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7.1 INTRODUCTION

Machine learning holds great promise for detecting and responding to increasingly
sophisticated cyberthreats [1]. The large volume of available data can, however, pres-
ent challenges for effective data management. Annotating data typically requires a sig-
nificant amount of time and resources, particularly if the task necessitates specialized
knowledge. This raises the question of whether there are methods to reduce the manual
labeling effort, while still achieving satisfactory performance. Active learning (AL) can
reduce the necessary amount of labeled data by introducing human interaction in the
training process. Through different query strategies, AL investigates the selection of
data points by identifying the most informative samples to be labeled [2, 3].

This chapter, extending previous work [4], presents a study of the potential and
application of AL to increase model performance for a binary text classification task.
The aim is to fine-tune a transformer model for the purpose of classifying tweets to
determine if an advanced persistent threat (APT) is mentioned. Incorporating AL in the
training process seeks to avoid the laborious process of labeling data points that do not
contribute further to spanning the outcome space. The main objective is to study which
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AL approaches and strategies that are suitable for continuous improvement of identifica-
tion of APTs in tweets. Hence, the research question studied is the following:

*  What active learning approaches are effective for continuous improvement of
classification of advanced persistent threats in tweets?

The remainder of this chapter is structured as follows. In Section 7.2, background
to active learning is provided, along with how the technique can be related to the work
of detecting cyberthreat actors. Section 7.3 then describes related work, followed by
Section 7.4 discussing various strategies used to select data points for labeling, which is
the central issue in active learning. Section 7.5 then outlines the method for the example
of detecting cyberthreat actors in text fragments, which is explored in this chapter to
illustrate the use of active learning for threat analysis. Section 7.6 presents the results
of the conducted experiments in terms of how different strategies and parameters affect
the machine learning performance. Section 7.7 includes a discussion of the results and
experimental limitations to consider, followed by conclusions and recommendations for
future work in Section 7.8.

7.2 BACKGROUND

This study focuses on the application of AL approaches for classifying tweets to
identify potential threat actors within a cybersecurity context. Understanding the
cyber perspective, the importance of identifying threat actors, and how it relates
to continuous updating of a machine learning classifier, is therefore crucial for the
purpose of this work.

7.2.1 Active Learning

AL has been used successfully in a wide variety of applications, such as computer vision
[5, 6], activity recognition [7, 8], and natural language processing (NLP) [9]. AL aims
to reduce the labeling effort required to train a model. Rather than labeling the entire
dataset, only a small subset is labeled by querying an oracle. The oracle can be a human
or a computer software. AL strategies choose which data points to label based on some
type of informativeness criterion [10]. The goal is to select a representative set of labeled
instances that capture the underlying distribution of the entire dataset. The performance
of the model trained on this smaller set of labeled data can, with an optimal selection of
data points, be comparable to a model trained on a much larger labeled dataset [2]. In
most work on AL, it is assumed that the oracle is always correct and acts in accordance
with what is expected, but this is not always the case [11, 12]. It is important to consider
whether the assumptions about the oracle are reasonable, given the application at hand,
for example contemplating whether the oracle is an expert or not.
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Figure 7.1 illustrates an iterative training process of active learning, which is com-
monly employed. The training process is repeated until the model performs robustly,
the labeling budget is used, or certain criteria are met. The labeling budget is often a
percentage of the total amount of data [13]. The choice of AL strategy is dependent on
the problem at hand. It can be difficult to estimate whether one strategy performs bet-
ter than another before they have been put to the test. Settles [14] states that random
sampling, which typically is used as a baseline, might be advisable if the problem is not
well understood.

7.2.2 The Cyberthreat

Traditional cyberthreat detection methods rely on preventive work and network moni-
toring [15]. However, identifying and remediating cyberattacks take time. As threat
actors grow more complex, new complementary technologies and methods are needed
to identify and counter cyberattacks [16]. Cyber actors use social media, open forums,
and the darknet to plan attacks, and the results of attacks are often sold or exposed
online. Analyzing unstructured data from open sources can thus assist in predicting
cyberattacks and cyberthreats.

APT is a term that is used to label a specific type of threat actor. An APT is usu-
ally a particularly well-resourced, stealthy adversary who is able to target specific
information, and also eventually acquire it through persistent efforts [17]. The APT
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will typically succeed even if the target is a competent high-profile company or even
a government. APTs are typically conducting long-term campaigns that involve mul-
tiple stages, utilizing the full range of their capabilities. According to the U.S. National
Institute of Standards and Technology [18], APTs demonstrate a high level of expertise
while they also possess large amounts of resources, enabling them to leverage multiple
attack vectors, such as cyber, physical, and deceptive tactics. These attacks primarily
involve infiltrating the targeted entity’s information technology infrastructure to gain
confidential information, disrupt vital aspects of a mission or organization, or position
themselves to achieve similar objectives in the future.

APTs are typically given a name or a number by the first organization that discovers
and publishes findings about them. However, these organizations, often antivirus and
other types of cybersecurity companies, normally use their own naming conventions
for an APT, regardless of who named it first [19]. This can lead to serious confusion.
APT?28, for example, has multiple aliases, such as Fancy Bear, Strontium, Pawn Storm,
Sofacy, Sednit, and Tsar Team [19]. APT28, mentioned here as an example of an active
APT, is a Russian-associated group that has been extensively documented and analyzed
due to its involvement in multiple high-profile cyberattacks. The group has a long his-
tory of performing attacks with the common goal of promoting the political interests of
the Russian government.

Cyber intelligence analysts have various roles. Some seek to assess the various
APTS capabilities to make threat assessments by analyzing and evaluating computer
networks and systems [15]. They typically use various tools and techniques to monitor
network traffic and activity, to detect patterns or anomalies that may indicate a cyber-
attack or a security breach. Actions to prevent or mitigate cyberattacks can then take
place at different levels. At the strategic level, long-term measures are required, for
example, replacing an entire system, or overhauling an architecture, due to an exces-
sive number of security risks [20]. At the tactical level, responses are often more time-
sensitive. Associated necessary measures should be implemented more swiftly, which
may include, for example, updates of firewall rules or changes in routing tables.

Intelligence analysts possess considerable expertise in identifying and recognizing
APTs. As such, they are potential users of the outcome of the study presented in this
chapter, where the intelligence analysts fulfill the role of labeling data points. Through
this process, the analysts can make valuable contributions to the training of the system
through AL approaches, without necessarily having to share secret data with a system
designer. This, in turn, secures that the system continues to stay pertinent, while accom-
modating additional data.

7.3 RELATED WORK

Several surveys explore AL within NLP applications. Olsson [9] presents an over-
view of the area, especially focusing on the theory and methodology that different
AL approaches use for data selection. Much of the content can be generalized to AL
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in other applications as well, and is not specific to NLP. Miller et al. [21] present an
overview, as well as simulation studies to investigate performance, efficiency, and
practical applicability. They use support vector machines (SVMs) with data from
Twitter, Wikipedia talk pages, and news articles in their experiments. Margin sam-
pling, that is, uncertainty sampling based on the distance from the data points to
the SVM hyperplanes, performs the best in their experiments. They also find that
the length and style of the text data affect the results. In Wang et al.’s [22] study,
human-in-the-loop NLP frameworks are discussed from both the machine learn-
ing perspective and the human-computer interaction perspective. They classify the
surveyed papers in terms of task, goal, human interaction, and feedback learning
method. Zhang et al. [23] showcase how the number of publications focusing on AL
in the ACL Anthology' has increased over the last 15 years, indicating an increased
interest in the subject. They discuss the current status of AL in NLP, as well as sug-
gested future directions. Stiennon et al. [24] introduce a human feedback model for
producing summaries of text data. In experiments with data from Reddit, they show
that their model improves the quality of summaries, compared to supervised learn-
ing. Zhang et al. [25] study how active learning can aid in the fine-tuning of large
language models (LLMs). LLMs, like deep learning in general, need a large amount
of data to be trained. The paper introduces an approach where AL is combined with
existing fine-tuning techniques to improve data efficiency. Experiments show that
the new approach is better than baseline models on three complex reasoning tasks.
Hu et al. [26] explore how AL together with LLMs handle code-related tasks. They
study 11 different sampling strategies with three different LLMs, and find that clas-
sification-related tasks yield good performance, while nonclassification tasks do not
yield as good results. In their experiments, they also find that clustering-based strate-
gies outperform uncertainty-based strategies.

In the work mentioned above, AL within different NLP applications is studied, but
not explicitly with regard to the cybersecurity domain. Bhattacharjee et al. [27] study
the task of classifying phishing or malicious URLs. They propose an uncertainty-based
AL strategy to help with the task, and experiments show an increase in the results. Lin
et al. [28] investigate how malicious mislabeling and data poisoning attacks can affect
AL of deep neural networks. They propose a clustering-based strategy and perform
experiments on an image dataset. The results show that the suggested AL strategy is
robust against mislabeling and data poisoning attacks. Moskal and Yang [29] introduce
an approach that combines AL, transfer learning, and pseudolabels to aid analysts in
interpreting possible intrusion alerts. They use a minimal amount of data, but still yield
significant results. Pal et al. [30] take the perspective of the attacker, instead of defend-
ing against attacks. They focus on model extraction, where the aim of the attacker is to
be able to replicate an unknown model, without access to the training data or knowl-
edge about the employed base model. Their framework, denoted ActiveThief, is able to
extract models in a variety of domains, from image to text. They compare different AL
strategies within the framework and find that they get better results compared to the
baseline random strategy.

Li et al. [31], Srivastava et al. [32], and Xie et al. [33] all study how AL can be
used in named entity recognition (NER) tasks. Deep neural network models have
resulted in good performance, but are typically dependent on the amount of data,
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which is why AL can be a possible solution. Li et al. [31] present an adversarial AL
framework to pick the most informative samples for annotation. Their AL strategy
is based on comparing the similarity between unlabeled samples and the already-
labeled samples. Srivastava et al. [32] combine reinforcement learning with AL in
their proposed method. Xie et al. [33] focus specifically on Chinese NER, which has
not been studied much and is a complex task. They introduce a strategy combining
uncertainty, confidence, and diversity.

Compared to previous work as discussed, this study focuses on evaluating the per-
formance of different AL strategies in classifying APTs in tweets. A new dataset is used
and the case when annotated data is scarce is studied specifically. The scarcity of data
is motivated, as previously mentioned, by the expensive process of annotating data,
especially when expert knowledge is needed.

7.4 ACTIVE LEARNING STRATEGIES

The central research question in active learning concerns how data points for
annotation are selected. An example of how the selection of data points can be
performed using two different strategies is illustrated in Figure 7.2. Four AL strat-
egies are studied in the experiments, including the random strategy. The random
query strategy (AL-random) selects data points randomly for labeling, and is used
as a baseline for comparison with the other strategies. The other strategies are
uncertainty sampling with entropy for uncertainty measurement (AL-entropy),
diversity sampling using K-means (AL-kmeans), and cost-effective active learning
(CEAL-entropy).
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FIGURE 7.2 Data point selection by different AL query strategies. Red and blue points
indicate labeled samples for two classes, and gray points represent samples selected for
oracle labeling for the respective query strategy. The dashed line marks the calculated divid-
ing line between the two classes, and the red crosses mark the centroids of the clusters.
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7.4.1 Uncertainty Sampling

Uncertainty sampling is based on selecting the samples that the model is most
uncertain about how to classify. Thus, instances where the model is highly uncer-
tain are supposed to be maximally informative [2]. A common approach to evalu-
ate the predictions made by a model is to assess the probabilistic distribution of
the classes. There are several uncertainty-based query strategies to measure this,
such as least confidence, margin of confidence, and entropy. Entropy, a measure
of impurity of a system [34], is widely used in machine learning as a measure
of uncertainty of a model. The higher the entropy value, the more uncertain the
model is about which class the data point belongs to. Hence, for binary classifica-
tion, entropy-based sampling is the same as choosing the data point with posterior
closest to 0.5.

7.4.2 Diversity Sampling

Uncertainty sampling is prone to selecting outliers and data that may not accurately
represent the dataset [35]. Conversely, diversity sampling mitigates these concerns
by identifying a subset of samples that comprehensively cover the entire dataset.
Depending on the methodology employed to construct the subset, there exists a
variety of diversity sampling techniques. One technique is cluster-based sampling,
which is a method used to find structures among the unlabeled data points, where a
commonly used strategy is K-means. This involves clustering a set of samples into
K clusters, each characterized by a centroid point that minimizes the associated
inertia [36].

7.4.3 Cost-Effective Active Learning

In addition to only selecting data points that the model is least confident about, cost-
effective active learning (CEAL also considers samples where the model is most
confident [37]. For instance, if the model predicts a data point belonging to a class
with certainty 0.5, it is a likely candidate for uncertainty sampling. However, if the
prediction is 1, it can be inferred that the model is maximally confident in its clas-
sification. In each AL cycle, the CEAL technique selects samples at both extremes:
those with the highest uncertainty, and those with the lowest. For the latter, CEAL
suggests provisionally labeling them based on the model’s predictions, creating so-
called pseudolabeled samples [37]. Subsequently, both the pseudolabeled samples
and the oracle-labeled data points are added to the labeled training dataset, which
is used to train a new model. Upon completing the training of the new model, the
pseudolabeled samples are eliminated from the training dataset, and a new CEAL
cycle is initiated. This process is depicted in Figure 7.3.

The unlabeled samples with an uncertainty measurement below a predetermined
threshold ¢ are considered the most certain. The threshold for high-confidence sample
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FIGURE 7.3 Cost-effective active learning.

selection is updated at each epoch, according to Equation 7.1. This is to be done to
ensure that the labeling process remains dependable [37]. The threshold ¢ is defined by:

for t=0
5:{%’ o, (7.1)

6—drxt, fort>0,

where J, is the initial threshold, dr controls the threshold decay rate, and ¢ is the current
epoch.

7.5 METHOD

This section describes the model used, the data, and the experimental setup.
Figure 7.4 displays the iterative process used to train and evaluate the model. The
chosen AL strategy picks data points from the pool of unlabeled data based on the
defined selection criteria. The chosen data points are presented to the oracle, who
in turn annotates them. The now-annotated data points are added to the annotated
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FIGURE 7.4 The iterative AL training and validation process employed in the experiments.

data, which in turn is used as a training set to retrain the model. The updated model
is tested on the validation set and a performance score is received. After this final
step, the cycle restarts and the AL strategy picks new data points for the oracle to
annotate.

7.5.1 DistilBERT for Text Classification

DistilBERT is an open-source NLP framework used for the text classification part
of the experiments. DistilBERT is smaller, faster, cheaper, and lighter than its pre-
decessor BERT [38]. By using a small model, the time and resource costs associ-
ated with model training can be reduced while still maintaining high performance.
The pretrained transformer DistilBERT, as described, was used through the Hugging
Face library [39]. The tweets were tokenized and [CLS] and [SEP] tokens, used for
classification and sentence separation, were added. The [CLS] token captures the
entire context of the input for simple downstream tasks, such as classification. For
sentence representations used in classification tasks, the size of the [CLS] token is
equal to the number of data points X the number of hidden states. The tokenized
input was padded to match the length of the longest tweet in the dataset. An attention
mask was also created to distinguish the padded tokens from the nonpadded ones.
The stochastic optimizer Adam [40] was utilized. A small search was conducted to
identify an optimal learning rate for this classification task. Various learning rates
were tested, focusing on values near the suggested learning rates mentioned for the
original BERT model [41]. The search resulted in an optimal learning rate of 2e — 5.
A single linear layer was added at the output hidden state of the [CLS] token, on top
of the DistilBERT model, to perform classification.

The pretrained model and the additional untrained classification layer were trained
and updated at every iteration for the specific task. The cross-entropy loss was used
to measure the performance of the model, calculated by comparing the divergence
between the predicted probability and the actual label.
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7.5.2 Dataset

The dataset used in the experiments contains approximately 35,000 labeled tweets
[42]. Cyber-related tweets were identified by their association with keywords such as
“cyber” and “malware.” An existing infrastructure for data download and rule-based
detection of known APTs was leveraged to download large amounts of cyber-related
tweets and automatically categorize them into two groups: texts with and without
(known) APTs.

The dataset contains a total of 70 different APTs. A language detector from the
fastText [43] library was utilized to identify and discard all tweets where English was
not the most probable language. To enhance the model in locating APTs, distracting
elements in all tweets were eliminated. Links, email addresses, phone numbers, and
usernames were replaced with their respective masking tokens (“LINK,” “MAIL,”
“PHONE,” and “USER”). Emojis were then converted to descriptive ones (for example,
“(-” was changed to “:thumbs up:”) using the demoji Python package.? Duplicate tweets
were removed, and the tweets were also normalized, for example, replacing “a. m.” and
“p . m.” with “am.” and “p.m.”

Approximately 19,000 tweets remained after the cleaning. The entire dataset con-
tained twice as many tweets belonging to the negative class as the positive class. To
prevent the model from overtraining on a small number of negative examples, a skewed
distribution with three times more negative examples was chosen for the training. An
even distribution between positive and negative was chosen for the validation set. For
the unlabeled pool dataset, the remaining data was added, resulting in 66% negative
samples. For clarification, this is presented in Table 7.1.

Figure 7.5 displays the final preprocessed dataset, with the x-axis representing the
length of tweets, and the y-axis representing the number of tweets, starting with the first
bar representing one-word length.

7.5.3 Experimental Setup

In Algorithm 1, the main loop of the experiment is documented using pseudocode.
The algorithm shows that the total number of data points added to the training data-
set £ is K x N, where K is the number of samples in a batch and N is the number
of epochs. The F-score and the accuracy were accumulated over all batches and
logged at each epoch for the validation dataset. To obtain a fair evaluation and com-
parison between AL approaches, the training was averaged over three runs with 10

TABLE 7.1 Data distribution per class

DATASET POSITIVE NEGATIVE
Training 25% 75%
Validation 50% 50%

Unlabeled pool 34% 66%
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FIGURE 7.5 The frequency of sentence lengths in the final preprocessed dataset.

different seeds (101, 102, ..., 110). The stopping criterion for training was when the
maximum number of epochs was achieved. At every iteration, the model M is fine-
tuned and thereby updated. At the end of every epoch, data points chosen accord-
ing to a query strategy are added to the training dataset. In experiments involving
the CEAL approach, the training dataset is augmented with pseudosamples during
the fine-tuning of the model, and after the fine-tuning these pseudosamples are
then returned to the unlabeled data pool before the next iteration, as described in
Section 7.4.3.

Algorithm 1 Active learning experiment design

Inputs: Pretrained transformer model M, unlabeled pool dataset U, initially labeled
dataset £, validation dataset V, acquisition size K for AL sampling, threshold 6 for
CEAL pseudosample inclusion (0 if CEAL is not to be used), maximum number of
epochs N.

Output: Fine-tuned model M.

l:fori=0,1, ..., Ndo

2:  Fine-tune M with L.

3:  Evaluate M onV and log results.

4:  Move back any pseudosamples from L into U.

5:  Move K samples from U into £ based on a query strategy.

6:  Move pseudosamples with uncertainty below 6 from U into L.
7. Update 6 according to Equation 7.1.
8: end for

For diversity sampling, K-means clustering was used to sample diverse data points,
deviating from uncertainty sampling where entropy was based on probabilities of the
different classes. K-means was performed on the [CLS] token, which is a special clas-
sification token corresponding to the last hidden state in the DistilBERT model. K data
points were then chosen to be sent to an oracle for labeling; for diversity sampling with
K-means, the K data points were based on the smallest distance to each centroid, and for
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uncertainty sampling, the K most uncertain data points according to the classification
by the currently fine-tuned model were chosen.

The CEAL approach required optimal values for the initial threshold 6, and the
decay rate dr to be set in order to be implemented. The value 6 sets the limit for the
number of samples that are transferred to the labeled training dataset, and dr deter-
mines the rate of decay of 6 over the number of epochs, as described by Equation
7.1. The decay rate dr was chosen to be 0.0033, as stated as the most optimal value
according to the literature [37]. An initial threshold o, of 0.35 was established
through experimentation. The threshold allowed for the addition of pseudolabeled
samples, that is, data points with entropy lower than the threshold are included in
the training dataset. The addition of the pseudosamples had the potential of improv-
ing performance. Yet there was also a risk of decreased performance if incorrect
labels were assigned.

The amount of initially labeled data and the acquisition size were varied
to determine their impact on the model’s performance. The amount of initially
labeled data refers to the data used to train the model at the start of the experi-
ment, and the acquisition size refers to the number of data points added each epoch.
For the amount of initially labeled data, experiments were conducted with 0.05%,
0.1%, 0.5%, and 1% of the whole dataset, corresponding to 9, 19, 96, and 192
data points, respectively. The acquisition sizes tested in the experiments were 10,
25, and 50 data points. The validation set was set to be 4% of the whole dataset.
To prevent misleading results due to lack of data in the validation set, a consistent
amount of data was allocated for validation, regardless of the size of the training
set. The conducted experiments were executed on a high-performance NVIDIA
DGX A100 computing cluster consisting of eight NVIDIA A100 40 GB Tensor
Core GPUs.

7.6 RESULTS

The four different query strategies are referred to as AL-entropy (uncertainty-based
sampling), AL-random (random sampling used as baseline), AL-kmeans (diversity-
based sampling), and CEAL-entropy (the CEAL strategy). The presented results
referred to as CEAL-entropy are solely based on AL-entropy+CEAL-entropy. All
combinations, that is, AL-entropy+CEAL-entropy, AL-random+CEAL-entropy,
and AL-kmeans+CEAL-entropy, were tested, but due to their similar performance
and space constraints, not all combinations are shown. As stated, the incorpora-
tion of pseudolabeled samples depended on the model’s classification confidence to
identify data points suitable for inclusion in the training dataset. Consequently, the
results for CEAL-entropy are presented only for experiments in which the model
displayed sufficient confidence in classifying data points. In the graphs presented in
Figures 7.6-7.8, the x-axis denotes the number of labeled data points by the oracle,
not the pseudolabeled samples.
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FIGURE 7.6 Average F-score of AL approaches and query strategies with different
amounts of initially labeled data and acquisition size 10, averaged across 10 seeds and
shown with 95% confidence intervals.

7.6.1 Acquisition Size 10

In Figure 7.6, four graphs are presented displaying the F-score of four scenarios with
acquisition size 10 and different quantities of labeled data that the model had at its
disposal for training. The experimental setup involved conducting experiments with an
acquisition size of 10 over a span of 20 epochs, with varying amounts of initially labeled
data. The total number of labeled data points was determined by adding the initially
labeled data to the 200 data points (10 X 20) acquired from the pool of unlabeled data.
This was the procedure for all query strategies, except when employing CEAL.

7.6.2 Acquisition Size 25

Figure 7.7 contains four graphs representing the F-score across four scenarios with
acquisition size 25 and varying quantities of labeled data available for model training.
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FIGURE 7.7 Average F-score of AL approaches and query strategies with different amounts
of initially labeled data and acquisition size 25, averaged across 10 seeds and shown with
95% confidence intervals.

The experiments were conducted across 20 epochs, with varying amounts of initially
labeled data. Similar to the previous section, the total number of labeled data points was
determined by adding the initially labeled data to the 500 data points (25 X 20) acquired
from the pool of unlabeled data.

7.6.3 Acquisition Size 50

In Figure 7.8, the F-scores for four separate scenarios with acquisition size 50 are dis-
played, characterized by the varying quantities of labeled data available to the model
during the training process. As in the previous sections, the experiments were carried
out over 20 epochs, with different amounts of initially labeled data. The total number of
labeled data points was calculated by adding the initially labeled data to the 1,000 data
points (50 X 20) acquired from the pool of unlabeled data, to provide a comprehensive
understanding of the performance trends under this experimental condition.
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FIGURE 7.8 Average F-score of AL approaches and query strategies with different
amounts of initially labeled data and acquisition size 50, averaged across 10 seeds and
shown with 95% confidence intervals.

7.6.4 Comparison of Acquisition Sizes

Table 7.2 presents a comparison between acquisition sizes 10 and 50, using 0.5% of
the initially labeled data (96 data points). It presents the effects of acquisition sizes on

TABLE 7.2 F-score for acquisition sizes 10 and 50, when trained on the same number
of data points

DATA  ACQ. AL- AL- AL- CEAL-
POINTS  SIZE EPOCHS ENTROPY RANDOM KMEANS ENTROPY
196 10 6 0.76 0.75 0.76 0.76
50 2 0.39 0.39 0.39 0.39
246 10 M 0.86 0.82 0.83 0.85
50 3 0.61 0.54 0.62 0.61
296 10 16 0.89 0.86 0.86 0.88
50 4 0.76 0.78 0.80 0.76
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performance, with the F-score for each of the tested query strategies given for a specific
number of data points, thus resulting in different numbers of epochs. To compare how
the F-score is affected by the same number of data points with varying acquisition sizes,
the rows should be analyzed in pairs.

7.7 DISCUSSION

As can be seen in Figures 7.6-7.8, each of the tested query strategies yielded impressive
results. For acquisition size 10, Figure 7.6(a) and (b) show that the AL-kmeans strategy
outperformed both the AL-entropy and AL-random strategies until approximately 100
data points were labeled. After that point, all query strategies performed more or less
equivalent to each other.

Similar to the results observed with an acquisition size of 10, Figure 7.7(a) and
(b) display that even for acquisition size 25, the AL-kmeans demonstrates a tendency
for improved performance in the initial stages of the training process. The availabil-
ity of a larger initial dataset diminishes the advantage of the AL-kmeans approach,
as evidenced in Figure 7.7(c) and (d). In the case of the highest number of initial
data points, Figure 7.7(d) demonstrates that the AL-entropy query strategy margin-
ally surpasses the AL-random and AL-kmeans strategies in performance, starting
at approximately 400 labeled data points, while AL-kmeans and AL-random exhibit
similar performance.

For acquisition size 50, the AL-kmeans strategy shows a performance slightly more
advantageous than other query strategies up to 250 data points. However, as shown in
Figure 7.8(a) and (b), the difference is subtle. Independent of the initial training data
quantity, the AL-random and AL-kmeans strategies tend to converge toward each other,
resulting in equivalent F-scores. Notably, similar to acquisition size 10, the AL-entropy
strategy demonstrates a slightly higher F-score upon the model’s training completion for
all levels of initially labeled data.

This might suggest that employing a diversity-based method is most effective
when only a limited amount of labeled data is available. Presumably, this approach
succeeded in selecting data points that more accurately embodied the dataset compared
to the uncertainty-based method. As the amount of training data increased, the impor-
tance of selecting diverse data points seemed to diminish. As a result, AL-random and
AL-kmeans displayed similar behavior, whereas AL-entropy achieved a marginally
higher F-score. Nonetheless, the difference can be considered minimal, and the similar
results are likely influenced by the inherent simplicity of the problem, as all query strat-
egies exhibit high performance.

Contrary to the initial assumption that CEAL would effectively increase the
amount of training data and subsequently enhance the model’s performance, this
does not appear to be the case. In instances where 0.5% of all data were labeled
before training, Figures 7.6(c), 7.7(c), and 7.8(c) display that the inclusion of pseu-
dolabeled data points only had a marginal effect on the model’s performance and
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achieved an F-score comparable to AL-entropy alone. This can be attributed to the
fact that only a few pseudolabeled samples exhibited entropy below the threshold and
were subsequently added to the training set. This is not surprising since the presented
results for the CEAL approach combine AL-entropy+CEAL-entropy. Instead, when
the model is provided with more initially labeled data, as can be seen in Figures
7.6(d), 7.7(d), and 7.8(d), it exhibits increased confidence in its predictions, leading to
a greater number of data points falling below the threshold and being incorporated
into the training set. This results in inferior performance compared to other strate-
gies, as the model is not sufficiently confident in its predictions, causing data points
to be assigned incorrect labels. In light of these findings, the optimality of setting an
initial threshold and subsequently reducing it by a factor over the number of epochs
according to Equation 7.1 can be questioned. However, the poor results from the
CEAL approach might also be because of the small amount of data used for training.
If there was more training data, the estimations might be better and more certain,
resulting in a better output from CEAL. That is, CEAL might be a good choice if
data is less scarce, but in this work the focus is on a scenario where data annotation
can be expensive, and it is therefore of interest to limit the annotation cost. Based on
the results, the threshold-setting method appears to be more sensitive than has been
proposed in previous studies [37]. An alternative approach, in which the threshold
is more flexible and adapted to the model’s confidence, might have yielded a differ-
ent outcome. Another possible way could involve training the model over a greater
number of epochs, thereby increasing the likelihood of accurate label classification,
while simultaneously allowing the threshold to be set at a lower value.

Upon examining Table 7.2 to analyze the impact of acquisition sizes, it
becomes apparent that the choice of acquisition size can influence the perfor-
mance of different query strategies. Uncertainty-based query strategies, such as
AL-entropy and CEAL-entropy, achieved a higher F-score from a smaller acqui-
sition size over a greater number of epochs. For example, after 296 labeled data
points, AL-entropy achieved an F-score of 0.89 with an acquisition size of 10, and
0.76 with an acquisition size of 50. The smaller acquisition size also enhanced the
performance of both AL-random and AL-kmeans strategies up to 246 labeled data
points. When further increasing the amount of labeled data, the difference can be
seen as negligible. Upon the model reaching a meaningful performance level, the
impact of acquisition sizes on the convergence rate dropped to a barely notice-
able level. However, uncertainty-based query strategies, such as AL-entropy and
CEAL-entropy, seem to benefit from a smaller acquisition size over an extended
number of epochs.

To address the research question, a trade-off between time and F-score must be
made. AL-kmeans utilized the [CLS] token, which had a size equal to the number of
data points X the number of hidden states, to select data points for labeling by the
oracle. Consequently, AL-kmeans might not be an appropriate strategy when work-
ing with high-dimensional data, if time consumption is a performance requirement. In
contrast, AL-entropy and AL-random selected their data points based on probabilities
for each label and, therefore, did not necessitate selection of data points from this high-
dimensional space.
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7.7.1 Limitations

It can be argued that labeling data needs to include a nonbiased oracle. In this study,
this concern has been mitigated, as the oracle is a computer software that simulates a
human in providing correct labels. However, a broader perspective and a possible future
scenario includes a human annotator as the oracle. In such scenarios, a malicious oracle
may introduce bias, for example, by consistently mislabeling tweets referencing a par-
ticular threat as negative [44].

The overall performance of the various AL approaches and query strategies was
notably high, with several strategies achieving an F-score exceeding 0.90. This raises the
question of whether the classification task itself is relatively straightforward for a com-
plex transformer such as DistilBERT. Moreover, this level of performance is expected,
given the binary nature of the classification problem, compared to a multiclass problem.
Another consideration is that the model potentially learned the precise names of the 70
distinct APTs, which might have limited its ability to generalize and maintain compa-
rable performance if new data containing different APTs are introduced.

In this work, a relatively small amount of data is used to train an LLM model.
The experiments are simulations using an already-annotated dataset, aiming to repli-
cate a scenario with a human expert annotating the data samples gradually, as they are
selected over time by the AL strategy. For AL in general, however, it is important to also
take the annotation cost into account, and arguably even more so when expert knowl-
edge is needed for the annotation process. With humans, the task becomes more com-
plex, possibly introducing a varying labeling cost, different types of noise, disagreement
about the labels, etc. [11, 12]. While simulations have the advantage of providing more
control over the experiments, they also risk oversimplifying the real-world scenario that
is intended to be replicated.

7.8 CONCLUSIONS

This work investigated the potential of AL and its effectiveness for continuous improve-
ment of classification of APTs in tweets. The transformer model DistilBERT was
employed to classify the tweets, and AL approaches were utilized to iteratively add
new labeled data points to the training dataset. Different AL approaches, including
uncertainty-based and diversity-based query strategies, were examined, with several
strategies achieving high performance. The diversity-based query strategy K-means
excelled in the early training stages with limited prelabeled data. However, as the vol-
ume of training data increased, the performance advantage diminished. Additionally,
as the number of training epochs increased, the uncertainty-based strategy showed a
marginally improved performance relative to the other strategies. Interestingly, the
CEAL approach did not enhance the model’s performance. The incorporation of data
points with predicted labels often resulted in incorrect labels, thereby undermining the
performance.
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For future work, it would be interesting to explore the impact of combining the
K-means strategy, which in this project demonstrated effectiveness when a minimal
amount of labeled data was available, with uncertainty-based methods, such as entropy.
This could be done by employing K-means to select K clusters and calculating entropy
within each cluster, rather than on all data points in the unlabeled pool, which could
potentially offer a more effective strategy for diverse sampling, while focusing on data
points with higher model uncertainty. Additionally, assessing the generalizability of
these findings across various datasets and distributions would be valuable. Moreover,
experiments with human subjects in the annotation process would be of interest. This
project focused on the performance of query strategies in a binary classification context,
so extending the investigation to multiclass problems would be beneficial. Lastly, fur-
ther examination of the potential of the CEAL approach is warranted, given its promis-
ing results in prior studies [37]. Exploring alternative methods for establishing the initial
threshold, as well as for reducing the threshold, could prove beneficial.
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