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Abstract. This paper investigates how large language models can be
shaped to act more strategically in text-based negotiation settings. Two
action space designs are compared, namely emotional tone-based and
explicit offer-based, within a negotiation environment, and outcomes are
compared in simulated dialogues. The results show that both approaches
improve strategic outcomes compared to a baseline, with tone-based ac-
tions yielding higher agreement rates and offer-based actions providing
more stable tradeoffs. These findings demonstrate how action space de-
sign influences agent behavior, providing insights for deployment of large
language models in strategic negotiation scenarios to gain an advantage
in, for example, online influence operations.

Keywords: Game theory · Large language models · Action space opti-
mization · Adversarial dialogue · Influence operations

1 Introduction

Complex language is a defining characteristic that sets humans apart from all
other species [25]. No other species comes close to matching the structural rich-
ness and intricacy of human communication. What distinguishes our communi-
cation system most is the vast number of symbols, words, and the sophisticated
structure of sentences [13]. Due to this complexity, human language remains one
of the most challenging faculties to replicate in machines. The study of compu-
tational approaches that enable machines to analyze and process text in ways
that emulate human language understanding and use is called natural language
processing (NLP) [20]. The first research within NLP in the 1950s, centered on
rule-based machine translation and experiments to automate translation from
Russian to English [15,32]. Throughout the 1960s and 1970s, NLP systems relied
on handcrafted linguistic rules for tasks such as parsing and information extrac-
tion [34]. With the rise of large text corpora and greater computing power in
the 1980s and early 1990s, statistical language models appeared in the form of
n-gram models that estimate the probability of word sequences [6,31]. Through
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extended research and parallel developments in other fields, the LMs from the
1990s have turned into the large language models (LLMs) we use today.

Only during the last few years, there has been an immense increase of interest
and use of LLMs. This increase can be seen in research, where the number of
papers released which include “Large Language Model” as keyword has increased
from 114 in the year 2020 to 20 900 in 2023 [22]. However, it is not only among
researchers this interest has been growing rapidly. Since the release of the chatbot
ChatGPT by the AI research company OpenAI in late 2022, ChatGPT had
already reached 100 million weekly active users by November 2023, and over 200
million by August 2024 [1].

Despite the rapid development of LLMs over the last years, they still lack
in reasoning capabilities compared to humans [19,7]. Many studies have tried,
and succeeded, to take LLMs closer to humans with regards to their reasoning
capabilities. One such study was made by Gemp et al. in 2024 where they inves-
tigated LLMs using a negotiation game [9]. In order to improve the negotiation
capabilities of the LLMs, they introduced a framework that allowed for the com-
bination of game-theoretic analysis with natural language. The outcome of the
study was that the LLMs that were guided by game-theoretic solvers improved
its negotiation capabilities, compared to the LLMs which did not make use of
any game theory.

This paper aims to examine the strategic LLM further, by using different
actions when steering the LLM. The chosen action spaces are using tones or offers
and is compared with each other. This comparison is made in a negotiation game,
similar to the one used by Gemp et al., where each model is evaluated against
a baseline without any game-theoretic steering. This aims at expanding our
knowledge of how LLMs can further enhance their reasoning capabilities. Hence,
the research question in this paper is the following: How does the choice of action
space affect large language models’ performance when steered with game-theoretic
solvers?

2 Game-Theoretic Background

This section outlines the game-theoretic foundations for our approach. We cover
core concepts from game theory, counterfactual regret minimization (CFR), and
the evaluation metrics NashConv and CFR Gain.

2.1 Basics of Game Theory

Game theory is the study of strategic interactions through mathematical mod-
els [29]. These interactions are what we will refer to as games. All games have
some properties which are common. This includes a given starting point from
which the game begins [23]. From the starting point, a sequence of moves fol-
low for each player where they have to make one or more decisions. Finally, the
player(s) are given a payoff depending on the outcome of the game once it has
reached a terminal state. Other than this, games can vary widely; they can be



cooperative or competitive, involve different numbers of participants, and have
perfect or imperfect information.

The concept of a Nash equilibrium was introduced by John Nash in his land-
mark 1950 paper [16], and serves as a solution concept for a wide variety of
games. He proved that every finite game (i.e., a game with a finite number of
players and actions) has at least one Nash equilibrium in mixed strategies. Before
discussing Nash equilibrium any further, we define best response. In a two-player
game, a strategy σ∗

1 is a best response to a strategy σ2 if the expected payoff
when playing σ∗

1 is greater or equal to the expected payoff of all other strategies
σ1. If U is a matrix containing the payoffs in normal-form games, the above
definition can be written as

u1(σ
∗
1 , σ2) ≥ u1(σ1, σ2) ∀ σ1 ∈ S1 such that σ1 is a probability vector.

Definition 1. Two strategies (σ∗
1 , σ

∗
2) is a Nash equilibrium if σ∗

1 is a best
response to σ∗

2 and σ∗
2 is a best response to σ∗

1 .

The definition means that no player can unilaterally gain by deviating from their
equilibrium strategy, given that the other player’s strategy remains fixed. A pure
Nash equilibrium is a Nash equilibrium where both σ∗

1 and σ∗
2 are pure strategies.

In games with incomplete information, at least one player does not have all
information about the full mathematical structure of the game [24,11,30]. This
could, among other things, include the payoffs, strategies or information available
to one or more players.

Even small, simple incomplete-information games often lack analytical solu-
tions and require computer algorithms.

2.2 Algorithmic Game Theory

Over the past 25 years, the integration of theoretic computer science into game
theory has rapidly given rise to the field of algorithmic game theory (AGT) [26].
AGT differs from classic game theory in several respects. It often examines opti-
mization problems, and its solutions typically consist of optimal approximation
bounds rather than the exact solutions sought in classic game theory [27].

Let H be a finite set of histories, that is, all possible sequence of actions
that may occur in the game. Further, let A(h) = {a : (h, a) ∈ H} be the
actions available after a nonterminal history h ∈ H. The probability of history
h occurring if players choose actions according to the mixed strategy σ is denoted
πσ(h). This can be decomposed into each players contribution to the probability
according to

πσ(h) =
∏
i∈N

πσ
i (h),

where N is the set of players. Here, πσ
i (h) is the probability that player i, when

following strategy σi, selects the corresponding actions in h at each of their
decision points. In a similar way, πσ

−i(h) is the product of all other players’



contribution to the probability except player i. For a given information set,
I ⊆ H,

πσ(I) =
∑
h∈I

πσ(h)

is the probability of reaching this information set given σ. Finally, the expected
payoff for player i, given a strategy σ, is

ui(σ) =
∑
h∈T

Pi(h)π
σ(h).

This means that the expected payoff is the sum of player i’s payoffs, Pi, at every
terminal node, T , multiplied by the probability of reaching that node.

2.3 Counterfactual Regret Minimization

The most successful solvers for games with imperfect information are a family of
algorithms called counterfactual regret minimization (CFR) [4]. The algorithm
was first introduced by Zinkevich et al. in 2007 [35] and has since been modified
in several forms to improve performance [4,18,3,5]. In this section, we focus on
Zinkevich et al.’s original algorithm [35].

The CFR algorithm is based on action’s regret and we begin by describing
this concept. Consider an extensive game played repeatedly where σt

i is the
strategy used by player i in round t. The average cumulative regret of player i
after τ iterations is

Rτ
i =

1

τ
max
σ′
i∈Si

τ∑
t=1

(
ui(σ

′
i, σ

t
−i)− ui(σ

t)
)
.

This equation calculates the difference between the actual payoffs received and
the best possible payoffs player i could have received by always playing the best
strategy in hindsight, averaged over τ iterations. Let us also define σ̄t

i as the
average strategy for player i over iterations 1 to τ . The average strategy is the
strategy which selects actions with probabilities proportional to the cumulative
frequencies with which they were chosen during previous iterations. For each
information set I and for each action a ∈ A(I), the average strategy of that
information set is given by

σ̄t
i(I, a) =

∑τ
t=1

(
πσt

i (I)σt(I, a)
)

∑τ
t=1 π

σt

i (I)
.

This measures how often player i chose action a at information set I in the past,
weighted by the probability of reaching I in each iteration.

Next, we define counterfactual regret. The fundamental idea of CFR is to
decompose overall regret into additive regret terms, which are defined at each
information set in extensive-form games. Zinkevich et al. show that these regrets



can be minimized independently at each information set and that overall regret
is bounded by the sum of counterfactual regret [35].

Before defining counterfactual regret, let us introduce counterfactual utility.
The counterfactual utility is the expected payoff given that information set I
is reached and every player plays according to strategy σ except player i. It is
defined as

ui(σ, I) =

∑
h∈I,h′∈T πσ

−i(h)π
σ(h, h′)ui(h

′)

πσ
−i(I)

.

The term πσ(h, h′) is the probability of moving from history h to h′ when playing
strategy σ.

The final term to define is the immediate counterfactual regret. Let a ∈ A(I),
σ|I→a be the strategy profile identical to σ except that player i plays action a
in information set I. The immediate counterfactual regret is then defined as

Rτ
i,imm(I) =

1

τ
max

a∈A(I)

τ∑
t=1

πσt

−i(I)
(
ui(σ

t|I→a, I)− ui(σ
t, I)

)
.

The above term is player i’s regret of a decision at information set I with regards
to the counterfactual utility, weighted by the probability that I is reached that
round if the player tried to do so. As negative regret is not of interest, Rτ,+

i,imm(I)
is defined as the positive immediate counterfactual regret by max(0, Rτ

i,imm(I)).
This leads to the first theorem which gives an upper bound on the overall regret.

Theorem 1. The overall regret is upper bounded by the sum of positive im-
mediate counterfactual regret, that is

Rτ
i ≤

∑
I

Rτ,+
i,imm(I).

Zinkevich et al. prove the above theorem in their paper [35]. The theorem
states that minimizing the immediate counterfactual regret also minimizes the
overall regret. Hence, an approximate Nash equilibrium can be found by minimiz-
ing the immediate counterfactual regret. The next question is, how to minimize
the immediate counterfactual regret. As mentioned above, it can be minimized
at each information set independently. Especially, for all I and for all a ∈ A(I),
we define

Rτ
i (I, a) =

1

τ

τ∑
t=1

πσt

−i(I)
(
ui(σ

t|I→a, I)− ui(σ
t, I)

)
and Rτ,+

i (I, a) = max(0, Rτ
i (I, a)). A strategy for player i at iteration, τ + 1 is

στ+1
i (I, a) =


Rτ,+

i (I,a)∑
a∈A(I) R

τ,+
i (I,a)

if
∑

a∈A(I) R
τ,+
i (I, a) > 0,

1
|A(I)| otherwise.

According to the above strategy, each action a is selected with probability pro-
portional to its positive counterfactual regret for not playing a. That is, the more



a player would counterfactually regret not playing an action, the more likely that
action is to be played. If no action has positive counterfactual regret, the player
chooses uniformly at random among the available actions.

Zinkevich et al. concludes that if players choose actions according to the above
equation, it can be used in self-play to compute a Nash equilibrium. Self-play is a
way of learning optimal policies by playing against itself without supervision [2].
As the immediate counterfactual regret is an upper bound for the average overall
regret, if the immediate counterfactual regret at iteration τ is less than ϵ in a
zero-sum game, then σ̄τ is a 2ϵ Nash equilibrium [35].

2.4 Evaluation Metrics

To evaluate an approximate Nash equilibrium, we define two key metrics. Similar
measures were used by Gemp et al. to evaluate if the LLMs became more strategic
under the influence of algorithmic solvers [9]. The first measure is called CFR
Gain. To calculate CFR Gain, a scenario where both players are playing an
uninformed baseline is used. That is, neither player is utilizing the optimized
strategy found by the CFR solver. From this scenario, one asks how much either
player would gain if they switched from playing the uninformed baseline to the
CFR strategy. This is measured by the increase or decrease in payoff. A positive
value of CFR Gain, indicates that the player is gaining by switching to the CFR
strategy compared to an uninformed baseline.

The other measure is NashConv. This is computed through a scenario where
both players by default are playing the CFR strategy. One then asks, how much
either player would gain by switching to any alternative pure or mixed strategy,
compared to the CFR strategy. In other words, NashConv is a measure of how
far the CFR strategy is from an equilibrium [14]. A high CFR Gain, relative
to NashConv, means that the mixed strategy calculated by the CFR solver
approximately satisfies the condition for an evolutionarily stable strategy [28].

3 Methods: Optimizing Large Language Model
Negotiation

This section describes our methods for optimizing a large-language-model nego-
tiator using counterfactual regret minimization. We specify the task and envi-
ronment and construct two action spaces: (i) tones and (ii) explicit offers.

3.1 The Chat Game

The environment in which the simulations were performed, OpenSpiel, is an
open codebase developed by Google DeepMind [9]. OpenSpiel is an environment
for conducting research within reinforcement learning and planning in games [17].
Methods to analyze games and evaluation metrics are also available through
OpenSpiel. The environment also provides a negotiation game framework, called
chat_game, which supports several domains. In this paper, trade_fruit domain,



was used to address the research question. An overview of the game will be
presented before describing the two experimental set-ups.

In the fruit trading domain, a game is played between two players negotiating
fruit trades. Each player is initially given a set of fruits and valuations of them.
In this study, the fruits used were apples, bananas, and oranges. For each player,
the initial amount of each fruit was randomly chosen from a discrete uniform
distribution between 1 and 2, U{1, 2}. Each player was also given a valuation of
each fruit, randomly assigned from U{0, 4}. The endowment and valuations of
fruits are private information to the players, they do not know how many of each
fruit their opponent has or how she values them. However, the distribution from
which the values are drawn are public information and known by both players.
An example of the private information can be seen in Fig. 1.

Example private information

Fruit Endowment:
apples: 2
bananas: 2
oranges: 1

Fruit Valuations:
apples: 1
bananas: 2
oranges: 4

Fig. 1. Example of private information for a player in the trading fruit game.

After the initialization described above, player 1 sends her first message.
This is done by an LLM prompted with instructions on how to reply, example
messages, as well as the private information of player 1. Player 2 is then asked
to respond to the first message of player 1 through an LLM prompted with
instructions on how to reply, example conversations, the private information of
player 2, and the first message from player 1. The LLM is asked to either accept
the trade offer or propose a counter-trade in its response. With the reply of
player 2, the LLM is also prompted with a specific action to use, which is to be
optimized later. The different actions are described in Sect. 3.2 and 3.3. The game
ends either when an agreement has been made or when a predefined maximum
number of messages has been sent. Until this condition has been met, the players
take turns responding to each others messages. An example conversation can be
seen in Fig. 2.

After each message, the conversation history is sent to an LLM asked to
summarize the discussion up until that point. An LLM is then prompted with
this summary in order to determine if the two players have reached an agreement.
If the players are assumed to have reached an agreement, or if the maximum



Example conversation
############################
Trade Proposal Message:
from: Leif
to: Ann
############################

Hi Ann,

I propose trading you 1 banana for 1 orange. I think this is a fair exchange.

Let me know if you agree.

Best,

Leif

############################
Trade Proposal Message:
from: Ann
to: Leif
############################

Hi Leif,

Thanks for reaching out. I only have 1 orange and I do not want to give it up. Would
you be willing to take an apple instead? I would like to trade you 1 apple for 1
banana.

Does that work?

Best,

Ann

Fig. 2. Example conversation between players Leif and Ann with a counter-proposal.
In this example one could imagine Ann having the private information as shown in 1.

number of steps has been reached, the conversation together with the private
information of both players, is sent to an LLM asked to calculate the payoffs of
the players. If the conversation has reached the maximum number of steps but
no agreement has been reached, the rewards are calculated based on the counter-
proposal last sent. If this offer is considered advantageous to the receiving player,
the payoffs are calculated based on this proposal. The payoffs are defined as the
value of the player’s fruit endowment times the fruit valuation after the trade
minus before the trade. If the last message is not considered advantageous to
the receiver, both players receive a payoff of 0.

An overview of the LLM calls made in the fruit trading game can be seen
in Fig. 4. All LLM calls used the same model, the only difference between LLM
calls are the prompts. The LLM used in all simulations was from the Llama 3
model family. More specifically the model was Llama-3.3-70B-Versatile which is
an auto-regressive language model with 70 billion parameters trained using su-
pervised fine-tuning and reinforcement learning with human feedback [21]. This
was the largest model deemed practical to use in order to ensure the simulations
remained manageable in terms of time and cost.

3.2 Tones as Actions

The first implementation is similar to that of Gemp et al. [9]. In order to steer
LLMs through game-theoretic solvers, they implemented actions in the form of
tones. During the message generation step from Fig. 4 the LLM is asked to gen-
erate the answer using a specific tone. The four tones used were calm, assertive,
submissive, and any tone. The last option, any tone, was used to evaluate the
solution and the LLM was not prompted with any request about a specific tone.



Calculating payoff for player Ann

Value before the trade:
2 * 1 + 2 * 2 + 1 * 4 = 10

Ann receives 1 banana and gives away 1 apple.

Value after the trade:
1 * 1 + 3 * 2 + 1 * 4 = 11

Final payoff for Ann: 11 - 10 = 1

Fig. 3. Payoff calculation for player Ann based on the private information in 1 and the
trade proposal from the conversation in 2.

In order to find an improved strategy through the choice of tone, at each stage
of the game apart from the first message, a separate response was generated for
each tone.

As LLM generations are stochastic and will produce different texts every
time, a parameter called num_llm_seed controlled the number of responses gen-
erated per tone. This was to avoid a random text generation to influence the
result too much. In this paper, similar to Gemp et al., two responses were gener-
ated for each tone [9]. All these answers form a game tree in extensive form. An
example of a game tree is illustrated in Fig. 5 where there is one initial message,
then four tones each having a chance node where two random messages are cre-
ated per tone. As can be seen in the game tree, the action space for the player is
the set of available tones. A strategy is therefore a probability distribution over
the tones, which is to be optimized through an algorithmic game theory solver.
If an agreement is reached on one of the branches in the game tree, that branch
will terminate at the step of the agreement and no further messages will be
generated for that branch. When all messages have been generated, the payoffs
are calculated for all terminal nodes as described in Sect. 3.1. In this study the
maximum number of messages was set to two, that is one per player. The reason
for this was the larger game trees generated in the action space with offers, which
required more computational power for LLM calls. Therefore, longer conversa-
tions were not feasible to implement. When the game tree had been generated
and all payoffs calculated, the CFR solver from OpenSpiel [17] was applied on
the game as described in Sect. 2.3. CFR iterated over the sub-game tree starting
after player 1’s initial message 100 times and the updated mixed strategy over
the available actions for player 2, along with other evaluation metrics, were re-
ported for every fifth iteration. For more information about the evaluations, see
Sect. 3.4. In total, 32 separate games were played.

3.3 Offers as Actions

In the second implementation, the action space was set to contain possible trade
combinations, henceforth referred to as offers. The combinations of trades in



Initialization
(No LLM used)

Message generation
1,2

Summary of
conversation history

3

Agreement or maximum
number of messages reached?

4

Reward calculation
5,6,7

Yes

No

Fig. 4. Overview of the LLM calls and the structure of the fruit trading game. The
numbers in the upper right corner of each box represent which LLM prompt is being
used at what stage.

the action space were all trades where one type of fruit was exchanged against
another type of fruit. With the condition that either one or two of each fruit
type was proposed to give or receive. As the maximum endowment of a single
fruit was set to two, one could not ask for three or more pieces of a single fruit.
Offers where one player either gave or received no fruit were also omitted, as
they would never be advantageous for both players. In order to limit the size
of the game tree, trades where a combination of fruit types were offered or
asked for was not included in the action space. All valid trades where one player
receives one apple can be seen in Fig. 6, together with examples of invalid trade
suggestions. Apart from the possible fruits offers, the action space also included
an option which is for the player to propose any offer. This means that the total
size of the action space was 25. As with the any tone option in the baseline
implementation, the LLM was not given any offer at all when playing the any
offer action. As the action space is changed, and enlarged, the game tree in the
updated version will look different from that in Fig. 5. The updated game tree
can be seen in Fig. 7. Every action still has two LLM seeds as chance nodes and
the maximum number of messages was set to two, before calculating the payoffs.
Each game was iterated 100 times with the CFR solver and a total of 32 games
were simulated.

3.4 Evaluation

The two implementations were evaluated separately. Firstly, two metrics used
by Gemp et al. [9] were used to determine whether the improved strategy which



Game initializations
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LLM
seed 1

LLM
seed 2

p1, p2 p1, p2

Fig. 5. An example of a game tree with tones as actions. The game initialization
(◦) contains a random setup of fruit endowment and fruit valuation before the initial
message is sent by the first player. The initial message does not include any specific
action. Then the four possible tones for player 2 are all followed by a chance node
(□) with two LLM seeds. One message is generated for each seed. Following the final
message the payoffs are calculated for both players, p1 and p2.

Example trades

Valid trades Invalid trades
Receive 1 apple and give 1 banana Receive 1 apple and give 0 bananas
Receive 1 apple and give 2 bananas Receive 1 apple and give 1 apple
Receive 1 apple and give 1 orange Receive 1 apple and give 2 apples
Receive 1 apple and give 2 oranges Receive 1 apple and give 3 oranges

Fig. 6. All valid trades where one player receives one apple are shown to the left. In the
right column, examples of invalid trades are listed. Trades are invalid if they receive or
give anything else then 1 or 2 of a fruit, or if it asks for the same fruit as it wants to
gives up.

utilized the optimal policy from the CFR solver performed better than an un-
informed baseline. The uninformed baseline always played the any tone or any
offer action, depending on the action space version. This baseline was compared
to a model following the equilibrium strategy computed by the CFR solver. The
two measures, CFR Gain and NashConv, are described in Sect. 2.4.

To evaluate in which of the two implementations most agreements were
reached, the percentage of agreements reached was calculated. To further deepen
the analysis, it was examined at what stage a potential agreements were reached,
after two or three messages. This was initially done by calculating the percent-
age of conversations where the LLM identified that the players had reached an
agreement after two messages. This refers to the LLM in the penultimate step in
Fig. 4, which is asked to identify if an agreement has been made. For the LLM
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Fig. 7. An example of a game tree with offers as actions. The total number of actions
are 25 but only four are shown in the game tree.

to register an agreement, the player receiving the first message must accept it
directly. Any other response should not trigger the LLM to report an agreement.
In the second approach, the number of agreements was derived from counting the
number of conversations that ended in a non-zero payoff for at least one player.
This corresponds to an agreement being made following a hypothetical third
message. Recall from Sect. 3.1 that the rewards are set to zero for both players
if the last trade offer is not advantageous for the receiving player. Otherwise, it
is calculated based on the final offer.

Finally, it was of interest to measure the outcome of the trades. This is
referring to how often the players gained or lost value through the negotiated
trade. These metrics give an indication on which of the implementations where
the players managed to come to more favorable agreements. This was evaluated
through four measures. The first two measures were the percentage of agreements
where at least one player received a negative payoff, and where both players
received a negative payoff was calculated. A negative payoff corresponds to the
player losing out on the trade and having a lower valuation of her fruits after
the trade compared to before. When calculating the number of negative rewards
for at least one player, the conversations which resulted in negative rewards for
both players were also included. Finally, the percentage of conversations ending
with at least one positive payoff or two positive payoffs was also calculated to
examine how many conversations ended with a positive outcome for either player
or both players respectively.



4 Results

This section provides the results from the experiments described in Sect. 3. First,
the performance of the game-theoretic solver is presented. Next, the number of
agreements made in the game are covered. Finally, the value of the trades are
presented.

4.1 Effect of Game-Theoretic Solvers

The effect of game-theoretic solvers was evaluated based on the two measures,
NashConv and CFR Gain, as described in Sect. 2.4. In Table 1 one can see the
reported values after 20 CFR iterations (compared to 10 iterations reported by
Gemp at al. [9]). The average values for NashConv and CFR Gain through the
CFR iterations are shown in Fig. 8.

Table 1. Average NashConv and CFR Gain with corresponding standard deviation
after 20 iterations of CFR solver for both implementations.

Actions Average NashConv Average CFR Gain
Tones 0.0031 ± 0.0019 0.0193 ± 0.0169
Offers 0.0109 ± 0.0062 0.0321 ± 0.0189
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Iteration
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NashConv (Tones) CFR Gain (Tones)
NashConv (Offers) CFR Gain (Offers)

Fig. 8. Log-scale plot of the average NashConv and CFR Gain over the first 100 iter-
ations.

The ratio of CFR Gain divided by NashConv for the first 100 iterations is
presented in Fig. 9. It was calculated as the average CFR Gain value at every
iteration divided by the average NashConv value. In Table 2 the exact values for



Table 2. Ratio of CFR Gain divided by NashConv after 20 iterations.

Actions Ratio
Tones 6.28 ± 6.81
Offers 2.95 ± 2.40

0 20 40 60 80 100

100

101

102

101

Iteration

R
at

io

(Tones)
(Offers)

Fig. 9. Ratio of CFR Gain divided by NashConv over the first 100 iterations for the
two scenarios.

the ratios after 20 iterations of CFR solver are reported. If this value is greater
than one, CFR Gain is larger than NashConv and the optimized CFR strategy
approximately satisfies the conditions for an evolutionary stable strategy, see
Table 2.4.

4.2 Agreement Frequency

The number of agreements between the players was also measured. Recall from
Sect. 3.4 that this was done with two different measures. The first one was the
percentage of conversation that the LLM reported had reached an agreement
after two messages, that is the receiver accepting the trade offer from the first
player. The percentages are shown in Table 3.

Table 3. Percentage of agreements reported by LLM after two messages.

Actions Agreements after 2 messages
Tones 2.93%
Offers 0.62%

The second measure was the number of conversations resulting in a non-zero
reward for at least one player. This corresponds to the first player receiving a
countertrade which she would deem beneficial and agree to trade after a hypo-



Table 4. Percentage of conversations ending with a payoff of zero for both players. All
other conversations are assumed to have reached an agreement following a hypothetical
third message.

Actions Zero Payoff Non-Zero Payoff
Tones 25.46% 74.54%
Offers 36.16% 63.84%

thetical third message. In Table 4, the percentage of trades resulting in a zero
payoff and non-zero payoff after three possible conversation steps are reported.

4.3 Trade Value Analysis

The final measures which were examined was the value of the trades. The per-
centage of conversations ending in at least one negative payoff as well as those
resulting in two negative payoffs are presented in Table 5. This corresponds to
either one or both players making an exchange which is not beneficial. The per-
centage of conversations where at least one player received a positive reward, as
well as the percentage of conversations where both players ended with a positive
payoff, are presented in the last two columns. Remember that a conversation
can include both a positive and a negative reward and the total percentage in
Table 5 will therefore not add to 100.

Table 5. Percentage of conversations ending with at least one negative payoff, two
negative payoffs, at least one positive payoff and two positive payoffs for both settings.

Actions ≥ 1 negative 2 negative ≥ 1 positive 2 positive
Tones 55.40% 10.35% 58.38% 10.27%
Offers 48.50% 5.35% 49.90% 6.47%

5 Discussion

This section provides a discussion of the results presented in Sect. 4. The results
are discussed in the same order as they are presented in Sect. 4. At the end of
this section the limitations are presented.

5.1 Effect of Game-Theoretic Solvers

Already after a few iterations, both implementations get a CFR Gain that is
larger than their NashConv, see Sect. 4.1. This indicates that the strategy found
is, approximately, an evolutionarily stable strategy. This means that following



the equilibrium strategy, on average, leads to a larger payoff for the player. This
is similar to the results Gemp et al. obtained for the tones action space [9].

Comparing the two approaches in Fig. 8, show that the overall appearance
and trend are very similar. Both CFR Gains converge within the first 50 it-
erations, which means that the gain from switching from the uninformed any
action to the CFR strategy is constant after 50 iterations. How much either
player would gain by switching from the CFR strategy to any other available
strategy, NashConv, is still decreasing even after 100 iterations. However, the
NashConv value is lower than the CFR Gain value already after a few itera-
tions. For both NashConv and CFR Gain, the values for the implementation
using offers as actions were higher than that using tones. This means that the
gain from switching from the any offer action to the CFR strategy is larger, but
also the gain switching from the CFR strategy to some other strategy is larger.
This difference is most likely due to the increased action space size of offers.
As the offers action space is more than six times larger, 25 actions compared
to 4 actions, the amount of available strategies is also larger. With a larger set
of strategies it is more likely that the optimized strategy will outperform the
baseline as it has more actions to choose from and can fine-tune decisions more
precisely. It also reduces the probability that the baseline any action is included
in the CFR strategy which would further increase CFR Gain. Regarding the
NashConv value, a similar argument can be made. With more actions to choose
from, the gain from switching from the CFR strategy to any other available
strategy is likely to be larger.

The ratio between CFR Gain and NashConv from the two scenarios in Fig. 9
show that they once again have similar trends. The value for the tones actions is
slightly higher, indicating a larger CFR Gain relative to NashConv compared to
the offers actions. As the action space is larger for the offers implementation, it
might require more iterations for the larger action space to reach a similar ratio
compared to the tones. Recall that CFR is an iterative self-play algorithm and
a larger action space could therefore lead to more iterations needed to reach the
same results.

5.2 Agreement Frequency

Table 3 shows the percentage of conversations that have reached an agreement
after two messages. For both approaches, the percentage is very low. This means
that the second player is very unlikely to accept the offer after the first message.
Based on real-world conversations, this seems like a reasonable result. Most
trades are usually not accepted after the first offer, and as LLMs are trained on
online text which probably includes real-world trades the LLM tends to mimic
this behavior. Another reason for the low agreement percentage after two mes-
sages is that the players could have the same endowment and/or valuation of
fruits. In this case, they are both interested in the same fruits and are there-
fore less likely to come to an agreement. In theory, there should not be a major
difference in agreement percentages after two messages for the two implemen-
tations. Player 1 is not prompted with any specific action to take, and for an



agreement to be registered, player 2 has to respond with a confirmation of the
agreement which will make the prompted action for player 2 insignificant. The
action space only has an influence in the case of a counterproposal from player
2 and should therefore not influence the agreement percentages after two mes-
sages. The difference between the implementations might be a coincidence that
the fruit valuation and endowment, or the first message generated, were more
favorable for agreements in the tones action space. As 32 games, and thus also
32 first messages, were generated this is not an unthinkable scenario. Another
reason for the difference could be that the offers implementation is prompted
with a trade to offer (in all messages apart from the action any offer). This
could make the LLM more likely to propose the trade it has been prompted
with, even if it is asked to accept the trade if it finds it favorable.

After a hypothetical third message, which is only an accept/decline decision
taken by the reward LLM, a majority of the conversations reached an agreement,
see Table 4. This metric cannot be directly compared with the values after two
messages from Table 3, as it is evaluated in a different way. Firstly, there is
no third message generated for the LLM to evaluate if the conversation has
reached an agreement. Instead the LLM that calculates the rewards is asked to
only calculate the rewards if the trade proposal is advantageous for the player
receiving the offer. If not, a payoff of zero should be given to both players.
Based on this approach, a conversation should never end with two negative
rewards after the third message as the LLM should then decline the offer and
apply a payoff of zero to both players. However, as one can see in Table 5,
there are conversations ending with two negative rewards. This indicates that
the LLM sometimes does not manage to correctly determine if the proposal is
advantageous or not.

From Table 4, one can see that 25% of the conversations ended in zero payoff
for both players using the tones actions. The same value for the offers action is
36%. It was expected that the offers actions would lead to more conversations
not ending in an agreement. As the LLM is prompted with an exact offer to
propose, it does not consider the proposal made by player 1 in the first message.
Using tones as actions however, allows the LLM to make a counter-offer based
on the first player’s proposal. The second offer is therefore more likely to be
accepted by the LLM during reward calculations when using tones as actions.

5.3 Trade Value Analysis

The final results to discuss are the outcome of the trades. In Table 5 one can see
the percentage of different outcomes for the conversations. The implementation
with offers as actions ended in a zero payoff for both players more often than
the tones actions, as can be seen in Table 4. Because of this, the values for the
offers actions are generally lower than those for tones actions in Table 5. Notably,
the percentage of both 2 negative and 2 positive outcomes are relatively large
for tones actions compared to offers. As discussed in the previous section, as
the tones actions have more freedom regarding what offer to suggest, it is likely
that it can propose a more advantageous counter-offer based on the first player’s



message. This is most likely the reason for the higher percentage of conversations
ending with 2 positive rewards.

6 Limitations

The largest limitation is concerning the computational power of the LLM calls.
As the necessary resources to run the LLM locally over a reasonable time frame
was not available, external LLM calls had to be used. Even if it resulted in
quicker LLM responses, it limited the number of games that could be ran due
to the price of buying LLM calls. It also limited the length of the conversations
for the same reason. Conversations with four messages with all 26 offers action
was not feasible, neither from a time nor budget perspective.

Since LLM text generations are stochastic, the same prompt can produce
different outputs across multiple runs. As action outcomes depend on these gen-
erated texts, their evaluation is influenced by this randomness. This issue can be
reduced by increasing the number of LLM seeds per action, which allows averag-
ing over more generated responses. However, due to time and budget constraints,
two seeds per action were used in this study. To keep the action space with offers
at a reasonable size, the game set-up was limited to a maximum of two fruits
per type. This meant that the players often had similar fruit endowments. To
create more variety in the negotiations, both more fruits of each type as well as
more types of fruits could be added in the future.

7 Conclusion

This paper examined how different action spaces affect large language models’
performance when steered with game-theoretic solvers. This was investigated
through a negotiation game previously employed by Gemp et al. [9]. First, the
game was re-implemented together with the previously used action space of
tones. A new action space was then implemented which utilized offer combina-
tions as actions. The two implementations were compared through a variety of
metrics, including (i) whether the optimized strategy converged to an approx-
imate evolutionarily stable strategy, (ii) the percentage of agreements reached,
and (iii) the final outcome of the trades.

The results showes that both implementations, tones and offers, meet the ap-
proximate conditions for an evolutionarily stable strategy. This proves that using
either action space, the LLM benefits from following the guidance of the CFR
strategy and both actions have proven useful and interpretable by the LLMs.
The implementation using tones as actions reaches more agreements compared
to using offers as actions. This difference is notable after a hypothetical third
message where the tone actions reached almost 10 percentage points more agree-
ments than the offer actions. This is likely because the tones actions are free to
respond with any trade-proposal it finds fitting. It could therefore tailor the
proposal to better respond to the initial message from the first player. The im-
plementation using offers as actions is given an offer to propose in the prompt.



Therefore, it does not take the first player’s offer into account when deciding
what counter-proposal to suggest.

From the results in this paper, the LLM seems to calculate the correct payoff
for a vast majority of conversations. However, it is not flawless, as both im-
plementations report cases where both players receive a negative reward which
should instead have been reported as a non-agreement by the LLM. This indi-
cates that there are ways to improve and further deepen the work of this study,
as discussed in Sect. 7.1. The overall results and discussion suggest that both
implementations show similar performance and that the choice of action space
does not affect the LLMs significantly. To conclude, both using tones and offers
as actions work when finding optimal strategies using game-theoretic solvers.

7.1 Future Work

For future research, longer conversations should be investigated. Ideally, the
conversations would be able to run until an agreement is reached or until they
decide not to make a trade. This would require more computational power, but
as LLMs get more advanced and effective, this should be feasible in the future.
The set of available fruits and the number of each type of fruit could also be
increased in future studies to create better opportunities for favorable trades.

Apart from modifications to this specific game, it would also be of interest
to examine different negotiation topics. The negotiation capabilities of LLMs
could be compared between domains to investigate in which type of negotiations
the LLM performs best. Another interesting direction would be to perform ne-
gotiations between LLMs and humans, using a similar setup to this game, and
examining it from a game-theoretic perspective. Previous studies have shown
that humans do not always act rationally in decision games, but rather choose
to punish their opponent [10,12]. This would provide an interesting evaluation
of the LLMs.

Future research could also include other methods to improve the reasoning.
Using game-theoretic solvers is only one way to enhance the LLMs’ capabilities.
Using chain-of-thought, or providing feedback to the LLM, are two examples
of methods that have shown promising signs [33,8]. These methods could be
examined through similar negotiation games and compared to the CFR approach
used in this paper.
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