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Abstract—We consider the problem of how to move active
sonars unpredictably in pursuit of a stealthy underwater vehicle.
The search problem is formalized as an imperfect-information
game played on a discretized nautical chart with fine-grained
hydroacoustics. The game is solved approximately using public
belief states and self-play following a game-theoretically sound
approach. The solution method is shown empirically to approxi-
mate the Nash equilibrium in a restricted scenario small enough
to be solvable with tabular methods from algorithmic game
theory.

Index Terms—Anti-submarine warfare; mobile sensor plan-
ning; game theory; public belief state; self-play.

I. INTRODUCTION

It has long been assumed that unpredictability in anti-
submarine warfare (ASW) requires psychological intuition
and cunning [1]. Today, however, computer algorithms can
outperform human players in challenging bluffing games. Most
notably, bots are now unbeatable in poker, including the most
demanding forms of poker [2]. This invites a compelling
question: Could poker-playing algorithms also play a game
of hide-and-seek with a submarine?

In this paper, we apply game-theoretic self-play techniques
from poker to the problem of how to search unpredictably
for a small, stealthy underwater vehicle with search vehicles
equipped with active sonars. To the best of our knowledge,
this represents the first publicly reported application of su-
perhuman poker AI outside poker and poker-like games, to a
real-world decision problem.

Existing (game-theoretic) approaches for generating unpre-
dictable search paths (cf. [3], [4], [5], [6], [7]) apply only
to passive (silent) sonars. However, in modern ASW, active
sonars (that emit a powerful sound, typically revealing the
position of the sonar) play an essential role, as they are the
only reliable means of detecting small, stealthy underwater
threats in real-time.1

We formalize the planning problem as a fog-of-war strategy
game between an intruder (stealthy underwater vehicle) and a
defender (group of search units with active sonars) moving
in a discretized chart, with momentary detection probabilities
that may depend on any aspect of the current game state, such
as distance to target, speed of target, bearing of target, etc.
(Fig. 1). We solve the game, that is, generate approximately

1https://www.navylookout.com/protecting-maritime-infrastructure-from-
attack-new-technologies-and-tactics/.

unexploitable stochastic strategies, following an approach from
superhuman poker AI employing public belief states and self-
play [8], [9], [10], [11]. More specifically, we transform the
imperfect-information ASW game into a perfect-information
game [12] that can be solved using efficient forms of self-
play reinforcement learning. We provide evidence that the
proposed solution method is sound, showing empirically that
the algorithm indeed closely approximates the game-theoretic
solution in a restricted scenario that is small enough to be
solvable by tabular method from algorithmic game theory, e.g.
counterfactual regret minimization [13].

Fig. 1. Running example. A surface vessel (marked in red) pauses in mid-
water, an indication it might be launching an unmanned underwater vehicle.
There are two critical infrastructure assets (marked as flags) that need to be
protected from underwater threats. A patrol vessel with a dipping sonar is
dispatched to the area, arriving after 1 hour to the position (marked in blue).
How should the patrol vessel search?

The organization of this paper is as follows. Section II re-
views related work, providing some background on patrolling
and game-theoretic approaches to planning thereof. Section III
presents the ASW mobile sensor planning problem considered
in this paper, and Section IV formalizes the planning problem
as a strategy game with fog-of-war. Section V reviews a theo-
retical framework for solving poker-like games, and Section VI
applies and specializes the theoretical framework to the ASW
strategy game introduced. Section VII presents a prototype im-
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plementation of the proposed solution method, demonstrating
the prototype in a classical ASW scenario. Section VIII reports
the experimental results, verifying convergence toward game-
theoretic equilibria. Finally, Section IX concludes the paper
by summarizing contributions and discussing implications for
future applications.

II. BACKGROUND

Patrolling is a common task in defense and security: sub-
marines patrol the seas, patrol vessels patrol marine and
coastal areas, foot patrols patrol designated land areas, cyber
soldiers patrol cyberspace, etc. The task of patrolling is to
“operate with small patrols over large areas to early detect
and counteract security-threatening activities.”2 To maximize
the deterrent effect, patrols must avoid being predictable in
a way that can be exploited by adversaries that observe and
study the patrolling before launching an intrusion mission.

For more than a decade, unpredictable randomized pa-
trols have been planned within various arenas using deci-
sion support systems based on algorithmic game theory. The
systems generate optimally randomized patrols, i.e., patrols
that cannot be exploited even by an intruder that knows
the very randomization method being used to generate the
patrols. The PROTECT decision support system, which has
been operational within the US Coast Guard for more than a
decade, is a celebrated example [14], listed in 2021 as one
of the most successful applications of AI within defense and
security [15]. A newer example is PAWS, which is used to plan
foot patrols in nature reserves in, among other places, Uganda,
and is now on its way to being deployed in over 400 locations
[16]. Similar game-theoretic decision support systems have
also been used successfully to plan unpredictable patrols in
other domains, including airports, air traffic, public transport,
and IT networks [17].

There have also been some attempts at transferring the
above algorithmic game theory to ASW with passive (silent)
sonars (cf. Hew and Yiap [18]). However, in modern ASW,
active sonars (that emit sound) play an essential role, as only
active sonars are able to detect modern stealthy underwater
threats in real-time.3 In general, the sound emitted by an
active sonar is strong enough to reveal the position of the
sonar even to very distant submarines, typically long before
the active sonar itself detects the submarine. In effect, this
means that in the game of hide-and-seek between a submarine
and a search group, the submarine continuously receives new
information throughout the game as to the whereabouts of
search units, and can adjust its movement accordingly. Unfor-
tunately, the algorithmic game theory used so successfully in
PROTECT, PAWS, etc. cannot handle this kind of real-time
information [19], making it somewhat challenging to apply
these same methods to modern ASW.

2https://www.forsvarsmakten.se/sv/organisation/livgardet/insatsforband/
13e-sakerhetsbataljonen.

3https://en.wikipedia.org/wiki/Diver detection sonar.

Decision support for ASW in operational use today, such
as the Acoustic Mission Planner4 and the Operational Route
Planner,5 generate search routes through one-sided optimiza-
tion algorithms [20], [21], i.e., by optimizing search routes
against a manually crafted reactive (behavior) model for the
enemy submarine. Unfortunately, a one-sided optimization
may yield search patterns that can be exploited by adversaries
that observe and study how the search is being conducted over
time.

In this paper, we transfer recent game-theoretically sound
reinforcement learning, originally developed for superhuman
poker-bots [8], [9], [10], to ASW—specifically, to route plan-
ning for mobile active sonars. Our goal is to open up the
possibility of unpredictable decision support systems, similar
to PROTECT and PAWS, in the arena of ASW.

III. PLANNING PROBLEM

In this paper, we consider the problem of how to search for
a stealthy underwater vehicle (UV) using mobile active sonars
carried on surface vehicles (SVs). As an example, the search
party could be a group of unmanned, remotely controlled SVs
patrolling a body of water with scattered critical infrastructure
in order to detect any small UV operating in the area.6 Some
of the SVs in the search party might pull a towed sonar, while
other SVs might carry a dipping sonar, moving swiftly from
one dipping point to the next (but with the dipping sonar
ineffective while moving). The following micro-scenario, a
variant of the classical Flaming datum problem [22], will serve
as a running example.

Flaming datum scenario. A surface vessel from a scientific
expedition fleet with a somewhat shady track record is being
tracked (by satellite, radar, etc.). The vessel suddenly stops in
mid-water for no apparent reason, an indication it might be
launching an unmanned UV, a capability the vessel is known
to have. In order to prevent any surreptitiously launched UV
to reach either of the two critical infrastructure assets located
in the area, a patrol vessel, in the form of an unmanned SV
with a dipping sonar, is dispatched to the site (see Fig. 1).
How should the patrol vessel search the area?

In the Flaming datum scenario above, the patrol vessel
needs to be unpredictable, or else an adversary will soon
learn (exploitable aspects of) how the vessel patrols. Indeed,
provoking patrols in order to study them is a standard scouting
procedure also in naval grey zone conflicts.

The assumption that the adversary knows the search pattern
employed is often reasonable in practice. Before launch, the
adversary can be assumed to study the search units over
time (by means of satellite, passive sonar, radar, etc.) until
the adversary has learned about (statistical) regularities in the
search patterns employed, and then adapting the behavior of
the UV accordingly.

4https://www.wagner.com/acoustic-mission-planner-amp-for-the-mh-60r/.
5https://www.wagner.com/operational-route-planner-orp/.
6https://www.navylookout.com/protecting-maritime-infrastructure-from-

attack-new-technologies-and-tactics/.
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The assumption that the search party only employs active
sonars (that emit sound) is, perhaps, less generally applicable.
However, current intruder detection systems use only active
sonars as passive sonars have a limited ability to detect small
signature UV in real-time.6

IV. GAME FORMULATION

We formulate the ASW planning problem from Section III
as a fog-of-war strategy game played on a discretized nautical
chart between an intruding stealthy UV and a defending search
team with mobile active sonars.

A. Simplifying Assumptions

The modeling is based on the assumption that the intruding
UV knows the current position of any active sonar in the water
throughout its mission. This is a reasonable simplification
when planning search with active sonars, especially for worst-
case analysis, since active sonars emit a powerful sound that
may be heard far away. The model assumes, moreover, that the
intruding UV knows whether a sonar dip has been successful
or not. Again, this is a reasonable simplifying assumption
when planning the use of active sonars. Finally, the modeling
assumes that sonars return either a hit or a miss, while in
practice sonars output probabilities, and an algorithm or oper-
ator interprets the output as a hit if the probability reaches a
certain threshold. In a typical, low-intensity conflict, however,
the defending organization can focus search resources as soon
as there is a weak indication of an intruder.

B. Formalization

We formalize the planning problem as a two-player, zero-
sum, and turn-based game of imperfect information: player 1
controls an UV and player 2 controls one or multiple syn-
chronized SVs, each vehicle carrying either a towed sonar or
a dipping sonar. For a given planning problem, the nautical
chart yields the state space of the game, vehicle capabilities
yield the action space, and the mission objective yields the
end states and a utility function as follows.

State space. The game is played on a hexagonal board
M represented in axial coordinates (q, r) for some q ∈
{0, . . . , Q − 1}, r ∈ {0, . . . , R − 1}, where Q,R are positive
integers, as illustrated in Fig. 2. (The playing board may also
include a vertical dimension (depth), omitted here for ease
of presentation). The axial coordinate system limits the board
to have the shape of a parallelogram, but hexagons can be
masked out to create a search area with a desired shape.
(The axial coordinate system makes it easier to vectorize the
computations, allowing the simulation to run smoother on
accelerated hardware, e.g., GPUs/TPUs). Each position in the
grid represents either water (with acoustic attributes such as
reverberation level) or land (Fig. 1).

Initial states. When the game starts, the UV is located at a
position (unknown to player 2) drawn from a prior distribution
over the hexagonal grid. Similarly, the SVs are given initial
positions from a prior distribution.

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig. 2. Illustration of the axial hexagonal coordinate system in a 3 × 3 grid.
Each hexagon is denoted by its axial coordinate (q, r). Here, Q = R = 3.

Action space. Player 1 moves the UV and player 2 moves
the SVs. Each type of vehicle has its own timer for when it
makes a move, reflecting differences in speed. The UV moves
to an adjacent hexagon after every tUV > 0 minutes (or rests
in the same hexagon). Similarly, an SV with a towed sonar
moves to an adjacent hexagon every ttow

SV > 0 minutes. An
SV with a dipping sonar can move to any hexagon within a
given radius (and drop its sonar and complete a search) every
tdip

SV > 0 minutes.
Observations. Player 1 (UV) observes its own position as

well as the position of each search vessel (as motivated above),
while player 2 (the search team) observes only the positions
of search vessels.

End states. The game terminates when the search units
detect the UV or if a scenario-specific condition is met, e.g.,
the UV reaches a target or when we have reached a time limit
T . The detection probability may depend on the distance to
the UV, the angle of incidence, whether the UV is at rest or
not, the bottom topography, depth, etc., according to sonar
equations whose parameters vary across the hexagonal grid.
The sonar surplus is converted to an instantaneous detection
probability according to standard naval operational analysis
[23]. In the example in Section VII, the detection probability
depends only on the distance to the UV (Fig. 3).

Utility. The reward function (utility) captures the intended
mission goal and as such may vary with the scenario under
consideration. In the examples of this paper, the reward for
player 1 is 1 if the UV reaches any of its goal destinations,
-1 if the UV is detected, and 0 otherwise.

V. THEORY

The method proposed below for solving the ASW strategy
game introduced in Section IV follows a recent theoretical
framework for game-theoretically sound deep reinforcement
learning in poker-like games [12]. With this framework, a
poker-like game is transformed into a game of perfect informa-
tion, but in a more complex and continuous space. The same
kind of elimination of hidden information has been applied in
connection with several historical milestones in poker-AI, but
without general mathematical theory [8], [9], [10].

Sokota et al. [12] explain that games with imperfect infor-
mation are harder due to two main causes: (1) the backward
dependence problem, and (2) the non-correspondence prob-
lem. The backward dependence problem is that the expected
outcome at a given point in time during a game depends on
what policies were applied in the past at earlier decision points
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during the game, thereby ruling out solution methods based on
backward induction. Nayyar, Mahajan, and Teneketzis [24] re-
solved this by having players publicly announce their policies
during play, which transforms the imperfect-information game
into a game of perfect information, more specifically, to a
Public Belief Alternating Markov Game (PuB-AMG), referred
to hereafter as the public belief game.

However, the Nash equilibrium [25], [26] solution to the
public belief game is not necessarily equivalent to Nash equi-
librium in the original game—this is the non-correspondence
problem. For two-player zero-sum games, [12, Prop. 5.13]
shows that, by adding a certain regularization, the solution can
be made arbitrarily close to a Nash equilibrium of the original
game. To be precise, they use the following MiniMaxKL
objective:

R : (h, a, π) 7→

{
R(h, a) + αKLKL(π, ρ(h)), ι = 1,

R(h, a)− αKLKL(π, ρ(h)), ι = 2.
(1)

Here, R(h, a) is the reward for choosing action a, given the
history h of all public and private actions and outcomes, ι is
the player index, and π is the policy used to choose/sample
the action. KL is the Kullback–Leibler divergence between
the current policy π and some regularization policy ρ with
at least ϵ > 0 probability on each legal action. αKL is the
regularization factor used to control the magnitude of the reg-
ularization on the objective. The choice of the regularization
policy ρ is described in Section VI-B.

VI. SOLUTION METHOD

Applying the framework from Section V, we compute
approximately game-theoretic optimal strategies for the ASW
game introduced in Section IV by converting the game into
a fully observable public belief game and training agents via
self-play on public states with regularized objectives (Eq. 1).

A. Transformation Into a Perfect-Information Game

The state space, initial state, action space, transitions, and
utility function for the public-belief game are produced as
follows.

State space. A (public belief) state at time t in the public-
belief game, denoted βt, consists of a public belief distribution
µt over the hexagonal grid M (representing uncertainty about
the location of the UV) together with public information about
player 2’s units.

Initial states. The public-belief game starts with a prior
public belief distribution µ0 inherited from the underlying
ASW game.

Actions. Players act in a public belief game by announcing
a policy (from the underlying game). In particular, player 1
announces a mapping Π1 from board positions (q, r) (repre-
senting hidden information) to distributions over actions. Since
player 2 has no private information in the underlying ASW
game, announcing a policy for player 2 reduces to simply
announcing a particular action (in the underlying game).
Henceforth, we will refer to an action in the public game (i.e.,

an announced policy Π1 of player 1 or an observable action
a2 of player 2) as a public action, written apub.

Transitions. When player 1 announces a policy, the public
belief distribution is updated analytically to match the transi-
tions. When player 2 takes an action, the public belief distri-
bution is updated to reflect the sonar-sensor’s observation, and
the public information is updated with the public movement
of vehicles.

Utility. The reward (utility) in the public-belief game is
given by the expected reward in the original game. For a policy
Π1 announced by player 1 at a public belief state β, the reward
is computed as follows:

R̃(β,Π1) = E(q,r)∼β Ea1∼Π1(·|(q,r))[R((q, r), a1)]

=
∑

(q,r)∈M

µβ(q, r)
∑

a1∈Π1(q,r)

Π1(a1 | q, r)R((q, r), a),

(2)

where µβ is the public belief distribution in the public belief
state β, and R((q, r), a) is the reward received from action
a when the UV is at coordinates (q, r) (which, in turn, is
equivalent to the reward R(h, a) from the underlying ASW
game, where h is an execution history in which the UV is at
position (q, r)). For an observable action a2 of player 2, the
reward is computed more simply as follows:

R̃(β, a2) = E(q,r)∼β [R((q, r), a2)]

=
∑

(q,r)∈M

µβ(q, r)R((q, r), a2). (3)

In summary, the public reward R̃(β, apub) is R̃(β,Π1) if
apub = Π1 and R̃(β, a2) if apub = a2.

B. Self-Play Learning Framework for the Transformed Game

We define a shared network Mθ that maps a tensor obser-
vation O(βt) of the public state to (i) a policy for player 2,
π2(· | O(βt)), (ii) a decision rule for player 1, Π1(· | O(βt)),
and (iii) a value map V θ(βt)[q, r] estimating the expected
future return for the UV at (q, r). The public estimated value
is Vθ(βt) =

∑
q,r µt(q, r)V θ(βt)[q, r].

We implement self-play by first sampling N independent
public trajectories {T (i)

pub}Ni=1. Player 2’s information only
depends on the public belief states, and not on any sampled
trajectory of the UV. Then for each public trajectory T

(i)
pub we

sample n private UV trajectories {T (i,j)
UV }nj=1 by drawing from

the announced decision rule Π1(· | β(i)
t ) that coincide with the

public actions in T
(i)
pub. Each public trajectory updates µt (and

hence βt) using the public actions and the sonar-sensor model;
each UV sub-trajectory samples a concrete hidden path and
yields corresponding rewards. We then update: (i) player 2’s
policy from public action sequences {a(i), pubt }, {a(i)2,t} with
public rewards {R̃(β

(i)
t , a

(i)
2,t)}, and (ii) player 1’s decision

rule Π1 from sampled UV actions {a(i,j)1,t } with underlying
rewards {R(h

(i,j)
t , a

(i,j)
1,t )}.

We employ a per decision KL regularizer (described
in Section V) using a slowly updated a regularization policy
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πreg = πreg(O(βt)). We use a searcher and target model
pair (πsearch, πtgt) with parameters (θsearch, θtgt) to stabilize
training, and set the regularization policy πreg to be prior
checkpoints of the target model, similar to [27]. We let the
searcher generate trajectories and train its parameters θsearch
using PPO based updates with regularized objective and policy.
The target model updates its parameters θtgt every training step
linearly/proportionally towards the searcher model θsearch

θtgt = (1− αreg) ∗ θtgt + αreg ∗ θsearch, (4)

where αreg is a small step-size. After every ∆m updates, we
snapshot the target policy πtgt,m, where m is a new checkpoint
index, and define a linearly interpolated regularization policy
between the old and new target checkpoint:

πreg = (1− λ) ∗ πtgt,m−1 + λ ∗ πtgt,m, (5)

for the interpolation scalar λ ∈ [0, 1] that increases within the
∆m update window. Let G̃

(i)
t =

∑T
s=t R̃(β

(i)
s , a

(i),pub
s ) and

G
(i,j)
t =

∑T
s=t R(β

(i,j),
s , a

(i,j),pub
s ) be the public and private

sampled value of a state. Denote by Gt one of G̃(i)
t and G

(i,j)
t .

Then the locally regularized sampled value (used for advantage
computation in the PPO algorithm) is

Greg
t := Gt + αKL KL

(
πsearch(· | βt), πreg(· | βt)

)
. (6)

We use this local form rather than summing the KL at
every future step in order to avoid double-counting the same
regularizer along a trajectory and to match per-decision reward
transformations. In practice, we also add the regularization
term of Eq. 6 to the loss function (Eq. 8) in order to directly
regularize the policy.

We train θsearch by optimizing each decision independently
using PPO. In detail, the policy ratio is:

ρt(θ) = πθ(at | st)/πθk(at | st), (7)

where πθk is the policy used to sample at in the trajectory tra-
jectory. We define the estimated advantage as Ât := Greg

t −Vt,
where Vt denotes either the value map V θ(βt)[q, r] or Vθ(βt)
depending on Gt. We update the policies by maximizing the
clipped likelihood ratio

LCLIP(θ) = min
(
ρt(θ) Ât, clip

(
ρt(θ), 1− ϵ, 1+ ϵ

)
Ât

)
, (8)

and we update the value function (value map V θ(β)[q, r]
(i,j))

toward Greg
t with Huber-loss.

VII. IMPLEMENTATION

The solution method proposed in Section VI has been
implemented in a simple prototype decision support that
generates unpredictable search paths and estimates the enemy
position based on incoming sonar reports. The prototype is
written entirely in JAX [28], including the ASW strategy
game from Section IV, which provides a high-throughput
simulation environment tailored for parallelized self-play on
GPU hardware.

The prototype is illustrated below with the Flaming datum
scenario from Section III. Variants of the Flaming datum

problem have previously been analyzed with game-theory [3],
[4], [5], [6], [7], but under the assumption that the submarine
cannot hear (and react to) the position and movement of sonars
during the search (even when sonars are active). Moreover,
sonars are abstracted as ‘cookie-cutters’, i.e., a submarine is
detected if (and only if) it is within a given, fixed range of a
sonar.

A. Setup and Training

The nautical chart, vehicle capabilities, and mission objec-
tive are set as follows for the Flaming datum scenario.

Chart. The grid in axial coordinates is 47 × 31 hexagons,
where each hexagon is 800 meters wide. Sides are masked to
create a square grid of about 25 × 25 kilometers with ocean
and land hexagons (Fig. 1).

Capabilities. The UV travels 7 kilometers per hour, i.e., tUV
is roughly 7 minutes. The SV can move to a new dipping point
up to 4 kilometers away from its current position every 15
minutes, i.e., tdip

SV is 15 minutes and the SVs movement radius
is 5 hexagons (4 kilometers). Detection probabilities depend
only on the distance to the UV (Fig. 3). The capabilities,
in particular the movement of the SV and the detection
probabilities, are chosen with a view of making the scenario
an intuitively comprehensible test case for validating generated
search strategies by informal inspection.
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Fig. 3. Probabilities of detecting a UV around the sonar in the Flaming
datum scenario. In this scenario, the probabilities only depend on the distance
from the sonar to the UV. However, the implementation allows for detection
probabilities that depend on any aspect of the current state (such as impact
angle, speed, etc.), as described in Section IV.

Mission objective. To reflect the mission objective of the
search party (preventing a suspected UV of reaching either of
the two infrastructure assets), the game terminates with a win
for the UV (reward +1) if the UV reaches either of the two
flags, terminates with a loss for the UV (reward -1) if the UV
is detected, and terminates in a draw (reward 0) otherwise.
The time limit T is set to 8 hours (which entails 57 sequential
decision points for the UV and 21 for the SV in each run of
the game).

We train with a regularized objective on the public game,
storing checkpoints of θsearch and θtgt along the way.7 Our train-

7To speed up convergence, we add a small term to the reward for the UV
proportional to the negative belief of the UV being in its current position (∝
−µt[q, r](i,j)). For stability, µt is normalized, which yields the transformed
reward: R(i,j)

t = R(i,j)
t −c×

(
µt[q, r](i,j) − Eµt [µt]

)
/Stdµt (µt), where

c = 0.008.
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(a) First dipping point (b) Second dipping point (c) Tenth dipping point (d) Sixteenth dipping point

Fig. 4. Successive distributions for sampling some early dipping points during a possible run of the Flaming datum scenario in Fig. 1. (a)–(d) Distribution for
sampling the first, second, tenth, and sixteenth dipping points respectively. The distributions are visualized using the viridis color map, scaled to the minimum
and maximum heatmap values (brighter green/yellow indicates higher probability to dip there). The dipping points sampled during this particular run are
marked in blue with white outline. The skerries (rocky islands) can be seen implicitly as masked out hexagons.

(a) First dipping point (b) Second dipping point (c) Tenth dipping point (d) Sixteenth dipping point

Fig. 5. Probability distribution of the submarine’s location based on successive (negative) sonar reports during a possible run of the Flaming datum scenario.
(a)–(d) Distribution after completing the first, second, tenth, and sixteenth dipping respectively. These distributions are visualized with the viridis color map
and scaled to the respective minimum and maximum probabilities.

ing parameters are αtgt = 0.001, αKL = 0.04, ∆m = 1024,
N = 64, and n = 2048. We train for 21 hours (320 000
training steps) on an RTX 4090 graphics card and observe
converging game metrics after 8 hours (Fig. 6).

0 2 4 6 8 10 12 14 16 18 20
Time (h)

0 50000 100000 150000 200000 250000 300000
Training step
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Fig. 6. Probability of winning, losing and playing a draw over training steps
in the Flaming datum scenario. win: Probability of winning for player 1,
i.e., probability that the UV reaches an asset. lose: Probability of losing for
player 1, i.e., probability that the UV is detected. tie: Probability of a tie,
i.e., probability that the UV is neither detected nor reaches an asset. Initial
values for ’win’, ’tie’ and ’lose’ with the untrained model are marked before
the first training step.

B. Search Pattern and Estimated Enemy Position

Given the nautical chart, vehicle capabilities, and mission
objective, the prototype generates a search path by sampling
from the (approximated) Nash equilibrium. As an illustration,
Fig. 4 shows the computed (approximate) Nash distributions
for sampling dipping points during earlier parts of the 8 hour
long search in the Flaming datum scenario. The distributions
seem intuitively reasonable given the simplified detection
model (Fig. 3). The first dipping point is sampled roughly uni-
formly within the Area of Uncertainty (AoU), with a marked
emphasis on the outer perimeter. The second dipping point is
sampled with a clear preference for travel distance and some
preference for southward direction. The tenth dipping point
is sampled between moving to the southwest (i.e, suddenly
reversing direction) and moving to the east (i.e., continuing
vaguely in the direction of the opposite infrastructure asset),
with an emphasis on the latter. The sixteenth dipping point is
sampled with a tendency towards the south.

During the search, the prototype updates a common tactical
picture in the form of a probability distribution over the enemy
submarine’s possible positions (µt), visualized as a heat map.
The probability distribution is computed analytically given the
trained strategy for the UV (Π1) and the history of search
positions a2 so far. To illustrate, Fig. 5 shows the heat map
during the earlier parts of the search in the Flaming datum
scenario. Again, the distributions seem intuitively reasonable.
After the first dipping point, the distribution is roughly uniform

1216



0.0 0.5 1.0 1.5 2.0
Training steps 1e6

10−2

10−1

Ex
pl

oi
ta

bi
lit

y

5.0e-03

1.7e-03

7.9e-03

2.5e-03

Regularized objective searcher model
Regularized objective target model
Normal objective searcher model
Normal objective target model

Fig. 7. Exploitability in the solvable ASW scenario (Fig. 8) when training
on the corresponding public game, with and without regularized objective
(αKL = 0.1 and αKL = 0 respectively). The exploitability for the searcher-
and target model (θsearch and θtgt respectively) is shown for each objective.
Training was conducted over 2097152 training steps, with 1024 checkpoints
used for computing tabular exploitability. For the graphs, we use a sliding
window averaging and standard deviation with a window-size of 10 datapoints
(20480 steps).

within the AoU, with an emphasis on the perimeter, i.e.,
an emphasis on the UV having moved (quietly) as far as
possible from its mothership. After the second dipping point,
the distribution is still roughly uniform within the (expanded)
AoU, but now with a ring of reduced probability at the center,
eminating from the first dipping point. A bit later, after the
tenth and sixteenth dipping point respectively, the distribution
has become considerably less uniform, with a clear emphasis
around the infrastructure asset at the opposite end of where
the SV is presently.

The probability distribution over the enemy submarine’s
possible positions is a form of worst-case analysis; the subma-
rine, it is assumed, tries to counteract the mission objective for
the search party as effectively as possible, i.e., the submarine
follows the most dangerous enemy course of action [29]. In
general, this may entail randomizing its reactions to the active
sonars so as to increase the uncertainty for the search units,
e.g., by moving with some probability towards a recent dipping
point, ‘reestablishing’ probability mass there (as in Fig. 5).

VIII. NASH CONVERGENCE EXPERIMENT

We verify that the solution method proposed in Section VI,
and as implemented in Section VII, converges to the game-
theoretic equilibrium. Since it is intractable to verify the
solution method on larger maps such as in Section VII, we
verify the solution method for a small scenario that can be
solved with tabular methods.

Solvable scenario. We consider a solvable, small scenario
in the ASW game (see Fig. 8). The board consists of only 12
uniform water hexagons, and the UV is restricted to moving
either southeast or southwest at each time step. The UV starts
in hexagon (2, 0) or (3, 0) with uniform probability, and the

2,0 3,0

2,11,1 3,1

0,2 1,2 2,2 3,2

1,30,3 2,3

50%50%

Fig. 8. Solvable ASW scenario. The UV (red) is restricted to moving either
southeast or southwest at each time step. The SV (blue) dips its sonar sensor
in one of the hexagons along the row of the UV.

game terminates if the UV passes the last row of hexagons or
if it is detected. There is only one search unit.

To measure exploitability in the solvable scenario, we
first train models with, respectively without, a regularized
objective on the public game, storing checkpoints of θsearch
and θtgt respectively along the way. Our training parameters
are αtgt = 0.001, αKL = 0.1, ∆m = 2048, N = 32, and
n = 16. The training is conducted for 2,097,152 steps (32,768
× 64), during which 1,028 checkpoints are saved. For each
stored checkpoint, we then construct a tabular policy in the
original imperfect information game (which will later be used
to compute exploitability). To construct a tabular policy, we
replay the histories leading to each information state I in the
original game, which yields the corresponding public belief
state β consistent with I . Given β and the private information
contained in I , we obtain the policy π(I, β), which we assign
as the policy for information state I in the table for the tabular
policy. Finally, we compute the tabular exploitability from an
equivalent game implemented in open-spiel [30].

The resulting exploitabilities for all checkpoints during the
training are shown in Fig. 7, for the target model as well as
the searcher model. As can be seen, the models converge to
a low exploitability, with the target model θtgt converging to
a lower exploitability than the searcher model θsearch in both
cases. Moreover, the model converges to a slightly smaller
exploitability when using a regularized objective. Surprisingly,
perhaps, the model still converges to a very low exploitability
when using an unregularized objective (with an entropy term),
somewhat contrary to what might be expected from [12]. A
possible explanation is that the policy-entropy regularization
loss used in PPO (and other RL algorithms) shares similar ef-
fect on training updates as a regularized objective with uniform
policy, especially since we perform a hyperparameter search
for the entropy coefficient to minimize the exploitability.

IX. CONCLUSIONS

In this paper, we considered the problem of how to search
for a stealthy underwater vehicle in an unpredictable way
with mobile active sonars, a fundamental planning problem in
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modern naval warfare. We formalized the planning problem as
a fog-of-war strategy game played on a (discretized) nautical
chart, with momentary detection probabilities that may depend
on any aspect of the current game state (such as distance to
target, speed of target, impact angle on target, or local seabed
topography). We solved the game using public belief states
and self-play following a method from celebrated milestones in
poker-AI. We presented a parallelized implementation in JAX,
and illustrated the implementation with an instance (Fig. 1) of
a classic ASW search problem—beyond the reach of earlier
game-theoretic solution methods in the operational research
literature—and showed that the solution method converges
(Fig. 6) producing plausible strategies for search vehicles
(Fig. 4) and the intruding underwater vehicle (Fig. 5). Finally,
we provided evidence (Fig. 7) that the proposed solution
method is game-theoretically sound, showing empirically that
the implementation closely approximates Nash in a restricted
scenario that is small enough to be solvable by tabular meth-
ods.

To the best of our knowledge, the work reported here rep-
resents the first publicly reported application of superhuman
poker AI to a real-world decision problem.

Looking ahead, it is hoped that the proposed approach
may help open up the possibility of unpredictable decision
support for mobile sensor planning in ASW similar to the
unpredictable decision support being used today for planning
patrolling in other arenas (such as PROTECT, PAWS, etc.).

CODE AVAILABILITY

The program code along with more details are available at
https://github.com/ChrisLimer/ASW-planning.git.
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