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Abstract—The combination of reinforcement learning and
look-ahead search introduced in AlphaGo, has revolutionized our
understanding of tactics and strategy in classical strategy games
such as Go and chess. Until recently, this pioneering approach has
been limited to perfect information games, where players have
full information about the current state of the game. This paper
investigates the recent generalization of reinforcement learning
with search to imperfect information games, such as poker, where
parts of the game state, e.g., the opponent’s hand, is hidden from
the player. The paper explores how well this approach scales as
the amount of hidden information increases. To this end, the
current state of the art in reinforcement learning with search,
the student of games general learning algorithm, is reproduced
and evaluated across three variants of a custom poker game, each
differing by the number of hidden cards dealt to players. It is
found that games with less hidden information are learned more
effectively, and that computational demands scale sublinearly
with increasing hidden information.

Index Terms—Reinforcement learning; tree search; imperfect
information games; computer poker; counterfactual regret min-
imization; student of games algorithm.

[. INTRODUCTION

Strategy games have a rich history of being used as
benchmarks to measure progress in artificial intelligence (AI).
Notable advances include Deep Blue reaching superhuman
performance in chess in 1997 [1], and AlphaGo reaching
superhuman performance in Go in 2016 [2]. A common
characteristic of most strategy games mastered by Al has been
that they are perfect information games, where all aspects of
the game state are completely visible to both players.

Adversarial interactions in the real world often involve
uncertainty about the adversary, making real-world decision-
making more closely match imperfect information games,
where players can have asymmetric information about the
game state [3]. Indeed, in serious gaming, as practiced in, e.g.,
defense [4] and cybersecurity [5], [6], hidden information (the
“fog of war”) often plays an essential role.

In this more general class of games, poker has long served
as the main benchmark for Al algorithms. Until recently, Al
algorithms could only play small poker variants developed
for research purposes. However, with recent advances in tree
search algorithms, superhuman Als in conventional poker
variants have been developed [7], [8], [9], [10].

While these milestones in poker were based on look-
ahead search alone, the strongest Als for perfect information

games use a combination of reinforcement learning and look-
ahead search introduced in AlphaGo and later generalized
in AlphaZero [11]. A first step towards generalizing this
paradigm further to the broader class of imperfect informa-
tion games was achieved in recursive belief-based learning
(ReBeL) [12], a combination of reinforcement learning and
look-ahead search. ReBeL reached superhuman performance
in poker and poker-like games without relying on the game-
specific abstraction techniques used in earlier, purely search-
based Als, while requiring substantially less computational
effort. In November 2023, DeepMind published a refinement
and extension of ReBeL that incorporated even more aspects of
AlphaZero: the student of games (SoG) algorithm [13]. SoG
achieves strong performance in large perfect and imperfect
information games alike, being the first algorithm to do so and
an important step toward truly general algorithms for arbitrary
environments.

Poker games have often been seen as a good proxy for
real-world decision-making [8], [9], as many real-world ap-
plications, e.g., negotiations, can be modeled as poker-like
games. However, a key difference between poker games and
more general decision-making is that the degree of hidden
information in poker is solely determined by the private cards,
whereas the degree of uncertainty can be larger and less
tangible in other applications. If we want to apply general
algorithms such as SoG to more complex scenarios, or apply
similar algorithms as reasoning modules in larger systems, we
may need to handle significantly more hidden information.

This paper investigates how reinforcement learning with
look-ahead search scales with an increased degree of hidden
information. We evaluate this in the realm of poker games, the
standard benchmark in the field, and with the current state of
the art, SoG. The research question is formulated as follows:

« How does the degree of imperfect information in poker
games affect the performance of the student of games
general learning algorithm?

To the best of our knowledge, the paper provides the first
public implementation of the SoG algorithm and the first
replication outside of DeepMind.

II. BACKGROUND

This section introduces the relevant concepts and termi-
nology from poker variants and reviews previous research
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related to imperfect information games and general learning
algorithms.

A. Poker

This paper focuses on two-player heads-up poker variants.
A typical poker match consists of multiple games, and each
game consists of multiple rounds. Each round ends with
a betting phase where players wager chips; if a player is
unwilling to match a wager, they fold, and the other player
wins the pot. The most commonly played poker variants
consist of four rounds. During the first round, the players are
dealt a fixed number of private cards, called their hand. All
subsequent rounds, called the flop, turn, and river, begin with
cards being dealt face-up as public cards. If neither player
folds by the end of the river betting phase, they combine their
private and public cards to create the best five-card hand; the
strongest hand wins the pot.

Different poker variants have different betting rules. Limit
games restrict players to a single bet size per betting phase.
Pot-limit games bound bets by the current pot size. No-limit
games allow players to bet any amount up to all their chips,
called going all-in. Two popular poker families are Texas
hold’em and Omaha. The primary difference is that Omaha
hands contain four private cards, while hold’em hands have
two. The most popular poker variant is no-limit hold’em,
followed by pot-limit Omaha.!

In most variants, players must wager a small amount of
chips before the first round to stimulate play. The largest
forced wager is the big blind (bb), typically about 1% of
the players’ starting stack. The common win-rate metric in
poker Al literature is milli big blinds per game (mbb/g), which
measures how many thousandths of a big blind a player wins
on average per game [8], [9].

B. Related Work

Significant effort has been devoted to developing algorithms
for poker games. The introduction of counterfactual regret
minimization (CFR) in 2008 was a major breakthrough, al-
lowing small poker games to be solved [14]. In 2014, an
enhancement of CFR, called CFR™, was developed, improving
its convergence rate by up to an order of magnitude [15].
Using CFR™, researchers tackled a large poker game played
by humans, and in 2015, using 900 core-years of computing
and 11 TB of storage, they solved heads-up limit hold’em,
achieving near-zero exploitability [7].

The focus quickly shifted to the more popular no-limit
hold’em. While limit hold’em could be solved with a mod-
ern computer cluster by traversing its game tree of 104
information states, no-limit hold’em’s game tree of 106
states made this approach intractable. Researchers borrowed
ideas from perfect information games, dividing the game
tree into subgames and using neural networks to summarize
game states. However, the imperfect information in poker
significantly increased the complexity of these methods.

"https://upswingpoker.com/poker-rules/pot-limit-omaha-rules/.

In 2016, two research groups made significant progress,
creating superhuman Al agents for no-limit hold’em. Morav¢ik
et al. published DeepStack [8], while Brown et al. introduced
Libratus [9]. Both teams developed new methods for dividing
the game tree into subgames and refining strategies during
play. In 2018, the team behind Libratus released Pluribus,
extending their techniques from heads-up poker to six-player
variants of the game [10].

Progress also advanced in developing general algorithms for
imperfect information games. In 2020, Brown et al. developed
ReBeL, achieving superhuman performance in poker and the
game Scotland Yard [12]. ReBeL combined search, learning,
and game-theoretic reasoning through self-play.

In November 2023, the team behind DeepStack released
SoG [13]. This unified algorithm combines search, learning,
and game-theoretic reasoning, integrating techniques from
AlphaZero and DeepStack. SoG demonstrated strong perfor-
mance in poker, Scotland Yard, chess, and Go, marking a
significant step toward truly general game-playing algorithms.

III. THEORY

This section introduces the formalisms used in the rest of the
paper, and describes the prerequisite concepts and algorithms,
which need to be understood to understand the SoG algorithm.

A. Game Theory

This section introduces game-theoretic concepts and nota-
tion using the framework of extensive-form games. A game
between two players starts in a specific world state w™. As
players choose actions a € A, the game proceeds to successor
world states w € VW until reaching a terminal state. A world
state can be a decision node, a terminal node, or a chance node,
representing a stochastic event with a fixed distribution, such
as new public cards being revealed. Sequences of actions taken
during the game are called histories and denoted i € H. At
terminal histories, z C H, each player ¢ receives utility u;(z).

An information state is a representation of one player’s
information. Specifically, the histories s; € S; for player i
form a set of histories indistinguishable to player ¢ due to
missing information. For example, after players have been
dealt their cards in poker, every situation where player ¢ has
been dealt a specific hand is indistinguishable to that player
since they do not know the opponent’s private cards; the
histories in the information state differ only in the chance event
determining the opponent’s private cards. A player ¢ plays a
policy m; : S; — A(A), where A(A) denotes a probability
distribution over actions .4. Given a policy profile for both
players, 7 = (m;,m—;), where —i is the opponent of player 4,
the utility of this profile to player 7 is denoted as u;(mw;, m—;).

Definition 1. A best response to an opponent policy 7_; is
some policy 7%¢%! that maximizes the utility to player 4 against
7_;. Thus, w2est = argmax ;. (u(75,7_;)).

Definition 2. A policy profile 7 = (m,,m) is a Nash
equilibrium if and only if 7, is a best response to 7, and
T 1S a best response to 7.
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Definition 3. A policy 7; : S; — A(A) is called pure if for
every information state S; there exists an action a such that
the probability of a € A(A) is 1; otherwise the policy is called
mixed.

In perfect information games, the utility of an action de-
pends only on the current world state w € W. For example, in
chess, the value of an action in a specific board configuration
is independent of the history of play (except for moves leading
to a draw by repetition). In imperfect information games, the
utility depends on additional factors like the opponent’s beliefs
about the player’s private information and strategy, and vice
versa. In poker, for instance, the value of bluffing depends on
its frequency in the player’s strategy; if the opponent believes
the player never bluffs, bluffing is highly effective, and vice
versa. If the opponent knows the player’s private information,
they can counter any strategy perfectly.

Thus, when considering actions from an information state
S;, the player must consider both their opponent’s possible
information states, as well as their own from the opponent’s
perspective, called their range, to conceal private information
effectively. Formally, the range of player ¢ is a distribution
over information states A[S;(Spus)] consistent with the public
information S, for player <.

Game-theoretic reasoning in imperfect information games
requires managing uncertainty about the current world state
by considering the ranges of both the opponent and oneself.
To handle this efficiently, we define a public belief state (PBS)
B8 = (Spub,7), 7 € A[Si(Spup)] x A[S_i(Spus)], where r
contains the ranges of both players over the public state Sp..
This modeling of game states is called belief representation,
while the extensive-form representation is termed discrete
representation [12]. Both representations are used in SoG and
are further discussed in Section III-B.

B. Re-solving

Re-solving is a method for finding an optimal policy within
a limited part of a game, called a subgame; a subgame is a
game rooted in the public state of a larger game. In poker,
a subgame is uniquely defined by the betting history and the
public cards at the root of the subgame.

CFR and CFR" can solve large games by traversing the
entire game tree at each iteration using the discrete repre-
sentation. In 2014, CFRT was used to solve limit hold’em,
precomputing a complete strategy for its ~ 104 information
states, requiring 11 TB of storage.> The policy for each state
could then be retrieved during play from this lookup table.
However, this approach is infeasible for larger games like no-
limit hold’em, with 10'%* information states [8], or pot-limit
Omaha, which is even larger. Thus, a method similar to the
search used in perfect information games is needed, where we
search to a limited depth d > 0 from the current public state.
If an oracle could provide the expected utilities for each state

2Without compression, 262 TB would be needed using single-precision
floating-point numbers.
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below d, a Nash equilibrium could be found without traversing
the entire game tree.

For perfect information games, we can use a search algo-
rithm like Monte Carlo tree search, starting from the current
game state, and train a deep neural network to act as an oracle,
taking a game state as input and outputting the value for
both players. To achieve a similar decomposition in imperfect
information games, we use the belief representation, which
includes all relevant information about the history and the
players’ ranges. This allows constructing a subgame from the
current public belief state, .

Safe re-solving is a method for solving subgames [9].
Assuming a player uses a strategy covering all possible in-
formation states, called the blueprint strategy w°, re-solving
improves play in a subgame by searching for a better solution
than the blueprint. One approach is to assume that both players
follow the blueprint until the subgame, and then solve the
subgame assuming that their ranges match what 7® implies.
This method is called unsafe subgame solving because it
assumes that the opponent plays according to the blueprint,
leading to potentially exploitable strategies if the opponent
deviates [9].

A stronger approach is safe re-solving, which creates a
larger augmented subgame. For each opponent information
state S_;(Spup), the opponent has the option to opt-out of
the subgame and receive the payoff for playing optimally
against our blueprint strategy in the subgame. This payoff
is the counterfactual value for the opponent at the start of
the subgame, v_;(7?, hpub). Re-solving with these augmented
actions regularizes the subgame strategy to be at least as strong
as the blueprint strategy, ensuring that the subgame solution’s
exploitability is no higher than that of the blueprint strategy.
This likely results in a less exploitable strategy due to the more
detailed search conducted in the subgame.

Continual re-solving uses safe re-solving without needing a
precomputed blueprint strategy. Instead, it employs solutions
from subgames higher up in the game tree as the blueprint
for new subgames. These blueprint solutions from previous
searches can be passed down the search in a compressed form,
requiring only two vectors: the acting player’s range and the
counterfactual values for the opponent. These counterfactual
values provide an upper bound to the expected value for the
opponent in all information states, given the history. The acting
player’s current range can be computed by applying Bayes’
rule to the previous range, given the policy and action taken.
The opponent’s counterfactual values are produced when solv-
ing a subgame using CFR. This method is advantageous as it is
not directly affected by the opponent’s actions: the opponent’s
range is not part of the re-solving, and the upper bound on
their counterfactual values holds as they act.

C. Student of Games

We have now covered the necessary theory to understand
how the SoG algorithm works. SoG searches the game tree
using continual re-solving. The subgames generated during
re-solving are solved with a combination of CFR and CFR™.
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Fig. 1. Schematic of the self-play training process. Self-play is conducted with two identical SoG agents playing against each other. Neural net queries made
during self-play are logged in a query buffer, and these queries are solved by solving a subgame rooted at these states. The feature-target pair found by the
query solver is added to a replay buffer and is then used for network waining. The figure is an adaptation of Fig. 8 by Schmid et al. [13].

Specifically, it employs linear averaging and regret matching ™
from CFRT [13], [15], while using simultaneous updates
similar to standard CFR.

Continual re-solving and CFR are tailored to achieve strong
performance in imperfect information games. To ensure that
SoG also performs well in perfect information games, the
authors combined continual re-solving with an expanding
search tree. Instead of limiting a subgame to a fixed depth
d, the subgame is dynamically grown. The growth rate of
the subgame is controlled by two parameters: s and c. The
parameter s denotes the total number of expansion simulations,
and c is the number of expansions of the subgame tree per CFR
iteration. The total number of CFR iterations in the algorithm
is thus f%

In perfect information games, more resources are dedicated
to expansions and fewer to CFR updates, as there is no
uncertainty about players’ ranges and no need to find a
mixed strategy. Conversely, in imperfect information games,
the addition of new public belief states is slower, and more
computation is focused on refining and balancing the strategy.

D. Sound Self-play

Neural networks summarize public belief states at the leaf
nodes of subgames. Schmid et al. developed sound self-
play for training these neural networks in SoG through self-
play [13].

Two instances of the SoG algorithm play against each
other, evaluating each situation using continual re-solving with
subgame decomposition, as described in Section III-B. The
values of all non-terminal leaf nodes of the subgames are
estimated by the neural network. The queries to the network
are public belief states, [, that the network evaluates. A
fixed proportion, defined by the hyperparameter gseqrch, Of
the queries produced during self-play are added to a query
buffer and later revisited by a solver that studies the situation
more closely by re-solving subgames rooted at these public
belief states. New recursive queries may be created if the

subgame rooted at 5 does not reach the end of the game in all
paths. A fraction, defined by the hyperparameter grecursives
of these recursive queries are added back to the query buffer.
For each query studied by the solver, a feature-target pair,
{B,v}, is created containing the PBS and the corresponding
counterfactual values. These pairs are added to a replay buffer
used to train the neural network. Fig. 1 provides a schematic
overview of the modules used in self-play training.

This self-referential approach, where the network produces
its own training targets, leads to a bottom-up learning process.
Initially, the network learns to estimate the values of states
near the end of the game, as those targets do not rely on the
network. Gradually, the network improves at estimating values
higher in the game tree, as the reliability of targets produced
by the solver increases.

Algorithm 1 shows the primary self-play loop, using
RESOLVE(L), which corresponds to re-solving a subgame
through continual re-solving. To ensure generalization, the

Algorithm 1 Sound Self-play

procedure SELFPLAY
Get world state corresponding to the start of the game w + w™
while w is not terminal do
if chance acts in w then
a < uniform random action
else
> Act for all non-chance players
Teontroller +— SELFPLAYCONTROLLER (w)
> Mix policy with uniform prior to encourage exploration
S (1 — €) - Teontroller + € * Tuniform
a + sample action from 7Pl
end if
w < apply action a on state w
end while
end procedure

1T

procedure SELFPLAYCONTROLLER(w)
B + public state at w
L + tree for the subgame rooted at 3
v, m, nn_queries — RESOLVE(L)
queries < pick on average gsearch Neural net queries 8 from nn_queries
Append queries to the query buffer
return 7(3)
end procedure
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sound self-play encourages exploration off the self-play line in
two ways. First, it mixes the strategy produced by SoG with a
uniform strategy using a strength factor €, called the uniform
policy mix. Second, recursive queries generated during query
solving help generalize to situations off the self-play line.

The training procedure has strong theoretical guarantees,
converging to a Nash equilibrium strategy asymptotically
as the number of CFR iterations for re-solving subgames
approaches infinity, assuming a sufficiently expressive neural
network architecture. For the proof, see Theorem 4 and the
accompanying proof in the supplementary materials of Schmid
et al. [13].

IV. METHODOLOGY

This section describes the methods used to evaluate the
research question, detailing the evaluation method, the per-
formed experiments, and the metrics used. It also provides the
context necessary for replicating the results, by describing the
training process and the neural networks used.

A. Turn Pot-limit Omaha

To analyze the scaling properties of SoG, we devised a
custom poker game with desirable attributes for our evaluation.
This game allows control of the degree of hidden information
while minimizing emergent differences in the game rules that
may be influenced by varying degrees of hidden information.
We call the game turn pot-limit Omaha (TPLO). The first
public card revealed is the turn. As a result, our game has
three betting rounds instead of four. We limit the deck size to
12 cards; jack through ace in three suits. As alluded to by its
name, the game is pot-limit.

We devised three variants of TPLO, named TPLO1, TPLO2,
and TPLO3, where the number in each name indicates the
number of private cards dealt to each player. We removed
flushes, straights, and full houses from TPLO3, since these
combinations are not possible in TPLO1 and TPLO2.

B. Student of Games Implementation

We implemented the SoG algorithm in C++ and the network
architecture in Torch. Our implementation makes one modifi-
cation to the original SoG algorithm: instead of dynamically
growing the game tree for subgames, we use fixed-size trees.
This restriction should not significantly affect the performance
in poker, since the dynamically constructed game trees are
shallow enough in poker to be prebuilt before solving (given
the tree expansion rate s = 10 used by the SoG authors for
no-limit hold’em).

C. Evaluation Framework

Our SoG implementation initially targeted the small aca-
demic poker variant pot-limit Leduc hold’em [16]. In this
variant, players are dealt one private card from a six-card deck,
and one public card is revealed. This experiment primarily val-
idated the implementation, as the small game tree allows direct
calculation of exploitability. We measured exploitability for
varying CFR iterations to compare scaling performance with
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prior work. More iterations refine the strategy and approach
equilibrium, reducing noise in training data as the query solver
becomes more precise.

The primary set of experiments was designed to answer
the research question. This involved testing our SoG imple-
mentation across the three variants of TPLO. Since the only
variable factor for these three games is the level of hidden
information, the performance impact of this aspect on SoG
could be evaluated.

The algorithm was trained separately for each of the three
TPLO games. During training, snapshots of partially trained
agents competed against the fully trained model in their
respective games. The relative strength of these snapshots was
compared for each game to determine how much, and at what
rate, the model improved during training. The fully trained
agent also played against a uniform random opponent. Since
the TPLO games have the same action space, the uniform
random opponent was identical across games, which allows
for a direct comparison between agents. All agents used an
action abstraction allowing one pot-size bet.

Another metric used was the validation loss during training.
Training was conducted in 30 cycles, each consisting of a
sequence of self-play, query-solving, and network training.
The validation loss presented is the validation loss on the most
recent cycle processed up to that point. In other words, after
n cycles, the validation loss measured is the validation loss
on the data produced during the nth cycle. We also measure
convergence by how much the strategy changes between
successive cycles. Since the strategies in prior states affect
the ranges in later states, we consider the strategy at the root
of the game for a fair comparison, as the ranges at the root
are always the same.

D. Variance Reduction

Poker games have a high degree of variance, and luck plays
a large part in which player wins a game. Consequently, the
evaluation of poker agents can require a large number of games
to get statistically significant results. Such an evaluation can
be computationally costly and motivates the use of variance
reduction techniques. For our evaluation, we use imaginary
observations [17] in all situations where the players reveal their
private cards. This technique utilizes the fact that we know the
strategies of both players, and therefore we know the ranges of
both players in all states. So when the players need to reveal
their private cards, we do not have to consider the specific hand
they held in that game—we can instead utilize their range as
a distribution over all possible hands, given how the game
played out. So with this method, we get the expected value
of O(|possible private hands\Q) different games, weighted by
their probability of occurring, thereby significantly reducing
the variance.

E. Counterfactual Value Network

The counterfactual value network (CVN) is used to summa-
rize game states, which is used to limit the search depth and



act as an oracle for states on the frontier of subgames being
re-solved.

The input to the CVN is a public belief state 3, which
includes a representation of the public state Sp,,; and beliefs
r regarding the information states of both players. For poker
games, the public information Sp,; is summarized by three
pieces of information: the public cards, the player next to
act, and the total bets by both players. The public cards are
represented as a one-hot encoding of all cards in the deck. The
player next to act (including the chance player) is represented
by one-hot encoding, and the sum of bets made by each
player is normalized by their stack size. The beliefs about
private information, r € A[S;(Spup)] X A[S—;(Spus)], are also
provided as input to the network, where for poker games this is
a distribution over all possible private hands. The output of the
CVN is the values to both players of 3 for each information
state, and the architecture used is a multilayer perceptron.

The hyperparameters for the architecture were chosen based
on prior work as well as what showed promising results during
early testing. Moravcik et al. showed with DeepStack that
they reached significant diminishing returns after three hidden
layers for no-limit hold’em [8]. Schmid et al. used a hidden
layer size of around 1.5 times the number of possible private
hands [13]. Based on these works, we chose three hidden
layers and a hidden layer size of 300 for the TPLO variants,
where the number of private hands for TPLO3 is 220.

Early testing showed that adding normalization to the net-
work, similar to the use of layer normalization [18] for turn
endgame hold’em by Brown et al. [12], was beneficial. Our
use of the GELU activation function [19] was also inspired by
ReBeL [12]. Subscquent to the final linear layer, we force the
output of the network to obey the zero-sum property of two-
player zero-sum games [8]. The network was trained with the
Adam optimizer [20] using Huber loss [21], as used widely
in previous poker Al research [8], [12], [13].

F. Hyperparameters

Table I shows the hyperparameters used in the experiments.
The hyperparameters for the architecture are described in Sec-
tion IV-E, and the hyperparameters for self-play are inspired
by those used by Schmid et al. [13] for no-limit hold’em
with SoG, but are scaled for the smaller buffer sizes in
our experiments. As a reference, previous top poker agents
for large games typically use between 100 and 1000 CFR
iterations [7], [8], [12]. Table II compares the games used
for evaluation, including the sizes of the networks used.

V. RESULTS

This section presents the exploitability of our SoG im-
plementation in Leduc hold’em followed by the results of
experiments on scaling with hidden information.

A. Exploitability in Pot-limit Leduc Hold em

Exploitability was calculated for strategies produced by our
SoG implementation and is presented in Fig. 2 as a function
of the number of CFR iterations used when solving subgames.
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TABLE I
HYPERPARAMETERS USED FOR TRAINING THE CVN WITH SELF-PLAY.

Hyperparameter Symbol Part of Leduc TPLO
CFR iterations N Re-solving varies 200
CFR warm starting iterations d Re-solving varies 100
Batch size CVN 100 100
Number of hidden layers CVN 4 3
Size of hidden layers CVN 128 300
Initial learning rate (LR) Qinit CVN 103 1074
LR decay rate Tdecay CVN 0.5 0.5
LR decay steps CVN 3k 5k
Replay buffer size Self-play 15k 30k
Queries per search Jsearch Self-play 30 4.5
Recursive queries per search Qrecursive Self-play 3 0.5
Uniform policy mix € Self-play 0.1 0.1

TABLE I
COMPARISON OF GAMES USED TO EVALUATE THE ALGORITHM. NETWORK
SIZE REFERS TO THE TOTAL NUMBER OF LEARNABLE PARAMETERS. THE
HIDDEN LAYERS ARE FIXED FOR THE THREE TPLO GAMES, WHILE THE
INPUT AND OUTPUT LAYERS ARE ADJUSTED FOR THE NUMBER OF HANDS.

Game Possible hands ~ Network size  Blinds  Stacks
Pot-limit Leduc 6 50K 300 1200
TPLO1 12 200K 100 5000
TPLO2 66 270K 100 5000
TPLO3 220 450K 100 5000

The same number of CFR iterations was also used when re-
solving queries to obtain targets for network training.

We compared the self-play value net with unlimited search
depth. The self-play value net uses our SoG implementation
trained with sound self-play, while unlimited search depth
employs continual re-solving, but always searches to the end
of the game, bypassing the need for network estimation of
public belief states. For reference, two additional strategies
are included in the comparison: a uniform random strategy
and a random value net. The latter uses continual re-solving
with a randomly initialized value network, producing random
strategies at the beginning of the game until the terminal states
become reachable within subgames.
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respect to the number of CFR iterations used.
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Fig. 4. The mean squared difference when comparing the policy produced at
the root node between successive cycles.

B. Scaling with Hidden Information

The model was trained for the same number of cycles for
each of the three games, and compared to the time required
for training the algorithm for TPLO1; the training duration for
TPLO2 was 1.23 times longer, and the training duration for
TPLO3 was 1.77 times longer. Fig. 3 presents a comparison
of the validation loss observed during training. Additionally,
Fig. 4 shows the evolution of the policy at the root node of
the game as a comparison over successive training cycles. The
policy is represented as a matrix, where each row corresponds
to a probability distribution over possible actions for a possible
private hand.

Table IIT shows the results of the evaluation when comparing
snapshots of models for the TPLO games. The evaluation uses
the variance reduction techniques described in Section IV-D.

VI. DISCUSSION

This section provides an analysis of the results presented in
the previous section.
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TABLE IIT
LUCK-ADJUSTED WIN RATES (MBB/G) FOR THE THREE TPLO GAMES.
EACH VALUE SHOWS THE WIN RATE OF THE FULLY TRAINED MODEL
AGAINST A SPECIFIC OPPONENT. OPPONENTS INCLUDE A UNIFORM
RANDOM STRATEGY AND SNAPSHOTS OF THE MODEL AFTER 10% AND
30% OF TRAINING. WIN RATES ARE REPORTED WITH A 95% CONFIDENCE

INTERVAL.
Opponent TPLO1 (mbb/g) TPLO2 (mbb/g) TPLO3 (mbb/g)
Uniform random 2464 + 149 1448 + 137 469 £ 94
10% 104 + 55 147 + 54 237 + 41
30% 38 + 56 67 + 55 63 + 44

A. Exploitability in Pot-limit Leduc Hold em

The exploitability results from our evaluation of pot-limit
Leduc hold’em were consistent with those in the original SoG
paper [13], and with similar algorithms like DeepStack [8]
in no-limit Leduc hold’em.> Although the SoG paper lacks
detailed training setup information for Leduc, our findings
suggest that its exploitability results are replicable.

Interestingly, the self-play value net outperformed unlimited
search depth with fewer CFR iterations. This result might seem
counterintuitive, as unlimited search depth always searches to
the end of the game, not needing the network to estimate state
values. A possible explanation is that, despite searching to the
end, unlimited search depth produces noisier early iteration
value estimates. Consider the case where we use 20 CFR
iterations—the value estimates produced by the network will
always be based on what 20 CFR iterations would yield.
Therefore, even after a small number of iterations, the self-
play value net can produce decent value estimates for its leaf
nodes (corresponding to 20 CFR iterations), while unlimited
search depth only achieves value estimates as accurate as the
current iteration. For this reason, it is reasonable that using a
network trained with self-play initially converges faster than
unlimited search.

During initial testing, we used random situation generation
instead of self-play, similar to DeepStack’s training [8]. This
resulted in significantly worse exploitability, likely due to
the poker-specific abstractions used in DeepStack. Neither
SoG nor ReBeL employs such abstractions, and Brown et
al. showed that training with randomly generated situations
yields poor results for ReBeL [12]. Our experiments confirm
this result for SoG as well.

B. Scaling with Hidden Information

In Table III, a higher degree of hidden information correlates
with a significant reduction in the win rate against a uniform
random strategy. This suggests that in a game with more
hidden information, the SoG algorithm fails to learn the
intricacies of the game to the same degree, given equal training
time. The table also suggests that the algorithm converges
more slowly with more hidden information. This finding is
strengthened by Fig. 4, which shows that the time it takes
for the strategy in the root node to stabilize increases with a
higher degree of hidden information.

3https://github.com/lifrordi/DeepStack- Leduc.



When comparing the fully trained agent versus the agent
that has completed 10% of the training cycles, the win rate
is higher for games with more hidden information, with a
similar although less prominent trend for the 30% partially
trained snapshots. These results suggest that more imperfect
information makes the training process less efficient and that
the algorithm requires more training data to generalize and
understand the game well.

A clear pattern also emerges in the training loss: a greater
degree of hidden information corresponds to higher validation
loss. An important consideration is that the network must
handle a more complex problem for the larger games with
respect to the size of the network output, as it needs to produce
output values for all possible private hands for both players.

An interesting aspect of the results is the relative training
time. TPLO3 has 18 times as many possible private hands
compared with TPLOI1, which means that the CVN needs
about 18 times more input and output, and the CFR calcu-
lations made during re-solving have to handle 18 times as
many states. Given this context it is a surprising result that the
training time was only 1.77 times longer for TPLO3 relative
to TPLOI1. The slight difference can be explained by that our
SoG implementation uses tensor objects from the Torch library
for most operations on player ranges, and the Torch library
is well optimized for tensor operations. Nonetheless, given
that all parts of our implementation were written in C++, this
low relative slowdown with respect to the number of possible
private hands is a surprising result. The results suggest that
SoG scales well with the degree of hidden information in terms
of computational demands. It should, however, be noted that
the specifics of the implementation can significantly affect the
computational demands, and in this project the primary focus
has been on clarity rather than on computational performance.

VII. CONCLUSIONS

In this paper, we presented the first public reproduction
of the current state of the art in reinforcement learning with
search: the student of games (SoG) algorithm. We evaluated
how well the algorithm scales in a custom pot-limit Omaha
variant with varying numbers of private cards. Our results
show that the degree of hidden information significantly
impacts the performance: the algorithm converges faster and
learns the game to a greater extent with less hidden informa-
tion. Somewhat surprisingly, the computational demands per
training cycle appear to increase sublinearly with the degree
of hidden information.

Looking ahead, future work could scale our experiments
to larger poker games to assess whether the observed scaling
properties hold in larger games and with more computational
resources. It would also be valuable to test whether these
scaling properties replicate in other imperfect information
games with different forms of hidden information dynamics.

CODE AVAILABILITY

The full implementation of our SoG reproduction is avail-
able at https://github.com/moscars/student-of-games.
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