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Abstract. In adversarial contexts, success often hinges on understand-
ing not just what the opponent knows, but what they believe and how
they revise those beliefs. This study investigates how large language mod-
els can be made more resilient and strategically capable by modeling the
opponent’s reasoning using Bayesian belief revision. By formalizing ne-
gotiations as Bayesian games of incomplete information, it is shown that
models equipped with belief revision are better able to counter decep-
tive or willful-thinking adversaries. The findings underscore the role of
second-order reasoning in adversarial settings, with implications for so-
cial manipulation in the context of, for example, online communication
and intelligence gathering.
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1 Introduction

The success in adversarial and strategic interactions does not only depend on
factual information, but also on what agents and their opponents believe to
be true [4]. This becomes particularly important when encountering willful-
thinking opponents; opponents who form beliefs and adapt their strategies ac-
cordingly. Strategic interactions between humans—such as social manipulation
and bargaining—have long been of interest [6,16,22,28]. The rise and ability of
large language models (LLMs) to generate human-like language and behavior
has however sparked interest in developing LLM-based agents, with the aim to
match—or even exceed—human capabilities [19,33].

Today’s LLMs’ ability to reason and act strategically, however, remains lim-
ited [15,35]. Efforts have been made to enhance their performance, such as teach-
ing the model a suitable chain-of-thought [27,32,34], fine-tuning it on negotiation
data [7,11,20], or utilizing optimal personality traits [5,17,24]. Some of these ap-
proaches have to some extent been successful, but much is yet to be done.
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The idea of utilizing game theory to make LLMs more strategic in negotia-
tions, was introduced by Gemp et al. in 2024 [10]. In their work, negotiations
were formalized as games and a finite set of strategies were explored to find suc-
cessful ones. Equilibrium strategies were found using algorithmic game-theoretic
solvers and prompted to LLMs to make them more strategic. To the best of our
knowledge, no further research has been published.

This paper extends the work by Gemp et al. with revision of beliefs of private
information; an idea emerged from Harsanyi’s solution of games with incomplete
information [12,13,14]. The obtained results offers insights into how revision of
beliefs in game theory can be applied to develop strategic language models,
specifically in negotiations. Hence, the purpose of this paper is to explore how to
make LLMs more strategic, and examining to what extent revision of beliefs can
further improve LLM performance by answering the following research question:
To what extent can strategic LLM reasoning gain from revision of beliefs of the
opponent’s private information?

The rest of this paper is organized as follows. Section 2 presents the theo-
retical foundations of the paper. The methodology used to answer the research
question is described in Sect. 3. Section 4 presents the results and Sect. 5 pro-
vides a discussion of these results, together with limitations of the work. Finally,
the conclusions and proposed future work are presented in Sect. 6.

2 Theory

This section outlines the theoretical foundations relevant to the methods and
analysis presented in this work.

2.1 Game Theory

Game theory studies interactions between rational decision-makers, whose out-
comes depend on others’ actions [25,26]. Interactions are modeled as games using
mathematical models to determine optimal strategies for decision-makers. As
interactions, many different types of games exist—categorized by the degree of
cooperation between players, the amount of information available to them, the
timing of their actions, and the structure of game outcomes. Cooperative games
allow binding agreements, while non-cooperative games do not. Complete infor-
mation games assume all players know the game structure, available strategies,
and payoff functions; incomplete information games involve unknown elements
modeled through beliefs or probabilities. Perfect-information games provide full
knowledge of past moves at each decision point, unlike imperfect-information
games, where some actions are hidden. In simultaneous games, players act with-
out knowing others’ choices; in sequential games, moves occur in turn with possi-
ble knowledge of prior actions. Zero-sum games involve strictly opposing payoffs;
non-zero-sum games allow mutual gains.

Here, we provide a more detailed explanation of complete and incomplete
games, which form the primary framework for the methodology employed in this



paper. In games of complete information, all players have information on (i) all
available actions of all players, (ii) all possible outcomes, (iii) which combination
of actions will yield which outcome, and (iv) the preferences, and thereby payoffs,
of all players [31]. This information must be common knowledge, meaning that
all players know it, and know that all others know it, recursively. Games are
of perfect information if players observe all past actions; they are of imperfect
information if any action remains unknown [25,31].

One solution of games of complete information is given by the Nash equilib-
rium. The solution requires that (i) each player is playing their best response,
given their set of beliefs, and that (ii) each player’s set of beliefs are correct [31].
It is defined as follows:

Definition 1. A strategy profile σ∗ = (σ∗
1 , σ

∗
2 , . . . , σ

∗
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The NE is said to be a pure-strategy NE if the strategy profile only contains
pure strategies and a mixed-strategy NE if the strategy profile contains mixed
strategies [21]. In a Nash equilibrium, no player has an incentive to unilater-
ally deviate from their strategy [25]. All finite games have at least one Nash
equilibrium [21].

A game lacking complete information is termed a game of incomplete infor-
mation, where at least one player is unaware of the actions, outcomes, payoffs,
or private information of others [12,31]. John Harsanyi addressed this by intro-
ducing player types and beliefs over these types, reformulating such games as
ones with complete but still imperfect information. Each player type encodes a
set of characteristics—available actions, outcomes, payoffs, and information [12].
The type of player i is denoted θi ∈ Θi, where Θi is the available types of player
i [8,25]. It is assumed that each player knows their own type but not that of
their opponent.

Players can, however, have a belief over which type their opponent is [12].
Beliefs are represented by a probability distribution over opponents’ possible
types and will henceforth be denoted µi(θ−i) for player i. Players can also update
these beliefs throughout the game using Bayes’ rule [8]. Given a prior belief
distribution µi(θ−i) and an event e, the posterior belief is:

µi(θ−i | e) =
µi(e | θ−i)µi(θ−i)

µ(e)
.

Bayesian updates can be applied to several different distributions. In this paper,
beliefs were maintained and updated using a Dirichlet distribution as described
later.

Given types and beliefs over types, Harsanyi then defined the perfect Bayesian
equilibrium (PBE) as a solution to games of incomplete information [13]. Here,
each player starts with a system of beliefs, and updates these throughout the



game using Bayes’ rule. Equilibrium strategies are determined, given the current
system of beliefs, at each step in the game. Formally, the solution is defined as
follows [25].

Definition 2. Let σ ∈ ∆S be a mixed-strategy profile and µ ∈ M a system
of beliefs. The strategy profile σ∗ = (σ∗

1 , σ
∗
2 , . . . , σ

∗
n) is a perfect Bayesian

equilibrium (PBE), given a system of beliefs µ, if it satisfies the following:

1. Bayesian consistency: the system of beliefs µ is updated correctly using Bayes’
rule, and

2. Sequential rationality: all players are sequentially rational, meaning that they
all play their best response, given their beliefs µ.

Bayesian updates over discrete outcomes are commonly performed using a
Dirichlet prior with a categorical likelihood [3]. In this setup, beliefs are rep-
resented by a categorical distribution, with a Dirichlet distribution used for
maintaining and updating these beliefs. The following outlines the update pro-
cess when the opponent has K possible types. The Dirichlet probability density
function is given by

f(θ1, θ2, . . . , θK | α) =
1

B(α)

K∏
k=1

θαk−1
k ,

where θk is the probability of type k; α = (α1, α2, . . . , αK) with αk > 0 are the
concentration parameters for each corresponding type k; and B(α) is a normal-
izing constant. If no prior belief exists, the probability distribution is initialized
at uniform by setting all concentration parameters to 1: α = (1, 1, . . . , 1) [9].
Bayesian updates are then made by adjusting the concentration parameters ac-
cording to observed events. For each event e that points to type k, the corre-
sponding concentration parameter, αk, is incremented by one:

αk ← αk + 1.

The belief that the opponent is of type k thus increases. The distribution is
continuously updated throughout the game, as a player observes new events.

The Dirichlet distribution is a conjugate prior to the categorical distribu-
tion [3]. That is, the Dirichlet has the same parametric form as the categorical [9].
Due to this property, the belief can be translated to a categorical distribution:

p =
1∑
k αk

(α1, α2, . . . , αK) ,

where α = (α1, α2, . . . , αK) are the current concentration parameters and p =
(p1, p2, . . . , pK) is the probability of each corresponding type k. Through this con-
version, the belief—maintained and updated through the Dirichlet distribution—
can be applied to the current game as a believed probability of the opponent
being of each type k = 1, 2, . . . ,K.



2.2 Algorithmic Game Theory

Some games are too complex to be solved analytically. For these games, algo-
rithmic game theory (AGT) is instead used [23]. Algorithmic game theory is the
intersection of game theory and computer science, where algorithms are used
to find approximate solutions to games—such as approximated Nash equilib-
ria. These algorithms are often referred to as solvers. The solver used here was
Counterfactual Regret Minimization.

Counterfactual Regret Minimization (CFR) is an algorithmic game-theoretic
solver for games of imperfect information, developed by Zinkevich et al. [36]. CFR
is used to find approximated Nash equilibria for zero-sum two-player games on
extensive form. Equilibrium strategies are found through iterative self-play over
the game tree, with the objective to minimize the cumulative regret of decisions
made by minimizing the regret at each information set.

2.3 Evaluation Metrics

Here, two of the evaluation metrics used in the paper are presented: CFR Gain
and NashConv. Assume that we want to compare two strategies, σ and σCFR,
where σCFR is an equilibrium strategy found by CFR. We consider two scenar-
ios [10]:

1. In the first scenario, both players select σ. CFR Gain measures how much
either player would gain by switching to σCFR.

2. In the second scenario, both players select σCFR. NashConv measures how
much either player would gain if they switched to any other strategy.

If CFR Gain is greater than NashConv, the CFR equilibrium strategy approxi-
mately satisfies the condition of an evolutionarily stable strategy (ESS) [10,30],
which implies that the CFR equilibrium strategy (approximately) is a Nash
equilibrium [29].

3 Methodology

This section outlines the methodology used to address the research question. It
begins with the negotiation simulation environment and game setup, followed
by an explanation of how LLMs are guided using game-theoretic solvers, both
with and without belief revision. Finally, the evaluation metrics are described.

3.1 The Fruit Trading Game

Negotiation games were simulated using chat_games in OpenSpiel, developed
by Google DeepMind [10,18]. Each game consists of a negotiation between two,
or more, players. Negotiations are held in natural language over a finite num-
ber of steps, similar to an email conversation. Games are played and evalu-
ated by an LLM. Here, the model Llama-3.3-70B-Versatile was employed for



Alice’s private information

Fruit Endowment:
apples: 1
bananas: 1
oranges: 2

Fruit Valuations:
apples: 3
bananas: 1
oranges: 2

Bob’s private information

Fruit Endowment:
apples: 1
bananas: 2
oranges: 2

Fruit Valuations:
apples: 4
bananas: 3
oranges: 1

Fig. 1. Example initialization of private information for players Alice and Bob.

all tasks; chosen for its strong performance in advanced language understanding
and problem-solving tasks [1]. Notably, the LLM was not fine-tuned for specific
tasks, but simply prompted differently to perform them.

Multiple negotiation games are available in chat_games; here, the fruit trad-
ing game was utilized. In the fruit trading game, each player starts with a
private endowment of fruits and a private valuation over each available fruit.
Here, the available fruits were apples, bananas, and oranges. First, three fruit
endowments and three fruit valuations were generated. Endowments were ran-
domly generated from U{1, 2} for each fruit and valuations were randomly gen-
erated from U{0, 4} for each fruit. Each player was then assigned one endowment
and one valuations out of the available ones. Sampling endowments and valua-
tions from a smaller set of available ones increases the likelihood of players being
assigned the same endowment and/or valuations in the game. Notably, players
were not aware of this sampling setup when playing the game. Each player was
also assigned a name, randomly generated from a list of names. An example
initialization of private information in the fruit trading game, for players Alice
and Bob, is shown in Fig. 1.

As part of the initialization, an initial message from player 1 is also generated
by an LLM. The LLM was prompted with instructions about the game, its role
and what it should respond with; examples on how to initialize the conversation;
and the private information of player 1. Given this information, it was asked to
initialize the conversation by proposing a trade.

Post initialization, players negotiate a trade of fruits until an agreement is
reached, or when the negotiation reaches a pre-defined maximum number of
messages. Here, the maximum number of messages was set to 4 (2 messages
per player). At each step of the negotiation, an LLM was asked to generate
a message in response to the previous dialogue. The LLM was prompted with
instructions about the game, its role and what it should respond with; examples
on how to respond; the dialogue so far; and the private information of the current
player. Given this information, it was asked to (i) accept the trade; (ii) reject the
negotiation altogether; or (iii) counter-propose an alternative trade. An example
of a dialogue with an initial message and a counter-proposal is presented in
Fig. 2.



############################
Trade Proposal Message:
from: Alice
to: Bob
############################

Hi Bob,

I would like to trade you 1 banana for 1 apple.

Would you like to trade with me?

Best,
Alice

############################
Trade Proposal Message:
from: Bob
to: Alice
############################

Hi Alice,

Thanks for reaching out. I really like my apples so I am hesitant to give them up.
Would you be willing to take a few oranges instead? I would like to trade you 2
oranges for 1 banana.

Does that work?

Best,
Bob

Fig. 2. Example dialogue between players Alice and Bob, with an initial message and
a counter-proposal.

Evaluation is carried out with the help of LLM calls during and after the
game, as visualized in Fig. 3. Whether an agreement has been reached or not
was evaluated at every step of the negotiation using two termination LLM calls.
First, the LLM was asked to summarize the dialogue. The dialogue summary
was then included in the prompt of the next LLM call, where the LLM was
asked to determine if an agreement has been reached or not.

If an agreement was reached, the payoff of each player was calculated using
three payoff LLM calls. First, the LLM was asked to summarize the agreed trade
of what each player gives and receives in return, given the dialogue summary.
Then, the LLM was asked to calculate the payoff of a player using the trade sum-
mary and the private information of that player. Finally, the LLM was asked to
extract the payoff from the calculation. The payoff of each player was calculated
by the difference between the value of the player’s fruit basket after compared
to before the trade. If no trade was made, both players received a payoff of 0.
Setting the payoff to 0 differs from the original implementation, in which the
LLM calculated payoffs even when no agreement was reached. This modifica-
tion reduced the number of LLM calls—and thus the computational cost of the
simulations—and also lowered the risk of errors in cases where no trade was
made.

3.2 Steering LLMs with Game-Theoretic Solvers

To steer LLMs with game-theoretic solvers, the implementation by Gemp et
al. was utilized [10]. Minor modifications were made to the prompts—such as
correcting spelling errors and clarifying phrasing—while preserving the original
content of each prompt.



Initialize names and private information

Generate an initial message*

Determine if an agree-
ment has been reached*

Check if the maximum number
of messages has been reached

Generate a message*

Calculate the pay-
off of each player*

Set payoff of each player to 0

Tone Tone + Beliefs*

False

False

True

True

Gemp et al. [10] This paper

Fig. 3. Illustration of the game setup and LLM calls (*) made in the fruit trading game.
Gray boxes are needed in the setup, whereas the red and blue boxes are additional
prompting to steer LLMs.

First, the fruit trading game was played using a finite set of pure strategies
to build a game tree. In accordance with Gemp et al., the actions used were
different tones from a set of four available ones: {assertive, calm, submissive,
any}. Actions were applied by prompting the LLM to use a tone as follows, at
each step of the negotiation.

Tone: Use {tone} tone.

Here, the LLM was prompted to use an assertive, a calm, a submissive, or
any tone. Note that any tone refers to the LLM choosing a random tone, not
necessarily limited to the three specified ones. The fixed initial message was
generated by prompting the LLM to use one of the four available tones.

To handle the stochasticity of LLMs and not let the results depend on specific
text generations, two different LLM seeds were used. That is, for each history
and action, two responses were generated. The resulting game tree is illustrated
in Fig. 4, where the game initialization is illustrated as a Nature node (◦); choices
of tones are illustrated as decision nodes (•); and LLM seeds are illustrated as
chance nodes (□). For each terminal node where an agreement was made, payoffs
were calculated. When no agreement was reached, the payoff was set to 0 for
both players. Here, 30 game initializations were made. Each game initialization
resulted in a separate subgame—enclosed by a dashed line in the figure—to be
solved with CFR.
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Fig. 4. Illustration of the game tree, with a Nature node for game initialization (◦); de-
cision nodes for choice of tone (•); and chance nodes for LLM seeds (□). Each subgame—
enclosed by a dashed line—was solved independently for equilibrium strategies in the
corresponding subgame.

Each subgame was then solved for equilibrium strategies using the CFR solver
in OpenSpiel and over 1000 iterations. For each subgame, the found equilibrium
strategy was compared to the uninformed baseline of always using any tone.
Following the notation by Gemp et al., the baseline strategy is denoted σLLM

and the CFR equilibrium strategy is denoted σCFR. Evaluation was made as
described in Sect. 3.4.

3.3 Steering LLMs with Game-Theoretic Solvers and Revision of
Beliefs

In order to steer LLMs with game-theoretic solvers and revision of beliefs, the
framework by Gemp et al. was modified to include revision of beliefs. The ad-
dition is illustrated by the blue box in Fig. 3 and includes maintaining and
updating a belief over the opponent’s private information throughout the game.



(αa, αb, αo) = (1, 1, 1)

(αo, αb, αo) = (1, 1, 2)

(pa, pb, po) = (0.24, 0.25, 0.5)

Belief that the opponent wants oranges

LLM guesses that the op-
ponent wants oranges,

given the dialogue history

Fig. 5. Illustration of how revision of beliefs was performed. Starting with a uniform
belief over what the opponent wants, each player updated their belief after each received
message. Updates were made with the help of an LLM prompted to guess which fruit
the opponent wants, given the dialogue history. The belief was then applied when
generating the response, through prompting the LLM with the belief.

To model and update beliefs, Bayesian updates were made over what fruit the
opponent wants, using a Dirichlet distribution (see Sect. 2.1). The distribution,
Dir(α), was set to be over apples, bananas, and oranges with concentration
parameters α = (αa, αb, αo) corresponding to each fruit. The distribution was
initialized at uniform by setting α = (1, 1, 1).

The belief of each player was then updated every time they received a mes-
sage, as illustrated in Fig. 5. Updates were made with the help of an LLM, asked
to guess which fruit the opponent wants, given the dialogue history. The LLM
was prompted with instructions about the game, its role and what it should
respond with; examples on how to guess which fruit the opponent wants; and
the dialogue history. Given this information, it was instructed to only respond
with a guess of what fruit the opponent wants: apples, bananas, or oranges. For
each guess made by the LLM on fruit k, the belief was updated by incrementing
the corresponding concentration parameter, αk, by one.

Beliefs were then translated to the categorical distribution p = (pa, pb, po)
at each step of the negotiation and applied by prompting the LLM with which
fruit(s) the opponent most likely wants, according to the current belief. The
LLM was prompted to use a tone, together with the current belief, as follows.

Tone: Use {tone} tone.
Belief: You believe that {opponent’s name} wants {fruit(s)}.

Again, 30 game initializations were made. Each game initialization was done
by generating an initial message with a randomized tone out of the four available
ones and without beliefs. Each game initialization was then played using each
available pure strategy, together with revision of beliefs, to build a game tree. The



same four tones and two LLM seeds were used as in the previous implementation
(see Sect. 3.2). For the action to use any tone, no belief was applied in order to
keep the baseline uninformed.

Each subgame was then solved for equilibrium strategies using the CFR solver
in OpenSpiel over 1000 iterations. The CFR equilibrium strategy found when
using revision of beliefs is denoted σCFR−B .

3.4 Evaluation

Here, the metrics used to evaluate the results are presented. First, the perfor-
mance of belief updates and outcome of negotiations while building the game
trees is examined. Then, the effect of incorporating revision of beliefs on the
resulting CFR strategy is evaluated.

Performance of Belief Updates The performance of belief updates is mea-
sured by calculating the percentage of correct guesses made by the LLM asked to
guess what the opponent wants, at each step of the negotiation. Here, a correct
guess is defined as the LLM responding with the fruit which the opponent valued
the highest.

Number of Agreements Reached How addition of revision of belief changed
the outcome of negotiations is then measured. The percentage of agreements
reached is measured at each step of the negotiation, at the corresponding level
in the game tree.

Value of Trades Given that an agreement was reached, what trade was made
is then examined. First, the percentage of positive payoffs for player 1, player 2,
and both players is examined; to measure if the trade made was beneficial and
for who. The same is then done for the percentage of negative payoffs; in order
to measure when a trade was disadvantageous and for who.

Effect on the Resulting CFR Strategy To determine whether LLMs be-
come more strategic under the influence of game-theoretic solvers, evaluation
is conducted equivalent to the work by Gemp et al. [10]. CFR strategies are
evaluated using CFR Gain and NashConv over 1000 CFR iterations, where the
mean and standard deviation are calculated for each metric. To evaluate whether
LLMs steered with game-theoretic solvers and revision of beliefs perform better
than those steered only with game-theoretic solvers, the ratio CFR Gain over
NashConv is also calculated over 1000 CFR iterations. The mean and standard
deviation of the ratio is calculated for each iteration.

4 Results

This section presents the experimental results from Sect. 3.



Table 1. Percentage of correct guesses made by the LLM after message 1 to 3, when
making guesses regarding the opponent’s most valued fruit.

Message Correct Count Total Percentage

1 46 52 88.46%
2 425 858 49.53%
3 11804 14568 81.03%
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Fig. 6. Percentage of agreements reached per message, when prompting the LLM with
tone or tone and beliefs.

4.1 Performance of Belief Updates

First, it was examined whether the LLM could make correct guesses regarding
which fruit the opponent player wants, given the dialogue history. The percentage
of correct guesses after messages 1 to 3 are presented in Table 1. Note that the
guess made after each message was used to update the belief and applied in the
following message generation. That is, the guess after message 1 was used to
update the belief of player 2, and the belief was applied to generate the response
from player 2 in message 2, and so on.

4.2 Number of Agreements Reached

Whether using revision of beliefs changed the number of agreements, and thus
trades made in the negotiation, was then examined. Fig. 6 presents the percent-
age of agreements reached in messages 1 to 4, when prompting the LLM with
tone or tone and beliefs. Note that at least two messages, in theory, are needed
for an agreement to be reached between two players.



Table 2. Percentage of positive trade payoffs per message for player 1, player 2, and
both players, when prompting the LLM with tone or tone and beliefs.

Prompting with Message Player 1 Player 2 Both

Tone 3 57.06% 59.81% 34.09%
Tone + Beliefs 3 58.92% 77.44% 46.13%

Tone 4 55.98% 48.81% 24.01%
Tone + Beliefs 4 54.01% 67.02% 33.13%

Table 3. Percentage of negative trade payoffs per message for player 1, player 2, and
both players, when prompting the LLM with tone or tone and beliefs.

Prompting with Message Player 1 Player 2 Both

Tone 3 32.18% 31.10% 11.84%
Tone + Beliefs 3 25.59% 12.79% 5.84%

Tone 4 27.30% 32.30% 6.72%
Tone + Beliefs 4 28.72% 16.92% 3.28%

4.3 Value of Trades

Given that a trade was made, it was then examined whether using revision of
beliefs changed the value of trades made. Table 2 presents the percentage of
positive trade payoffs for player 1, player 2, and both players for messages 3
and 4. The corresponding values for the percentage of negative trade payoffs are
presented in Table 3.

4.4 Effect on the Resulting CFR Strategy

Lastly, the effect of finding equilibrium strategies using CFR on each subgame
tree was examined—both with and without revision of beliefs. The resulting CFR
Gain and NashConv are presented in Fig. 7 for CFR iterations 1 to 50 (left) and
for CFR iterations 1 to 1000 (right). The ratio CFR Gain over NashConv is,
furthermore, presented in Fig. 8 for CFR iterations 1 to 50.

5 Discussion

In this section, we discuss the results presented in the previous section, high-
lighting their implications.
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5.1 Performance of Belief Updates

The LLM could make correct guesses regarding the opponent player’s most val-
ued fruits with varying success, given the dialogue history (Table 1). The per-
centage of correct guesses made by the LLM were calculated to around 90%
following message 1, around 50% following message 2, and around 80% following
message 3. It was easier for the LLM to guess what fruit player 1 valued the
highest (following messages 1 and 3), than what player 2 valued the highest (fol-
lowing message 2). The success of guessing which fruit player 1 valued the highest
also decreased throughout the game (from around 90% following message 1 to
around 80% following message 3).

One potential explanation of the varying success in guesses is that the whole
dialogue was sent in, and that the guess made might have been more dependent
on the first message in the dialogue than the last. Notably, the guesses were
not solely dependent on the first message in the dialogue; otherwise, the guesses
after messages 1 and 3 would have been equally successful.

Another potential explanation is that player 1 was the one initiating the
conversation, which may have given away strong clues regarding what player 1
wanted and led the conversation to be over the fruits which player 1 was most
interested in. This explanation is supported by that player 1, without any prior
knowledge or belief what the opponent wanted, was asked to initialize the con-
versation given their own fruit endowment and valuations. Due to this, player 1
might have initiated the conversation asking for fruits they valued highest.

As the guesses were used to update each player’s belief about what their
opponent wants, more correct guesses led to beliefs that were more closely aligned
with the opponent’s true valuations. Given that the guesses following messages
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1 and 3 were more correct (90% and 80% correct guesses), than those following
message 2 (50% correct guesses), it can be concluded that player 2’s beliefs
were more accurately updated than those of player 1. This difference in belief
update success influenced the course of negotiations, as discussed in the following
sections.

5.2 Number of Agreements Reached

As shown in Fig. 6, the percentage of agreements reached increased as a func-
tion of the message number both with and without, revision of beliefs. That
is, the longer the negotiation continued, the more agreements were reached. As
expected, no agreements were reached in message 1; as at least two messages, in
theory, are needed for an agreement to be made between two players. In mes-
sage 2, fewer than 1% of messages resulted in an agreement, when prompting the
LLM with tone or tone and beliefs. For message 2, no difference in percentage
of agreements reached was observed between the two implementations.

For messages 3 and 4, prompting the LLM with tone and beliefs led to a small
increase in percentage of agreements reached, compared to prompting it solely
with tone. The difference was also more prominent for message 4, than for mes-
sage 3. These results suggest that incorporating revision of beliefs contributes to
an increased number of agreements reached later in a conversation. Whether this
trend continues in longer conversations remains a question for future research.

5.3 Value of Trades

In general, trades were more beneficial than not for players, as they resulted is
more positive trade payoffs (Table 2) than negative ones (Table 3). That is, the
LLM was able to make more trades that were beneficial than not.



The number of trades that were beneficial for player 2 increased, with the
addition of revision of beliefs. For player 2, the percentage of positive trade pay-
offs increased from 59.81% to 77.44% for message 3 and from 48.81% to 67.02%
for message 4 (Table 2). The percentage of negative trade payoffs also decreased
from 31.10% to 12.79% for message 3 and 32.30% to 16.92% for message 4 (Ta-
ble 3).

Notably, the same trend was not shown for player 1. The differences in per-
centage of positive trade payoffs were small and regarded as insignificant (Ta-
ble 2). The same was concluded about the percentage of negative trade payoffs
for player 1 and message 4 (Table 3). The only significant difference for player
1 was the percentage of negative trade payoffs for message 3, which decreased
from 32.18% to 25.59%. This result suggests that player 1 was able to turn down
more unfavorable trade proposals with revision of beliefs, than without it.

The number of trades that were beneficial for both players moreover in-
creased, with the addition of revision of beliefs. The percentage of trades which
resulted in a positive trade payoff for both players increased from 34.09% to
46.13% for message 3 and from 24.01% to 33.13% for message 4 (Table 2).
The corresponding percentage of negative trade payoffs for both players also
decreased from 11.84% to 5.84% for message 3 and from 6.72% to 3.28% for
message 4 (Table 3).

Given that revision of beliefs was used, the resulting trades were more bene-
ficial for player 2 than for player 1. Both the percentage of positive trade payoffs
were higher (77.44% compared to 58.92% for message 3 and 67.02% compared to
54.01% for message 4) and the percentage of negative trade payoffs were lower
(12.79% compared to 25.59% for message 3 and 16.92% compared to 28.72% for
message 4) for player 2 compared to player 1, as presented in Table 2 and 3
respectively.

The difference in the number of beneficial trades for player 1 and 2 can be
explained by the difference in success of belief updates (see Sect. 4.1). As belief
updates were more successful for player 2, than for player 1, player 2 was more
accurately informed about what their opponent wanted. With more accurate
beliefs, player 2 could make more informed decisions; which may have resulted
in the higher percentage of beneficial trades for that player.

5.4 Effect on the Resulting CFR Strategy

Whereas the incorporation of revision of beliefs increased the percentage of agree-
ments made and the value of trades made for player 2 and both players, the
improvement did not transfer to the equilibrium strategies. As shown in Fig. 7,
using CFR to find equilibrium strategies resulted in a higher CFR Gain than
NashConv both with (σCFR−B), and without (σCFR), revision of beliefs. That
is, it was possible to find approximate evolutionarily stable strategies with CFR
in both cases, that perform better than the uninformed baseline. ESS was also
quickly found for each subgame, as only around 100 CFR iterations were needed
for both implementations (see Fig. 7).



The difference between using revision of beliefs and not was, however, not
significant for the found equilibrium strategy; as shown by the ratio CFR Gain
over NashConv in Fig. 8. That is, when combined with game-theoretic solvers,
revision of beliefs did not further enhance the LLM performance in the negotia-
tion. This does not mean that revision of beliefs cannot make a difference, but
that the difference was not large enough to make a difference in the resulting
CFR strategy. The difference may, however, become more prominent in more
complex negotiations, than the one utilized here.

As mentioned in Sect. 4 and illustrated in Fig. 4, the subgame—and not
the entire game—was solved for equilibrium strategies. That is, for each game
initialization, strategies were explored and equilibrium strategies were found
independently of each other. Even though the private information—and thus
payoffs—of each player was not common knowledge, this information could im-
plicitly leak when solving the subgame for equilibrium strategies using CFR. The
private information was implicitly learned as CFR found equilibrium strategies
using these payoffs. For this information to remain private, CFR should not be
allowed to iterate too many times over each subgame tree. How many iterations
that can be made for the private information to remain private, however, remains
a question for future research.

Solving the entire game tree may yield different results than those presented
here. Due to time constraints, no such implementation was made. Whether solv-
ing the entire game tree yields a different result regarding the addition of revision
of beliefs, thus remains a question for future research.

5.5 Limitations

The greatest challenge in this study was the number of LLM calls required to per-
form negotiation simulations to build the game tree. Although the codebase was
modified to reduce the number of LLM calls needed, simulations were still com-
putationally expensive after these modifications. To handle this issue, LLM calls
were made externally. While this solved the problem of computational power,
using external LLM calls became financially expensive, which again limited what
was possible and how much could be explored. For this reason, the study was
limited to one negotiation domain with 30 game initializations, and a maximum
of four messages in each subgame. For the same reason, only one LLM and one
belief implementation was tested.

Moreover, the dialogue generation and evaluation relied entirely on the reli-
ability of LLM outputs. For generation, this meant the LLM could convey tone
appropriately; for evaluation, it involved correctly identifying agreements and
calculating payoffs. While Gemp et al. conducted such reliability analysis [10],
this study did not, due to time constraints—–though such validation would have
strengthened the findings. The deployed model’s strong benchmark performance
(e.g., MATH, MMLU) relative to those used by Gemp et al. [1,2,10] was consid-
ered sufficient to trust its reliability.

As previously noted, only individual subgames—not the full game tree—were
solved and evaluated for equilibrium strategies, each tested on the subgame it was



derived from. It was not assessed whether strategies generalized across subgames,
which would validate the CFR solver’s ability to find domain-level optimal strate-
gies. Gemp et al. faced the same limitation [10]. Evaluating generalization to new
game initializations would further support such analysis.

Finally, the experimental setup features a simplified and synthesized negotia-
tion domain. While the fruit trading game enables initial testing of belief revision
in strategic interactions, it lacks the complexity and uncertainty in real-world
adversarial scenarios. This limitation may affect the generalization to more com-
plex negotiation domains. Evaluation of the framework in more realistic domains
should therefore be made.

6 Conclusions

To conclude, incorporating revision of beliefs increased the number of agreements
reached and the value of trades, given that beliefs were accurately updated. When
solving the resulting negotiation game for equilibrium strategies using Counter-
factual Regret Minimization (CFR), evolutionarily stable strategies were found
both with and without revision of beliefs. However, revision of beliefs did not fur-
ther improve LLM performance when combined with CFR. Results suggest that
belief revision can enhance the strategic capabilities of LLMs, but also indicate
that CFR alone is sufficient to produce evolutionarily stable strategies.

Future work should focus on finding and evaluating solutions for different
types of games; such as games with more than two players, longer and more
complex negotiations, and games where asymmetries in available actions and
preferences are found. Different ways to solve games and whether solutions gen-
eralize across domains should also be examined. A condition for game theory
to become a useful tool, however, requires that LLMs become more efficient to
use—to be able to build game trees. Since building game trees is computationally
expensive, Bayesian belief revision could also offer a promising solution on its
own. Future work should focus on how to perform revision of beliefs and what
to maintain beliefs over.
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