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In this article, we develop an entropy-based degree of falsity and combine it with a 
previously developed conflict-based degree of falsity in order to grade all belief functions. 
The new entropy-based degree of falsity is based on observing changes in entropy that 
are not consistent with combining only truthful information. With this measure, we can 
identify deliberately deceptive information and exclude it from the information fusion 
process. An experiment is performed comparing conflict and entropy measures and their 
combination. The effectiveness of the combination of the two measures is suggested.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Managing false and possibly deliberately deceptive information is, in general, an important issue within an information 
fusion process. If false and deceptive information is not actively managed, it becomes impossible to trust any conclusions 
that is based on combining information from several different sources without knowing if one is deceptive. Conclusions that 
are drawn based on a combination of information from all sources may become degraded or false when truthful information 
is combined with deceptive information that supports untrue possibilities.

We previously developed methods within the theory of belief functions [1–6] to cluster information about several unre-
lated problems that should be handled separately when the information about different problems can be mixed up [7–11]. 
When we know that all information concerns only one problem at hand, this method could be used to identify false pieces 
of information and allow us to calculate a conflict-based degree of falsity for each piece of evidence [12]. These approaches 
use a function of the conflict [13,14] in Dempster’s rule [2] as criterion function.

Smets [15] developed a methodology for managing a special case of deception where a deceiver may observe a truthful 
report and send the complement of a truthful belief function as deception instead of the truthful report itself. Pichon 
et al. [16] later developed a correction scheme that generalizes Shafer’s discounting rule [4] by taking into account uncertain 
meta-knowledge regarding the source relevance and truthfulness. This model now subsumes Smets’ model. Furthermore, 
they recently introduced a contextual correction mechanism [17] for [16].

However, the approach taken by Smets is a special case where the deceiver always sends the complement of what is 
observed from a truthful source. We think that this is not a realistic strategy by the deceiver, as it is easily countered by 
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the counter-deception technique developed in Smets’ approach [15]. Instead, we would allow the deceiver to act in any way 
it chooses and assume it might want to deceive us by supporting some focal elements of the frame of discernment that are 
wrong but we already somewhat believe. We think that this might be a more realistic approach.

In this article, we develop an entropy-based measure of degree of falsity [18] based on the change in entropy when 
truthful belief functions are combined with a deceptive belief function. The aim is that this new approach should be able to 
manage more generic types of deception than Smets’ approach. As we have previously developed a conflict-based measure of 
degree of falsity [12] we will here combine these two approaches into one method for recognizing and managing deceptive 
information.

In Section 2, we discuss approaches to analyzing belief functions for their likelihood of being false due to deception. In 
Section 3, we review a previous approach to grading pieces of evidence for their degree of falsity based on their contribution 
to the conflict [13,14] received from Dempster’s rule [2]. We then develop a new complimentary approach for grading pieces 
of evidence based on such changes in entropy that are not consistent with adding truthful evidence into the combination 
of all belief functions (Section 4). In Section 5, we combine the previously developed conflict-based degree of falsity with 
the new entropy-based degree of falsity into a combined degree of falsity. We use this approach to reason about which 
pieces of evidence might be false and should be either discounted or eliminated from the combination of information from 
all sources. In Section 6 we conduct an experiment with different numbers of deceptive belief functions and study the 
performance of the conflict and entropy approaches, and their combinations. Finally, in Section 7, we present the study’s 
conclusions.

2. Analyzing belief functions

A belief function that is constructed to be deliberately false may be discovered in two different ways. Such a belief 
function is aimed to change the conclusion when analyzing the combination of all belief functions. Thus, it must be different 
from truthful belief functions.

One way to find this is by observing the conflict when combining a new belief function with all previous belief functions. 
For each belief function at hand, we may observe the change in conflict if we remove this particular belief function from the 
entire set of all available belief functions χ [7,19]. This will either lower the conflict or leave it unchanged. From a change 
in conflict, we can derive a degree of falsity for the belief function in question and, for example, use that to discount this 
particular belief function [12]. For an alternative approach using discounting rates, see [20].

A second approach is to observe a change in entropy when receiving a new belief function. If we receive a good belief 
function about the problem at hand we should assume that it will further reduce both the scattering and the nonspecificity 
of the basic belief by focusing it on small focal sets containing the ground truth. Thus, the belief of the ground truth will 
gradually become more believed and the entropy of the combined belief function will approach zero. On the other hand, 
if we receive a false belief function that incrementally changes the belief function a small step towards a uniform mass 
function, then the entropy of the combined belief function will increase. A very strong false belief function may swap the 
preferred order of the focal sets and leave the entropy unchanged or increased.

We will use both of these approaches to identify which belief functions may be deceptive in order to manage or elim-
inate them completely from the combination. It is important to note that combining truthful information with deceptive 
information leads to high conflict and entropy, while the reverse is not true. High conflict and entropy can arise through 
misrepresentation, mixed up belief function from failed clustering, or measurement errors, etc. A prerequisite for this ap-
proach is that the number of deceptive belief functions is less than the number of true belief function, otherwise we will 
eliminate the truth. If so, we can observe an initial upturn followed by a fall in the conflict as more deceptive information 
is included.

3. Conflict-based degree of falsity

We interpret the conflict received when combining a set of basic belief assignments (bbas) χ , as if there is at least one 
bba in χ that violates the representation of the frame of discernment �. Such a bba is interpreted as if it does not belong 
to the evidence that refer to the problem at hand [19] described by �. Instead, it should be removed from χ .

A conflict when combining all bbas in χ may thus be interpreted as a piece of evidence on a metalevel stating that at 
least one bba that is placed in χ does not actually belong to χ . On the metalevel, we reason only about the inclusion of 
bbas in χ , the frame of discernment is � = {Adp, ¬Adp} where AdP is short for χ being an adequate partition [19] of all 
bbas (i.e., with all bbas in χ ), which means we can have metalevel evidence that the partition is either adequate or not. 
This can be reformulated to � = {∀ j.e j ∈ χ, ∃ j.e j /∈ χ

}
, where AdP is refined to the first element of �, and ¬Adp is refined 

to the second element. This indicates that we can have evidence that all bbas belong to χ or at least one bba currently in 
χ does not. In addition, it is possible to refine the frame on the metalevel as � =

{
∀ j.e j ∈ χ,

{
eq /∈ χ

}
q

}
, but we will use 

the first formulation.
We represent the conflict as,

mχ

(∃ j.e j /∈ χ
) = c0,

mχ (�) = 1 − c0, (1)
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where χ is the set of all bbas, c0 is the conflict when combining all bbas, e j is bba number j, and � is the frame of 
discernment on the metalevel.

Let us study one particular piece of evidence eq in χ . If eq is removed from χ , the conflict when combining all remaining 
bbas in χ decreases from c0 to cq . This decrease is interpreted as if there exists some evidence on the metalevel indicating 
that eq does not belong to χ [12],

m�χ

(
eq /∈ χ

)
,

m�χ (�) ,
(2)

where �χ is a label for this piece of evidence.
The conflict that remains cq after eq has been removed from χ is interpreted as evidence on the metalevel that there is 

at least one other bba e j , j �= q, that does not belong to χ − {
eq

}
.

We have,

mχ−{
eq

} (∃ j �= q.e j /∈ (
χ − {

eq
})) = cq,

mχ−{
eq

} (�) = 1 − cq.
(3)

Using eqs. (1) and (3), we can derive eq. (2) by stating that the belief in the proposition that there is at least one bba 
that does not belong to χ , ∃ j.e j /∈ χ , must be equal, regardless of whether we base that belief on (1) before eq is taken out 
from χ , or on the combination of (2) and (3) after eq is taken out from χ .

That is,

Belχ
(∃ j.e j /∈ χ

) = Bel�χ⊕(
χ−{

eq
}) (∃ j.e j /∈ χ

)
. (4)

On the left hand side (LHS) of eq. (4) we have,

Belχ
(∃ j.e j /∈ χ

) = mχ

(∃ j.e j /∈ χ
) = c0 (5)

and, on the right hand side (RHS) eq. (4) we have,

Bel�χ⊕(
χ−{

eq
}) (∃ j.e j /∈ χ

) = cq + m�χ

(
eq /∈ χ

) (
1 − cq

)
. (6)

By stating that LHS = RHS, we derive the basic belief number (bbn) of eq. (2) as,

m�χ

(
eq /∈ χ

) = c0−cq
1−cq

,

m�χ (�) = 1−c0
1−cq

.
(7)

We call this the conflict-based degree of falsity of eq . For additional details, see [12]. An extensive example that goes through 
all derivations of eqs. (1)–(7) can be found in [19].

4. Entropy-based degree of falsity

Let us measure the change in entropy by observing the change in the aggregated uncertainty functional (AU ) of the 
combination of all belief functions, both with and without the particular belief function in question eq .

4.1. Aggregated uncertainty functional

The aggregated uncertainty functional AU was discovered by several authors around the same time [21–23]. AU is 
defined as

AU (Bel) = max{px}x∈�

{
−

∑
x∈�

p (x) log2 p (x)

}
(8)

where {px}x∈� is the set of all probability distributions such that px ∈ [0,1] for all x ∈ �,∑
x∈�

p (x) = 1 (9)

and

Bel (A) ≤
∑

p (x) (10)

x∈A
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for all A ⊆ �. For an overview, see [24]. The AU measure corresponds to measures of nonspecificity and scattering that 
generalize Hartley information [25] and Shannon entropy [26].

An algorithm for numeric computation of AU was found by Meyerowitz et al. [27]. See [28] for implementation. For 
additional discussion on entropy, and a new definition of entropy of a bba see a recent paper by Jiroušek and Shenoy [29].

We define the entropy as a normalization of AU [30,31],

Ent
({

m j
}) = AU

(⊕{
m j

})
log2 |�| (11)

where m j is the set of all bbas under combination, AU ∈ [0, log2 |�|] and Ent ∈ [0,1].
Using Ent and AU , we may define an entropy-based degree of falsity for a deceptive piece of evidence as

m�Ent
(
eq /∈ χ

) = Entq

({
m j | j �= q

}
j

)
− Ent0

({
m j

}
j

)
,

m�Ent (�) = 1 − m�Ent
(
eq /∈ χ

)
,

(12)

where Ent0 is the entropy with eq included in the combination, and Entq is the entropy without eq , under the assumption 
that m�Ent

(
eq /∈ χ

) ≥ 0. In the same way as in dealing with the change of conflict in removing a single belief function, we 
interpret an increase in entropy here as an indication to some extent that the belief function in question is false. Provided 
that the difference in eq. (12) is positive and that there is no change in the bbn in the order of focal element by degree of 
support, this may serve as an adequate measure of falsity for a deceptive piece of evidence based on a change in entropy. 
For a deceptive piece of evidence that changes the order of focal elements we may have a negative difference. For truthful 
evidence we expect a negative difference and would like to define the degree of falsity as zero. For a general and incremental 
approach that takes these situations into account see section 4.2.

4.2. Incremental steps of entropy change

Let us focus on eq , which we want to evaluate by changes in entropy Ent. Because the entropy might increase when 
we remove eq we will study a series of incremental changes. We will discount the mass function mq at different rates and 
observe the incremental changes in entropy. We have [4],

m%
q (A) =

{
αmq (A) , A ⊂ �

1 − α + αmq (A) , A = �
(13)

where 0 ≤ α ≤ 1. Let α be defined as

α = i
n , (14)

where n is a parameter of choice with 0 ≤ i ≤ n.
We have,

mi
q (A) =

{ i
n mq (A) , A ⊂ �

1 − i
n + i

n mq (A) , A = �
. (15)

Let �Entk+1,k
q be the incremental change in entropy between two situations using mk+1

q and mk
q , respectively, in the 

calculation of �Entk+1,k
q .

We have,

�Entk+1,k
q = Entq

({
mk+1

q ,m j | j �= q
}

j

)
− Entq

({
mk

q,m j | j �= q
}

j

)
. (16)

We may extend eq. (12) using eq. (16) to define an incremental entropy-based degree of falsity as

m�Ent
(
eq /∈ χ

) = 1

2

n−1∑
k=0

⎧⎨
⎩

0, ∀0 ≤ l ≤ k. �Entl+1,l
q ≤ 0∣∣∣�Entk+1,k

q

∣∣∣ , otherwise
,

m�Ent (�) = 1 − m�Ent
(
eq /∈ χ

)
,

(17)

using eq. (16). Here we sum up all incremental absolute differences to ensure a positive mass assignment.
As long as we receive a sequence of negative incremental changes, we consider mq to be true. However, if there is a 

positive incremental change this is interpreted (to a degree) that this piece of evidence is false. The sequential inclusion of 
mq may eventually cause a flip in the preferred focal element, followed by a series of negative incremental changes that 
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must be counted towards the degree of falsity when the distribution becomes more and more focused around false focal 
elements.

This information, m�Ent
(
eq /∈ χ

)
, can serve as an indication that mq might be deliberately false, and may function as an 

indication even if the direct conflict with the main body of truthful evidence is low.

5. Combine degree of falsity with change of entropy

To be able to draw conclusions that are as sharp as possible regarding which belief functions are deceptive we prefer to 
eliminate any measuring noise before proceeding. We do this by assuming that at least one belief function is true and set 
m�χ

(
eq /∈ χ

) = 0 and m�Ent
(
eq /∈ χ

) = 0 by subtraction from the belief function eq with the lowest values. Note, that this 
may be two different belief functions. We have,

min�χ = minq m�χ

(
eq /∈ χ

)
(18)

and

min�Ent = minq m�Ent
(
eq /∈ χ

)
, (19)

and get

∀q. m∗
�χ

(
eq /∈ χ

)=m�χ

(
eq /∈ χ

) − min�χ (20)

and

∀q. m∗
�Ent

(
eq /∈ χ

) = m�Ent
(
eq /∈ χ

) − min�Ent. (21)

Furthermore, as the change in entropy is much smaller than the degree of falsity, and we prefer both approaches to have 
the same influence when deciding if a belief function is deceptive, we scale all m∗

�Ent by an influence quotient (Iq) that is 
the quotient in maximum values of and m∗

�χ and m∗
�Ent , in eqs. (20) and (21). We have,

Iq = maxq m∗
�χ

(
eq /∈ χ

)
maxt m∗

�Ent (et /∈ χ)
(22)

and get,

∀q. m∗∗
�Ent

(
eq /∈ χ

) = Iq ·m∗
�Ent

(
eq /∈ χ

)
(23)

In order to find which pieces of evidence might be false, we combine m∗
�χ

(
eq /∈ χ

)
with m∗∗

�Ent

(
eq /∈ χ

)
in two different 

ways. First, we combine them using Dempster’s disjunctive rule, where the product’s mass m�χ

(
eq /∈ χ

) · m�Ent
(
eq /∈ χ

)
assigned to eq /∈ χ is the degree to which both measures simultaneously claim that the belief function is false. Secondly, 
we combine them by Dempster’s rule, i.e., m�χ

(
eq /∈ χ

) ⊕ m�Ent
(
eq /∈ χ

)
. This is a conflict-free combination as both mass 

functions have the same foci. Because Dempster’s rule assigns mass to eq /∈ χ in an orthogonal combination when at least 
one of the two measures supports eq /∈ χ , the mass assigned to eq /∈ χ corresponds to the statement that at least one of the 
belief functions is false. It is called probabilistic sum.

We get the product,

m�χ ·�Ent
(
eq /∈ χ

) = m∗
�χ

(
eq /∈ χ

) ·m∗∗
�Ent

(
eq /∈ χ

)
,

m�χ ·�Ent (�) = 1 − m�χ⊕�Ent
(
eq /∈ χ

)
,

(24)

and the probabilistic sum

m�χ⊕�Ent
(
eq /∈ χ

) = m∗
�χ

(
eq /∈ χ

) + m∗∗
�Ent

(
eq /∈ χ

)
− m∗

�χ

(
eq /∈ χ

) ·m∗∗
�Ent

(
eq /∈ χ

)
, (25)

m�χ⊕�Ent (�) = 1 − m�χ⊕�Ent
(
eq /∈ χ

)
,

respectively, by using eqs. (20), (18), (7) in calculation of m∗
�χ , and eqs. (23), (22), (21), (17), (16), (15), (11) and the 

algorithm in [28] to compute eq. (8) in calculation of m∗∗
�Ent .

Based on this results (of eq. (24) and (25)) we can manage all mq (∀q) in one of several different ways:

1. We may discount all mq based on m�χ ·�Ent
(
eq /∈ χ

)
or m�χ⊕�Ent

(
eq /∈ χ

)
using eq. (13) with α = 1 −m�χ ·�Ent

(
eq /∈ χ

)
or α = 1 − m�χ⊕�Ent

(
eq /∈ χ

)
. Evidence with a high degree of combined conflict-based and entropy-based falsity will 

be discounted to its degree with a low α. Subsequently, we handle all evidence with whatever mass remains after 
discounting as if it is true. This approach is somewhat crude and may not be the most preferable way to manage all 
evidence.
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Table 1
Performance over 100 experiments with ten true and one false belief function.

Conflict 
mean

Standard 
deviation

Entropy 
mean

Standard 
deviation

Product 
mean

Standard 
deviation

Probabilistic 
sum mean

Standard 
deviation

True bf 0.029 0.051 0.237 0.240 0.016 0.035 0.250 0.252
False bf 0.787 0.018 0.656 0.224 0.519 0.181 0.924 0.056
Diff 0.758 0.419 0.503 0.674

2. A more refined approach is to perform sequential incremental discounts using increments of α = 1 − m�χ ·�Ent
(
eq /∈ χ

)
or α = 1 − m�χ⊕�Ent

(
eq /∈ χ

)
as was suggested in [12]. Thus, instead of performing a direct discount of each piece of 

evidence by its degree of falsity we begin with a smaller incremental discount made individually for each belief function 
in proportion to its degree of falsity. After these initial discounts we recalculate conflict and update the degree of falsity. 
The process is performed sequentially in several small steps. With this approach it is possible to manage the conflict 
by appropriate discounts to obtain a smooth discounting process (compared to if we would have fully discounted each 
belief function to its degree of falsity) that bring the conflict down to an acceptable level.

3. A third approach is to evaluate and rank all mq based on m�χ ·�Ent
(
eq /∈ χ

)
or m�χ⊕�Ent

(
eq /∈ χ

)
, and if there is a 

natural partition of all mq into two groups (corresponding to true and false belief functions) we eliminate the false 
group from the combination. A natural partition of all mq ranked by m�χ ·�Ent

(
eq /∈ χ

)
or m�χ⊕�Ent

(
eq /∈ χ

)
can be 

said to exist if there is one gap in the evaluation significantly larger than the second largest difference within the 
ranking. If no such natural partition exists, we use one of the discount methods.

We think that managing all evidence in an interactive and incremental way using eq. (24), (25) and the third approach 
whenever possible, is a good way to find and manage deceptive information in an information fusion process. Although the 
first approach is acceptable in situations with many belief functions, the second method is more robust with fewer belief 
functions. The second method has a higher computational complexity, but the result is never worse than the first method, 
see [12] for details. However, the third approach, whenever possible, should be preferred because it eliminates the problem 
of false information rather than downgrading it.

6. Experiment with deception

In this section we study five experiments each with a frame of discernment of five elements � = {A, B, C, D, E} where 
A is the ground truth in each experiment. In every experiment we have ten true belief functions. They support a focal 
element that is a superset of A, or the set A itself, and �.

In addition we assign between one and five deceptive belief function, respectively, in each of these five experiments that 
does not support any focal element that contains A.

Each of the five experiments is repeated 100 times and averages are calculated for m∗
�χ , m∗∗

�Ent , m�χ ·�Ent
(
eq /∈ χ

)
, and 

m�χ⊕�Ent
(
eq /∈ χ

)
using eqs. (20), (23), (24) and (25). These numbers are available in Tables 1–5 in columns 2, 4, 6, and 8 

with column titles Conflict mean, Entropy mean, Product mean, and Probabilistic sum1 mean, together with their standard 
deviations in columns 3, 5, 7, and 9 with columns titles Standard deviation. The difference between the averages for all 
false belief functions (in row 3) and all true belief functions (in row 2), respectively, is tabulated in row 4 for comparison 
regarding the effectiveness between the two measures, i.e., conflict (20) and entropy (23), and their product (24) and 
probabilistic sum (25). Note, that we use our knowledge about the experiment set-up to calculate these measures for false 
and true belief functions, respectively. We are not focused in this experiment in deriving the status of unknown belief 
functions.

In Table 1 we observe the superiority of the conflict measure m∗
�χ over the entropy measure m∗∗

�Ent in situations with 
only one deceptive belief function and ten true belief functions, with an average difference over all 100 examples between 
false and true belief functions of 0.758 for the conflict measure and 0.419 for the entropy measure. The conflict measure 
is also superior to both the product and probabilistic sum of the two measures in this situation. The same conclusion also 
stands in the case of two deceptive belief functions (see Table 2).

For the case with three false belief functions the performance of the conflict measure is decreasing. The entropy measure 
continues to show stable performance. In this situation the best performance is provided by the probabilistic sum of the 
two measures (see Table 3).

For the case of four and five false belief functions in Tables 4 and 5, respectively, we notice the sharp deterioration in 
the performance of the conflict measure. In the case of five false belief functions this measure is not able to differentiate 
between true and false belief functions in this experiment. The entropy measure, however, continues to perform well, and 
the probabilistic sum of the two measure continue to differentiate well between the true and false belief functions.

1 Here, Product refers to the product in the first row of eq. (24), and Probabilistic sum is a reference to the right hand side of the first row of eq. (25).
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Table 2
Performance over 100 experiments with ten true and two false belief functions.

Conflict 
mean

Standard 
deviation

Entropy 
mean

Standard 
deviation

Product 
mean

Standard 
deviation

Probabilistic 
sum mean

Standard 
deviation

True bf 0.086 0.123 0.287 0.283 0.046 0.074 0.327 0.309
False bf 0.748 0.082 0.554 0.242 0.418 0.198 0.884 0.073
Diff 0.662 0.266 0.371 0.557

Table 3
Performance over 100 experiments with ten true and three false belief functions.

Conflict 
mean

Standard 
deviation

Entropy 
mean

Standard 
deviation

Product 
mean

Standard 
deviation

Probabilistic 
sum mean

Standard 
deviation

True bf 0.188 0.204 0.190 0.286 0.046 0.081 0.333 0.313
False bf 0.633 0.146 0.547 0.173 0.344 0.145 0.836 0.075
Diff 0.445 0.357 0.298 0.504

Table 4
Performance over 100 experiments with ten true and four false belief functions.

Conflict 
mean

Standard 
deviation

Entropy 
mean

Standard 
deviation

Product 
mean

Standard 
deviation

Probabilistic 
sum mean

Standard 
deviation

True bf 0.264 0.255 0.068 0.198 0.020 0.058 0.313 0.294
False bf 0.415 0.218 0.552 0.114 0.221 0.128 0.746 0.086
Diff 0.151 0.484 0.202 0.434

Table 5
Performance over 100 experiments with ten true and five false belief functions.

Conflict 
mean

Standard 
deviation

Entropy 
mean

Standard 
deviation

Product 
mean

Standard 
deviation

Probabilistic 
sum mean

Standard 
deviation

True bf 0.314 0.2848 0.002 0.005 0.001 0.002 0.315 0.284
False bf 0.208 0.169 0.583 0.015 0.119 0.094 0.672 0.061
Diff −0.105 0.581 0.119 0.357

As the probabilistic sum of the two measures, i.e., combination by Dempster’s rule m�χ⊕�Ent
(
eq /∈ χ

)
eq. (25) always 

outperforms the product of the two measure m�χ ·�Ent
(
eq /∈ χ

)
eq. (24), we will never recommend using the product.

While it is obvious from the performance values in Tables 1–5 that the entropy measure alone works well enough, using 
the probabilistic sum of the two measure for increased robustness in problems with few deceptive belief functions seems 
to be a good approach in this experiment.

How to use conflict, entropy and the probabilistic sum of both measure in another situation is likely domain depended 
and needs to be studied. It seems safe to conclude that entropy alone (17) or the probabilistic sum of both measures (25)
are the preferred candidates in order to differentiate between true information and deception.

7. Conclusions

We have developed an approach for counter-deception in information fusion. This method combines the study of conflict 
in Dempster’s rule with observation of changes in entropy to determine which belief functions are deceptive. We conclude 
from the experiment performed that the entropy measure and the probabilistic sum of both measures perform well in 
differentiating between true information and deception. With this methodology, we can prevent deceptive information from 
being included in the information fusion process.
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