

Self-play loop

,
,- ',

I \

Query solver Network trainer

,,,
--

---------------------.... ,, ,,' ,,
I \ I \ c······

'\..-----t-:-----lfl. • Past states visited
in current self-play line

Network
updates

Queries f3

Train targets
{f3, V}

, Recursive queries J \
,, _______________________ ,, ', _____________

I
I

______ .,,

Pig. I. Schematic of the self-play training process. Self-play is conducted with two identical SoG agents playing against each other. Neural net queries made
<luring self-play are logged in a query buffer, and these queries are solved by solving a subgarne rooted at these states. The feature-target pair found by the
query solver is added to a replay buffer and is then used for network training. The figure is an adaptation of Pig. 8 by Schmid et al. [13].

Specifically, it employs linear averaging and regret matching +

from CFR+ [13], [15], while using simultaneous updates
similar to standard CFR.

Continual re-solving and CFR are tailored to achieve strong
performance in imperfect information games. To ensure that
SoG also performs well in perfect information games, the
authors combined continual re-solving with an expanding
search tree. Instead of limiting a subgame to a fixed depth
d, the subgame is dynamically grown. The growth rate of
the subgame is controlled by two parameters: s and c. The
parameter s denotes the total number of expansion simulations,
and c is the number of expansions of the subgame tree per CFR
iteration. The total number of CFR iterations in the algorithm
is thus fcT·

In perfect information games, more resources are dedicated
to expansions and fewer to CFR updates, as there is no
uncertainty about players' ranges and no need to find a
mixed strategy. Conversely, in imperfect information games,
the addition of new public belief states is slower, and more
computation is focused on refining and balancing the strategy.

D. Sound Self-play

Neural networks summarize public belief states at the leaf
nodes of subgames. Schmid et al. developed sound self­
play for training these neural networks in SoG through self­
play [13].

Two instances of the SoG algorithm play against each
other, evaluating each situation using continual re-solving with
subgame decomposition, as described in Section 111-B. The
values of all norr-terminal leaf nodes of the subgames are
estimated by the neural network. The queries to the network
are public belief states, fJ, that the network evaluates. A
fixed proportion, defined by the hyperparameter qsearch, of
the queries produced <luring self-play are added to a query
buffer and later revisited by a solver that studies the situation
more closely by re-solving subgames rooted at these public
belief states. New recursive queries may be created if the

subgame rooted at fJ does not reach the end of the game in all
paths. A fraction, defined by the hyperparameter qrecursive ,
of these recursive queries are added back to the query buffer.
For each query studied by the solver, a feature-target pair,
{fJ, v }, is created containing the PBS and the corresponding
counterfactual values. These pairs are added to a replay buffer
used to train the neural network. Fig. 1 provides a schematic
overview of the modules used in self-play training.

This self-referential approach, where the network produces
its own training targets, leads to a bottom-up learning process.
Initially, the network learns to estimate the values of states
near the end of the game, as those targets do not rely on the
network. Gradually, the network improves at estimating values
higher in the game tree, as the reliability of targets produced
by the solver increases.

Algorithm 1 shows the primary self-play loop, using
RESOLVE(L), which corresponds to re-solving a subgame
through continual re-solving. To ensure generalization, the

Algorithm 1 Sound Self-play
procedure SELFPLAY

Get world state corresponding to the start of the game w +- wmrr

while w is not terminal do
if chance acts in w then

a +- uniform random action
else

C> Act for all non-chance players
7fcontrolloc +- SELFPLAYCONTROLLER(w)
C> Mix policy with uniform prior to encourage exploration
1r:lfplay +- (1 - t:) · 7rcontroller + t: · 7runifonn
a +- sarnple action from 1r:lfplay

end if
w +- apply action a on state w

end while
end procedure

procedure SELFPLAYCONTROLLER(w)
fJ +- public state al w
L +- tree for the subgame rooted al fJ
v, ,r, nn_queries +- RESOLVE(L)
queries +- pick on average qsearch neural net queries /3 from nn_queries

Append queries to the query buffer
return ,r (fJ)

end procedure

116

