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Pig. I. Schematic of the self-play training process. Self-play is conducted with two identical SoG agents playing against each other. Neural net queries made 
<luring self-play are logged in a query buffer, and these queries are solved by solving a subgarne rooted at these states. The feature-target pair found by the 
query solver is added to a replay buffer and is then used for network training. The figure is an adaptation of Pig. 8 by Schmid et al. [13]. 

Specifically, it employs linear averaging and regret matching + 

from CFR+ [13], [15], while using simultaneous updates 
similar to standard CFR. 

Continual re-solving and CFR are tailored to achieve strong 
performance in imperfect information games. To ensure that 
SoG also performs well in perfect information games, the 
authors combined continual re-solving with an expanding 
search tree. Instead of limiting a subgame to a fixed depth 
d, the subgame is dynamically grown. The growth rate of 
the subgame is controlled by two parameters: s and c. The 
parameter s denotes the total number of expansion simulations, 
and c is the number of expansions of the subgame tree per CFR 
iteration. The total number of CFR iterations in the algorithm 
is thus fcT· 

In perfect information games, more resources are dedicated 
to expansions and fewer to CFR updates, as there is no 
uncertainty about players' ranges and no need to find a 
mixed strategy. Conversely, in imperfect information games, 
the addition of new public belief states is slower, and more 
computation is focused on refining and balancing the strategy. 

D. Sound Self-play

Neural networks summarize public belief states at the leaf
nodes of subgames. Schmid et al. developed sound self­
play for training these neural networks in SoG through self­
play [13]. 

Two instances of the SoG algorithm play against each 
other, evaluating each situation using continual re-solving with 
subgame decomposition, as described in Section 111-B. The 
values of all norr-terminal leaf nodes of the subgames are 
estimated by the neural network. The queries to the network 
are public belief states, fJ, that the network evaluates. A 
fixed proportion, defined by the hyperparameter qsearch, of 
the queries produced <luring self-play are added to a query 
buffer and later revisited by a solver that studies the situation 
more closely by re-solving subgames rooted at these public 
belief states. New recursive queries may be created if the 

subgame rooted at fJ does not reach the end of the game in all 
paths. A fraction, defined by the hyperparameter qrecursive , 
of these recursive queries are added back to the query buffer. 
For each query studied by the solver, a feature-target pair, 
{fJ, v }, is created containing the PBS and the corresponding 
counterfactual values. These pairs are added to a replay buffer 
used to train the neural network. Fig. 1 provides a schematic 
overview of the modules used in self-play training. 

This self-referential approach, where the network produces 
its own training targets, leads to a bottom-up learning process. 
Initially, the network learns to estimate the values of states 
near the end of the game, as those targets do not rely on the 
network. Gradually, the network improves at estimating values 
higher in the game tree, as the reliability of targets produced 
by the solver increases. 

Algorithm 1 shows the primary self-play loop, using 
RESOLVE(L ), which corresponds to re-solving a subgame 
through continual re-solving. To ensure generalization, the 

Algorithm 1 Sound Self-play 
procedure SELFPLAY 

Get world state corresponding to the start of the game w +- wmrr 

while w is not terminal do 
if chance acts in w then 

a +- uniform random action 
else 

C> Act for all non-chance players 
7fcontrolloc +- SELFPLAYCONTROLLER(w) 
C> Mix policy with uniform prior to encourage exploration 
1r:lfplay +- (1 - t:) · 7rcontroller + t: · 7runifonn 
a +- sarnple action from 1r:lfplay 

end if 
w +- apply action a on state w 

end while 
end procedure 

procedure SELFPLAYCONTROLLER(w) 
fJ +- public state al w 
L +- tree for the subgame rooted al fJ 
v, ,r, nn_queries +- RESOLVE(L) 
queries +- pick on average qsearch neural net queries /3 from nn_queries 

Append queries to the query buffer 
return ,r (fJ) 

end procedure 
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