Jag accepterar att kakor lagras på min dator

Läs mer

A Semi-Random Finite Element Modal approach for Turbulent Boundary Layer induced Sound Transmission.

A Semi-Random Finite Element Modal approach for Turbulent Boundary Layer induced Sound Transmission. Beställ tryckt exemplar Lägg i kundvagnen
Författare: Ulf Tengzelius
Ort: Stockholm
Sidor: 27
Utgivningsår: 2010
Publiceringsdatum: 2010-12-15
Rapportnummer: (FOI-R--3027--SE)
Nyckelord , FEM, stationary random, turbulent boundary layer, sound transmission, Monte Carlo Method, sampling, , random response, dynamic response, frequency response, FRF
Keywords FEM, stationary random, turbulent boundary layer, sound transmission, Monte Carlo Method, sampling, random response, dynamic response, frequency response, FRF
Sammanfattning En beräkningsmetod som vi benämner "Semi Random Finite Element Method" (SR-FEM), har tagits fram av FOI. Metoden har utvecklats för att kunna prediktera strukturrespons och ljudtransmission från icke deterministiska dynamiska laster på ett effektivt sätt. Föreliggande rapport beskriver metoden och finns också sammanfattad i konferensbidrag, AIAA 2010-3952, till "16th AIAA/CEAS Aeroacoustics Conference" som hölls i Stockholm 7-9 juni 2010. Finita element (FE) baserade metoder för att beräkna strukturrespons och ljudtransmission från tidsberoende, slumpmässiga, stationära laster, som t.ex. från ett turbulent gränsskikt, har tidigare varit starkt begränsande vad gäller modellstorlek. Redan med relativt små FE modeller, räknat i antalet frihetsgrader, når man tidigt en övre gräns med dagens datorresurser. Med den presenterade metoden förflyttas denna gräns i modellstorlek kraftigt uppåt. Detta medför t.ex. att man, i motsats till tidigare kända modala FE ansatser, ges möjligheten att studera hela flygplanssektioner i frekvensområden upp till flera kHz. Detta svarar bl.a. mot behovet vid beräkningar på flygplanskabiner exciterade av turbulenta gränsskikt. SR-FEM bygger på en slumpmässig sampling i ingående systemmatriser innan matrismultiplikationer för lösning av struktur- och ljudtransmissionsrespons genomförs. Metoden är generell i den meningen att en godtycklig "stationary random - last " kan appliceras. Till skillnad mot en klassisk modal FE lösning, där de matrismultiplikationer som följer på egenvärdeslösningen kräver avsevärt fler operationer/CPU-tid än egenvärdeslösningen i sig, tenderar dessa båda steg att vara av samma storleksordning med SR-FEM. Metoden medför en viss begränsning i frekvensupplösning jämfört med en klassisk FE-lösning. För att samtidigt uppnå en avsevärd tidsbesparing (CPU-tid) och "tillräcklig" noggrannhet med SR-FEM, bör man typiskt studera frekvensresponser i tersband. Något som i de flesta sammanhang är fullt acceptabelt. Eftersom SR-FEM är baserad på grundläggande statistiska lagar har man per automatik tillgång till etablerade verktyg för feluppskattning. Detta kan detta t.ex. utnyttjas genom att beräkningar avslutas vid en viss uppnådd noggrannhet.
Abstract A method called 'Semi Random Finite Element Method' (SR-FEM) have been developed by FOI. The aim with the SR-FEM has been to extend the capability of classical finite element approaches for responses from stationary random excitations. The following report describe this method , which is summarized in a conference paper, AIAA 2010-3952, given at the "16th AIAA/CEAS Aeroacoustics Conference", Stockholm 7-9th of June 2010. Finite element (FE) based methods have previously been found quite limited concerning upper model size for computation of structural response and sound transmission from stationary random loads, such as from a turbulent boundary layer. It is well known that when solving a dynamic response problem for deterministic loads, introducing a modal base, the eigenvalue solution is by far the most CPU-time consuming part of the solution process. For a stationary random excitation though, in contrary, the matrix multiplications, following upon the modal base establishment, becomes significantly more costly than the eigenvalue solution. This is when applying a classic modal-FE approach. With the presented SR-FEM instead the CPU-time for this complete set of matrix multiplications tends to be of the same order as the CPU-time for the eigenvalue solution. With this follows that the upper limit in model size could be moved considerably upwards. This enables response studies for example of complete aircraft cabin sections in the frequency range of some kHz, which corresponds to the needs for a typical turbulent boundary layer excitation. SR-FEM is based on a random sampling among elements within the system matrices established for the computation of structural- or sound transmission response, and is general in the sense that any distributed stationary random load might be applied. The method limits the frequency resolution in relation to a classic FE-solution. In order to achieve a significant CPU-time gain, and at the same time a "sufficient" accuracy, one should typically stay to third octave band representations of the response. In other words, a frequency resolution which can be considered as sufficient in most applications. Since SR-FEM is based on fundamental laws of statistics, means for error estimates is automatically at hand. These error estimates might be used when applying termination criteria for computations. The examples given show an accuracy of around 1 dB per 1/3-octave band compared with a full "classic" modal/FE-approach.

Kundvagn

Inga rapporter i kundvagnen

FOI, Totalförsvarets forskningsinstitut

FOI
Totalförsvarets forskningsinstitut
164 90 Stockholm

Tel: 08-555 030 00
Fax: 08-555 031 00

Orgnr: 202100-5182