms over the subsets χ

a

(19)

⇔

E
1
2
--- J ijSiaS ja

a 1=

q

∑
i j, 1=

N

∑=

J ij

V ia Sia〈 〉=

V ia
e H ia– V[ ] T⁄

e H ib– V[ ] T⁄

b 1=

K

∑
-------------------------------------=

H ia V[ ] J ijV ja
j 1=

N

∑ γ V ia–=

i a,∀ . V ia 0 1,≈

O N 2K 2( )

MFA χa{ }
a

( )

max MFA χa{ }
a

( ) max FAa ,
a

∏=
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(20)

Furthermore, we must also rewrite MFA as a sum of terms over pairwise simple support
functions as all interactions in Potts spin are pairwise.

It was shown in [20] that minimizing a sum of terms is an
approximation correct to leading order, i.e., all second order terms in are
unchanged in this approximation. The first term in the last line of (20) can be rewritten
as

, (21)

while the actual function being minimized in the neural network is

(22)

where X and Y are higher order terms.
The second term in the last line of (20) can be rewritten as

(23)

when , and where W are higher order terms in AU (i.e., ).
When calculating and in (23) each leading

term comes in twice in AU. However, since is summed up for all
pairs in the leading terms come in times in the equation. To
compensate for this multiple counting we must include a factor . This
approximation is correct in its first order terms.

Thus, the function being minimized is

max FAa
a

∏log max 1 Con ⊕ m j Θa{ }( )– 1
AU ⊕ m j Θa{ }( )

log2 Θa
----------------------------------------–

a
∏log=

max 1 Con ⊕ m j Θa{ }( )–log 1
AU ⊕ m j Θa{ }( )

log2 Θa
----------------------------------------–log+

a
∑=

min 1 Con ⊕ m j Θa{ }( )–log– 1
AU ⊕ m j Θa{ }( )

log2 Θa
----------------------------------------– .log–

a
∑=

1 sksl–( )log–
si{ }

1 Con ⊕ m j Θa{ }( )–log–
a
∑ 1 sksl X–

k l,
Sk Sl, χa∈

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

–log–
a
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1 sksl–( )log–
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∑
a
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Sk Sl, χa∈

∏log–
a
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⎜ ⎟
⎜ ⎟
⎛ ⎞

– ,log–
a
∑=

1
AU ⊕ m j Θa{ }( )

log2 Θa
----------------------------------------–log–

a
∑ 1

AU ⊕ mk ml, Θa{ }( )

χa 1–( ) log⋅
2

Θa( )
--------------------------------------------------- W–

k l,
mk ml, χa∈

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

–log–
a
∑≈

χa 2≥ AU( ) p p 2≥,
AU ⊕ m j Θa{ }( ) AU ⊕ mk ml, Θa{ }( )

AU ⊕ mk ml, Θa{ }( )
mk ml, χa 2 χa 1–( )⋅

1 χa 1–( )⁄
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(24)

which is identical in its first order terms to (23).
Thus, maximizing the meta frame appropriateness function (15), is

equivalent in its first order terms to minimizing

. (25)

An algorithm for minimizing (25) is shown in Fig. 4. This is an adoption from [7]. Here
the interactions Jkl are identical to (25). All parameters of Fig. 4. are immediate except
for the number of clusters K. Its determination is domain dependent and can be found
in several different ways as discussed in Sec. 1, e.g., using the method of [10, p. 90].

6 An algorithm for constructing multiple frames

Let us describe an algorithm for constructing the best frames of discernment for several
multiple subproblems, χ

a, Fig. 3.

Input: A set χ of simple support functions or consonant belief functions.
Output: Frames of discernment  for all subproblems χ

a.
Step 1. Instantiate all interactions Jij (in Fig. 4.) between all pairs in χ, using (10) in Fig. 1.
Step 2. Partition χ by minimizing MFA (14) using the Potts spin clustering algorithm, Fig. 4.
Step 3. For each subproblem χ

a use the algorithm to construct the most appropriate frame of
discernment , Fig. 2. Return .

Fig. 3. An algorithm for constructing multiple frames of discernment for multiple subproblems

Using this algorithm will construct a set of frames of discernment for several
subproblems χ

a that should be handled separately. This set of frames is best in terms of
minimizing the overall frame appropriateness MFA over all subproblems.

7 Conclusions

We have extended a methodology for constructing a frame of discernment from
incoming belief functions for one problem, into a methodology for constructing
multiple frames of discernment for several different subproblems. This lets our
evidence interact in an interesting way within each subproblem without exhibit too
much internal conflict. This dual task is achieved simultaneously for all subproblems
by maximizing a function of overall frame appropriateness over all subproblems.

1
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⎜ ⎟
⎛ ⎞
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Fig. 4. Clustering algorithm

INITIALIZE
K (number of clusters); N (= |χ|) (number of simple support functions);

, where

 and ; s = 0; t = 0; ε = 0.001; τ = 0.9; γ = 0.5;

T0 = Tc (a critical temperature) , where  and

 are the extreme eigenvalues of M, where ;

;

REPEAT−1
• REPEAT−2

∀i Do:

• ;

• ;

• ;

• ;

• ;

UNTIL−2

;

• ;
• ;

UNTIL−1

;

RETURN

;
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