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For legal and privacy reasons it is often prescribed that data bases containing sensitive

personal data can be published only in anonymised form. History shows, however, that the

privacy of anonymised data in many cases is easily broken by de-anonymisation attacks.

This paper defines guiding principles for decisions about releasing anonymised data and

provides a simple process for analysing de-anonymisation risk and for making decisions

about publishing anonymised personal data. At the heart of this process is an information-

theoretic de-anonymisation feasibility limit that is independent of the details of both the

anonymisation procedure and the adversarial de-anonymisation algorithms. This feasi-

bility limit relates the adversarial mutual information of the anonymised data and the

attacker's background information to the number of records in the anonymised data base

and the acceptable risk of privacy violations. Based on this result, we explain, discuss and

exemplify the process for making decisions about releasing anonymised data.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. The data anonymisation issue

Datamining in the vast repositories of digital information that

we have today and that grow at an accelerating pace can be of

great value for business, research, government and law

enforcement but is also a very significant threat to privacy.

The wholesale collection of personal data by companies and

governments combined with “big data” technologies aggra-

vate the privacy hazard. Decision-, law- and policymakers are

therefore faced with complex issues where the utility of

making information available has to be balanced against

legitimate legal, ethical and privacy concerns. An established

solution is to publish anonymised data.

Anonymisation means that the data is processed before

publishing for the purpose of hiding the true identity of the
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people that are described by the data. De-identification, which

means that explicit identifiers such as full names and social

security numbers are removed, is a necessary but typically

insufficient part of the anonymisation process. Proper ano-

nymisationmeans that the data is filtered such that the risk of

a competent adversary identifying published information

about a targeted individual is sufficiently small. De-

anonymisation attacks match things that the adversary

knows about the target to the published information which

may enable the attacker to pinpoint sensitive information

about a target person in the anonymised database. An

employer could for example find out about the health status of

an employee from public anonymised health care data if the

salary, age, profession and zip code are included in the pub-

lished health records.

Note that the data anonymisation issue is a part of a wider

problem complex concerning how to avoid unwanted use of

data. On many occasions, it is not only the privacy of
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individuals that needs to be protected. It might be important

to avoid revealing statistical measures about for example

ethnic groups, employee categories or groups of people with a

certain medical diagnosis. Just as for anonymised personal

data, it is possible to infer sensitive statistical measures by

combining background knowledge with superficially uncon-

troversial statistical information. Inference control methods,

as pioneered by Denning and Schl€orer (1983), facilitate de-

cisions about what statistical measures and marginal distri-

butions that can be released without unduly providing

opportunities for inferring sensitive information. In this paper

we will, however, focus on the narrow interpretation of ano-

nymisation as measures to protect the privacy of individuals

in the context of wholesale publishing of anonymised data-

bases thus avoiding some of the complexities of the wider

problem considered by Denning and Schl€orer (1983).

The differential privacy approach (Dwork, 2006, 2008) is

based on the idea that the algorithm for responding to queries

about the contents of a database is sufficiently safe from a

privacy point of view if what an attacker can learn from the

responses does not differ significantly if an extra record is

added to the database. The privacy of each individual record

owner is protected since the presence or absence of the per-

sonal information is guaranteed to make no significant dif-

ference in the information that the attacker gets access to.

Although differential privacy formally is applicable to the

release of anonymised databases, it is, however, from a

practical point of viewmainly useful for filtering of aggregated

statistical quantities and falls hence within the wider scope of

Denning and Schl€orer’s inference control problem. Further

details on differential privacy and how it applies to our deci-

sion problem is provided in Section 1.4.

Two burgeoning branches of computer science, Privacy-

preserving data mining and Privacy-preserving data publishing

provide a cornucopia of methods for data anonymisation in

the narrow sense considered in this paper. For recent reviews

see Agrawal&Yu (2008a) and Fung et al. (2010). A tutorial dis-

cussion of the field is provided by Brynielsson et al. (2013).

Important anonymisation methodologies are 1) deterministic

editing of the data for the purpose of guaranteeing a certain

level of privacy and 2) random distortion of the data aiming at

providing a statistical measure of privacy. In both branches it

is essential to optimize the datamining utility of the published

data while fulfilling the privacy constraint.

An example of a deterministic editing method is the k-

anonymity algorithm (Sweeney, 2002) which ensures that an

adversary always finds at least k-1 database records that are

indistinguishable from the target record in the k-anonymised

database. The k or more records in one such equivalence group

of a k-anonymized data set may, however, lack diversity in

sensitive attributes so that attackers still may be able to learn

sensitive data about the target. If all the records in an equiv-

alence group of a k-anonymized health care database reveal

the same disease, attackers will for example be able to

conclude that target is among the afflicted. For the purpose of

solving this problem, Machanavajjhala et al. (2007) introduce

the l-diversity criterionwhich demands that at least l different

values of a sensitive attribute should be represented in each k-

anonymized equivalence group. Li and Li (2007) noted that an

unusual distribution of sensitive attributes within a
k-anonymised and l ediversified equivalence group still may

reveal sensitive information. As a remedy, they propose the t-

closeness criterion according to which the difference between

the sensitive attribute distribution of each equivalence class

and the corresponding overall distribution should not be

larger than a threshold t.

Random distortion methods can for example entail adding

random numbers to selected data attributes thus blurring

individual attributes while keeping statistical averages suffi-

ciently accurate (Aggarwal and Yu (2008b), Chen and Liu

(2008)). Note that the concept of anonymisation considered

here does not include methods for performing data mining in

encrypted databases without revealing anything other than

aggregated statistics or situations where a trusted party pro-

tects the original data and releases filtered responses to

selected data mining queries.

Since this paper applies information theory to the problem

of analysing the feasibility of anonymisation, we note that the

information theoretic approach also has been used by Sankar

et al. (2010) and Rebello-Mondedero, Forn�e and Domingo-

Ferrer (2010) for the purpose of defining privacy and utility

metrics.

In spite of the great variety and sophistication of the ano-

nymisation algorithms, experience shows that anonymised

data often is vulnerable to de-anonymisation attacks.

Following Narayanan and Shmatikov (2008) we will consider

two main adversarial scenarios.

I) Single-target attack. The assailant is interested in a specific

target individual. The single-target attack has two impor-

tant sub-cases:

a. The attacker knows that the target is in the anonymised

database.

b. The attacker does not know whether the target is in the

anonymised database.

II) Large-scale attack. The adversary wishes to assign the

most likely identity to all the records in the anonymised

database.

Note that the attacker's background information in the

single-target case usually includes both data from public

sources and information that the attacker has gained by other

means such as personal contact with the target. The large-

scale attack is typically automated and uses only digital

background data including Internet and other public sources.

Narayanan and Shmatikov (2008) note that sparse data-

bases are particularly vulnerable to de-anonymisation at-

tacks. Records in sparse databases have many attributes and

non-null values only for a small fraction of the attributes.

Databases containing e.g. the purchasing history of customers

that select from large product catalogues are typically sparse.

Attackers knowing even a small subset of a target's purchases
can often pinpoint the target record in a sparse database.

1.2. History of de-anonymisation

How serious is the threat of de-anonymisation in practice?

There are several well-known cases in which the privacy of

anonymised data has been broken. Sweeney (1997) show that

subjects in an anonymised medical database can be identified

http://dx.doi.org/10.1016/j.cose.2014.07.001
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by cross-correlating with a public voter database. Individuals

were also recognized in anonymised search query data

spanning more than half-million web users that America

Online released for R&D purposes (Barbaro and Zeller, 2006).

Two weeks after Netflix in 2006 published a hundred million

anonymised movie rating records, researchers demonstrated

efficient de-anonymisation algorithms (Narayanan and

Shmatikov, 2008).

El Emam et al. (2011) review the history of de-

anonymisation of health data and conclude that the average

attack success rate in published studies is high (about 25%) but

that the evidence is insufficient with considerable un-

certainties. One of the published cases shows a much lower

success rate (0.013%) than the average. The known cases are

mainly not maliciously intended de-anonymisation attempts

by researchers and journalists. Malicious attacks are, howev-

er, unlikely to come to public knowledge. Apocryphal stories

tell for example that a banker broke the anonymity of pub-

lished cancer data for the purpose of reviewing loan applica-

tions (Bartlett, 1993).

The discussion of societal issues relating to de-

anonymisation includes Ohm (2010) that provides a compre-

hensive review from a U.S. perspective of how privacy legis-

lation often is based on the assumption of that anonymisation

is feasible and effective. Ohm emphasizes that the ease and

efficiency of de-anonymisation disrupt the intentions of law-

makers and data publishers. Rothstein (2010) elucidates

problems related to using anonymisation as the legal ground

for publishing health data. McGuire and Gibbs (2006) discuss

the problem of protecting the privacy of genetic information

given that the patient behind published DNA data readily can

be identified with some background genotype data (Lin et al.,

2004). Narayanan and Shmatikov (2010) discuss the societal

impact of fallacious assumptions about the security provided

by anonymisation and suggest that the release-and-forget

approach to publishing anonymised data should be replaced

by audited query interfaces.

1.3. The decision-making problem

The objective of this paper is to provide a simple but quanti-

tative tool for assisting decisionmakers in the task of deciding

whether an anonymised database can be published. The sit-

uation that we have in mind is that experts have applied

anonymisation algorithms to a confidential database and

produced an anonymised version of the data base. The deci-

sion makers are asked to approve the anonymised data for

release either to the general public or to some other user so-

ciety. We assume that the decision makers have a genuine

interest in publishing the anonymised data butwish to apply a

policy of caution according to the following principles.

A. Broken privacy means that an assailant correctly iden-

tifies the record in the anonymised database that is

associated with a target individual.

B. The risk of privacy breach must be very small but

cannot be zero.

C. All record owners have equal right to privacy.

D. Adversaries are assumed to be determined, resourceful

and technically competent.
E. The de-anonymisation algorithms that attackers will

use are unknown.

Principle A means that the decision maker recognizes that

it is hard to define precisely what content in the anonymised

database that might be sensitive for the record owners.

Sensitivity depends on the personal circumstances of the

target and on the relation between the target and the attacker.

Most of us would not be overly worried if data about our hotel

bookings is published. A stalker that knows about the possible

romantic relation between the target and married person

living in Portsmouth would, however, be very interested in

knowing about hotel reservations in the seaside English city.

Caution requires that attackers should not be allowed to

identify the target's record in the database. Note that the

definition of privacy breach in principle A is somewhat narrow

and does not cover some situations that could be considered

as privacy intrusions such as for example when the anony-

mised database is about persons who have filed tax returns

and the attacker uncovers that the target is not included.

The decision makers understand that privacy cannot be

guaranteed with absolute certainty. There is always some

finite risk of privacy breach in anonymised data but this risk

must, as noted in principle B, be very small. To quantify this is

an important task for the decision makers.

Depending on the nature of the data, some targets may be

protected by the ordinariness of their information. If the

criminal record of the target is totally clean, it will be impos-

sible to identify the specific record of the target among the

large cohort of similarly blameless people. We assume, how-

ever, according to principle C that the decisionmaker is bound

to protect the privacy of all subjects in the database including

those with highly specific and unique profiles.

Even perfunctory anonymisation offers some protection

against casual browsing and incompetently performed at-

tacks. Principle D means that we have to assume that the

attacker is committed and well-versed in the technology of

de-anonymisation and principle E emphasizes that attackers

may be more competent and creative than the technical ad-

visors of the decision maker, as often has been the case in the

historical examples reviewed in Section 1.2.

This policy focuses on a targeted attack against the privacy

of a specific person. A large-scale attack that strives to identify

as many record owners as possibly will usually only employ

background knowledge that is easily available in computer

readable form. A determined targeted attack will also use

computer readable information and may furthermore include

information from other types of sources such as physical

surveillance, local community gossip and conversations with

the target. Hence it is possible that a targeted attack rallies

more information against the selected target than would have

been used against the same target in a large-scale attack.

Targeted attacks are therefore often more difficult to protect

against compared to large-scale attacks. Depending on the

situation, attackers may or may not know that the target is in

the published database. Furthermore, we recognize that deci-

sion makers need simple but quantitative tools. Simple,

because it is unlikely that a decision maker is a computer sci-

entist and a privacy-preserving data publishing expert e the

role of the decision maker is rather to evaluate the output of

http://dx.doi.org/10.1016/j.cose.2014.07.001
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such experts; quantitative, because the decision is about

probabilities. Hence, we will in Section 2 derive a formal de-

anonymisation feasibility limit and in Section 3 apply this

result to defining, discussing and exemplifying a decision

process for releasing anonymised data.

Note that the database inference attacks considered by

Denning andSchl€orer (1983) have amuchwider scope than the

one considered here. Denning and Schl€orer consider not only

publishing anonymised individual records but also the release

of all other kinds of derived statistical measures and partially

summed tables based on the original database. This paper is

furthermore limited to decisions about wholesale publishing

whileDenning andSchl€orer in addition consider graded access

controls including auditing a stream of queries and filtering

the response based on the query and response history. The

reason for the narrow scope of the present paper is that it, as

we shall see, enables the simple quantitative result thatwe are

looking for. Moreover, the narrow problem addressed in this

paper corresponds to a common decision-making challenge

since anonymisation requirements frequently refer to in-

dividuals and data-owning organisations often lack motiva-

tion, competence and resources for continuous long-term

commitments such as query and response auditing.

1.4. Known de-anonymisation feasibility limits

This subsection reviews briefly results from the literature on

privacy-preserving data mining and data publishing that dis-

cusses generic limitations on the feasibility of de-

anonymisation in the context of the decision problem of

Section 1.3.

Differential privacy offers the strongest guarantee of pri-

vacy that we have found in the literature since it is indepen-

dent of the resources and knowledge of the attacker (Dwork,

2006, 2008, 2011). Quoting from Dwork (2008): “We say data-

bases D1 and D2 differ in at most one element if one is a proper

subset of the other and the larger database contains just one

additional row. A randomized function Κ gives 3-differential

privacy if for all data sets D1 and D2 differing in at most one

element and all S 4 Range (Κ),

Pr½KðD1Þ2S� � e 3� Pr½KðD2Þ2S�: (1)

The probability is taken over the coin tosses of Κ.00 Differ-

ential privacy guarantees hence that the addition of a single

record to the confidential database DBS will not be detectable

in any analysis based on the released information Κ( DBS). In

our case Κ is the anonymisation process and Κ( DBS) is the

anonymised database.

To demonstrate that the release of an anonymised data-

base does not satisfy 3-differential privacy for any database

and any 3we set D1 ¼ DBS in Eq. (1)while D2 equals DBS with a

single target record removed. The release process Κ produces

an anonymised version of the database in which each ano-

nymised record is a filtered version of the corresponding re-

cord in the input database. If D1 has n rows and m columns of

attributes, D2 will have n � 1 rows and m columns while the

output anonymiseddatabaseshas the samenumberof rowsas

the input database. Select the output set S of Eq. (1) to span all

possible output matrices with n rows so that Pr[K(D1)2 S] ¼ 1.
However, K(D2); S and hencePr[K(D1)2 S] > e 3� Pr[K(D2)2 S]

for any positive 3 thereby violating Eq. (1). Since Eq. (1)

must hold for all D1, D2 and S, we find that the release of

anonymised databases always infringes differential privacy.

Dwork (2011) notes that differential privacy rules out direct

viewing of raw data. As we have showed, direct viewing of

anonymised data is also ruled out by differential privacy. It

appears that if wewant to release an anonymised databasewe

have to forego the strong guarantees of differential privacy and

be prepared to handle a situation where the level of privacy

depends on the resources and knowledge of potential

adversaries. Any weaker feasibility limits that we may

consider will hence have to include assumptions about the

attack scenario.

Narayanan and Shmatikov (2008) define a threshold for

successful de-anonymisation based on the number of attri-

butes m of the target that are known to an adversary and that

are sufficiently similar to the corresponding attributes in the

anonymised database finding that de-anonymisation is

feasible if,

m � log N� log 3

�logð1� dÞ (2)

where N is the number of published records, 3is a measure of

the maximum error in the attributes known to the adversary

compared to the corresponding published attributes and d is a

measure of the precision that is required in comparing re-

cords. The attributes can be of any kind including binary,

numeric, alphanumeric and tuples. We quote this equation,

without restating the fairly complex complete definition of the

parameters 3and d, because it will be of interest to compare its

form, but not its detailed parameters, to themain result of this

paper. Note that the limit in Eq. (2) is restricted to the specific

de-anonymisation algorithm employed by Narayanan and

Shmatikov. The same authors find that 5e10 background at-

tributes are needed for reliably re-identifying users in an

anonymised database of 500 000 Netflix subscribers. For

further analysis of the Narayanan&Shmatikov algorithm see

Datta et al. (2012).

Aggarwal (2008) explains lucidly why it is difficult to ano-

nymise high-dimensional data noting that both the k-ano-

nymity and the randomization approach must degrade the

utility of the data substantially in all cases in which we do not

know in advance what background knowledge an adversary

may have access to. This is called “the curse of dimensionality” in

the privacy-preserving data mining literature (note that this

phrase has different meanings in different fields of research).

Aggarwal's conceptual analysis is strengthened by detailed

mathematical investigations of the high-dimensional behav-

iour of several specific models of k-anonymity and randomi-

zation. The conclusions of Aggarwal can be summarized as

“… privacy preservation by anonymisation becomes impractical in

very high-dimensional cases, since it leads to an unacceptable level

of information loss” and “The results seem to suggest that the curse

of dimensionality may be a fundamental one from the point of view

of privacy and cannot be easily solved using more effective algo-

rithms and techniques”. Aggarwal notes, however, that itmay be

possible to exploit some special benign structures even in

high-dimensional data sets.

http://dx.doi.org/10.1016/j.cose.2014.07.001
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2. Generic de-anonymisation feasibility limit

Section 2.1 defines a data and adversarial model for which an

information-theoretic de-anonymisation feasibility limit is

derived in Section 2.2. In Section 2.3 we argue that this limit is

generally applicable as a worst-case estimate of de-

anonymisation feasibility.
1) Compile background information Yt about the target.

2) Extract the pseudo-identifier Qt ¼ F(Yt) of the target.

3) Search DBA for candidate records Xi such thatQt ¼ G(Xi).

4) For each candidate record estimate the probability that

it is the target record.
2.1. Attack procedure and data model

A database owner wishes to publish an anonymised version

DBA of a secret database DBS. Both DBA and DBS contain N

records each of which is associatedwith a unique individuale

the record owner. The anonymised database is produced by

applying an anonymisation algorithm to DBS thereby

removing any explicit identifiers and furthermore processing

the data for the purpose of protecting the privacy of the record

owners against adversarial attacks. Many different anonym-

isation algorithms are known (see the brief review in Section

1.1) but the conclusions of this section are agnostic with

respect to the type of anonymisation algorithm that is

employed for producing DBA.

An adversary knows the real-world identity of a target

person and has some further background information Yt

about the target. In addition to this target-specific background

information, the attacker has general knowledge KW about

the world that may include information in any form including

digital data repositories, human memory and various anony-

mised databases including in particular DBAwhich is assumed

to be published in a context where it is accessible for the

attacker. The attacker may or may not know whether the

target is included in DBA but the target is in fact a record owner

in DBA; in Section 1.3 we defined broken privacy as meaning

that the attacker correctly identifies the anonymised record of

the target.

Some information may overlap between the adversary's
specific background information Yt and the target record Xt in

DBA. The pseudo-identifier Qt of the target t represents the

maximum amount of information about the target that is

shared between Xt and Yt, given the adversary's general

knowledge KW. The pseudo-identifier may help the attacker

to pinpoint the target record in DBA as discussed in the

following.

As a running example we will consider a database con-

sisting of anonymised responses to an employee satisfaction

survey. Each entry consists of some facts about the employee

followed by the employee's opinions about the company and

its management. The facts include the number of children,

age group in five year intervals and years of employment.

Imagine that the disgruntled employee Alice in the survey has

entered that she has four children, age in the 50e55 interval

and three years of employment followed by some rather

scathing comments about the competence and credibility of

the management. Her boss, Bob, reads Alice's diatribe and

feels a strong urge to identify and punish the disloyal under-

ling. Bob has records on the age and employment date of

everyone in the company and knows by hearsay if employees

have children or not. Bob suspects that the somewhat defiant

Alice may be the writer of the infuriating comments and
compiles hence the pseudo-identifier of Alice which amounts

to: have children, age in the 50-55 interval and three years of

employment. Note that this neither is the exact information in

the anonymised database nor is the precise information held

by Bob, but rather is the overlapping information relating to

Alice of these sources.

Since we are interested in worst-case situations with

maximally competent and resourceful attackers, we shall

assume that the adversary, for any target, is able to extract the

pseudo-identifier from Xt and Yt. Hence we assume the exis-

tence and availability of methods G and F such that,

Qt ¼ GðXtÞ ¼ FðYtÞ: (3)

These functions will, if applied to target record data and

adversarial target background data respectively, by definition

give the same output, namely the pseudo-identifier. If there is

no overlapping information in Xt and Yt, both functions will

return a null value. Pseudo-identifiers are in the privacy-

preserving data mining literature often defined as the target

record attributes that are known to the attacker. This defini-

tion is subsumed by our more general concept which also

includes situations in which the attacker's knowledge is un-

certain and perhaps in an unstructured format such as free

text or human memory.

When Bob, in our running example, compiled Alice's
pseudo-identifier, it required not just mechanical matching of

records in different databases. The precise age had to be

compared to an age interval. The years of employment had to

be computed from the employment date. Furthermore, Bob

had to recall what Alice had told him about her offspring. The

process for computing the pseudo-identifier required hence

both semantic matching of records in different formats and

comparing digital data to the attacker's memories. Once Bob

has figured out how to do this for Alice, it can be formulated as

a generic process that can be applied to any target. In our

abstract model, this process corresponds to applying the

functions G and F to the target data.

The assailant wishes to identify the DBA record that be-

longs to the target individual and applies therefore the

following procedure.

2.1.1. Attack procedure
Steps 1e4 are in the following called the attack procedure. If

the target record is in DBA, it will be among the set of candi-

date records that are found. Assume now that the adversary

knows that the target is in the anonymised database. If only

one candidate is found in step 3, privacy is broken in the worst

possible way since the attacker with certainty has identified

the target's record in DBA. If k candidate records are found and

no other relevant statistical information is available, the

attacker will be able to identify the target with probability 1/k.

http://dx.doi.org/10.1016/j.cose.2014.07.001
http://dx.doi.org/10.1016/j.cose.2014.07.001


c om p u t e r s & s e c u r i t y 4 6 ( 2 0 1 4 ) 4 8e6 1 53
The risk analysis is more complex if the attacker can use

generic background knowledge for reasoning about identifi-

cation probabilities. Another complication is that the adver-

sary may not know whether the target is in DBA. These issues

will be discussed in Section 2.3.

In our running example, Bob already has Alice's pseudo-

identifier and can now apply step 3 of the attack procedure

in which he computes the pseudo-identifier of all records in

the anonymised survey. Any record that matches Alice's
pseudo-identifier have children, age in the 50e55 interval and

three years of employment is added to the list of candidate re-

cords. Eventually, it turns out that there is only one candidate

so step 4 is easy. Bob initiates an impromptu performance

review of Alice.

2.1.2. Data model
For the purpose of deriving a generic risk analysis process for

de-anonymisation attacks, we need an abstract model of the

data that is used in the attack procedure. Hence, we will now

describe a model for how to generate the records of DBA and

the corresponding adversarial information. We are not

claiming that such probabilistic generative models always

exist or are available for decision makers. The data model is

just a scaffold that in the following subsection will be used for

deriving the feasibility limit. In Section 2.3 we discuss the

applicability of the feasibility limit and application examples

are discussed in Section 3.

In the generative data model, a record i of DBA is repre-

sented by a random variable Xi and the corresponding

adversarial background data by a random variable Yi. Vari-

ables Xi and Yi are correlated according to the model in Fig. 1

where Vi, Qi and Wi are mutually independent random vari-

ables and the pseudo-identifier Qi represents the information

that is common to Xi and Yi .

According to the datamodel of Fig. 1, Xi is computable from

Vi and Qi by some deterministic function,

Xi ¼ KðVi;QiÞ: (4)

Similarly Yi can be computed fromWi and Qi by some other

deterministic function

Yi ¼ MðWi;QiÞ: (5)
Fig. 1 e Generativemodel for the randomvariablesXi andYi.

The connectors indicate deterministic dependencies to the

random variables Vi, Qi, andWi according to Eqs. (4) and (5).
All equations that are indexed with a single index i are in

the following tacitly assumed to hold for all1 � i � N. Values of

random variables Xi and Yi are, according to the data model,

generated by first drawing values of Vi, Qi, and Wi. The values

of Xi and Yi are then computed according to Eqs. (4) and (5)

respectively. According to the attack procedure above, the

pseudo-identifier Qi is retrieved from Xi and Yi by applying

functions G and F respectively. Note that variables in Fig. 1

that belong to different record owners may be correlated;

e.g. Xi may be correlated with Xj for i s j. Such inter-record

dependencies could be caused by real-world relations, for

example family connections, or by anonymisation processing,

for example k-anonymity algorithms. Our data model does

not describe intra-record correlations in detail since this is not

required for deriving the feasibility limit. Section 2.3 discusses

and exemplifies how the feasibility limit applies to situations

with intra-record dependencies. Note that Sankar et al. (2010)

use as similar data modelling approach for the purpose of

information theoretic analysis of application independent

utility and privacy metrics although their model assumes in-

dependent records.

In our running example, Xi is the employee's response in

the survey and Yi is what the manager knows about the

employee. Clearly, it is almost always impossible to find a

probabilistic generative model for such information sources.

Nevertheless, we shall find that the feasibility limit, which in

the next section is derived from the datamodel, often is useful

for analysing real-world problems.
2.2. Feasibility limit

The variable Qi of the data model in Section 2.1 captures all

correlations between Xi and Yi and is hence the optimal

pseudo-identifier from an attacker's point of view. We can

express this by,

PðXijYiÞ ¼ PðXijQiÞ
PðYijXiÞ ¼ PðYijQiÞ; (6)

where the symbol P indicates a conditional probability distri-

bution. In information theoretic representation, the de-

pendency relations of or model can be summarized as

IðXi;YiÞ ¼ HðQiÞ; (7)

where I(Xi,Yi) is the mutual information of Xi and Yi

whereas H(Qi) is the Shannon entropy of Qi. It is straight-

forward to show that Eq. (7) follows from the definition of

mutual information applied to our generative data model.

The entropy of Qi is measured in information bits and can

be thought of as the length of the shortest possible binary

code that describes Qi. Such minimal length codes can be

produced by applying optimal compression algorithms to

data.

Eq. (7) can be specialized to a situationwhere all probability

distributions and information entropies are conditioned on

the generic background knowledge KW of the attacker,

IðXi;YijKWÞ ¼ HðQijKWÞ: (8)

Both the adversarial mutual information on the left side and

the entropy on the right side of Eq. (8) are hence conditioned

http://dx.doi.org/10.1016/j.cose.2014.07.001
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on all the knowledge of the attacker that is not specifically

attributable to the target and thus included in Yi. The proof is

again readily found from the definition of the mutual infor-

mation and our data model. In the compression analogy,

HðQijKWÞ is understood as the bit length of the optimally

compressed code that is achieved by applying the knowledge

KW in the compression process.

In computing the Shannon entropy of a pseudo-identifier

such as parenthood, age interval and years of employment the

outcome will clearly depend on what statistical information

that is available for estimating the underlying probability

distributions. Bob can use company data about the actual

cohort of employees while an attacker without access to

company records would have to do with for example national

census data and some guesswork. In Eq. (8) we make this

dependence on the attacker's knowledge explicit by condi-

tioning the information-theoretic quantities on KW.

The information-theoretic considerations that are sum-

marized in Eq. (8) will now be used for analysing the feasibility

of de-anonymisation attacks. Consider an adversary that ex-

tracts the pseudo-identifier Qt according to the attack proce-

dure of Section 2.1 and then uses all available generic

background knowledge to compute an ideally compressed

code for Qt. The length n of this code is according to Eq. (8)

n ¼ IðXt;YtjKWÞ: (9)

Suppose that the attacker knows that the target belongs

to some encompassing group of people bS with bN members

and that the population S of DBA is included in bS so that

S4bS and N � bN. Astute attackers will select the smallest

group bS for which they have good background knowledge.

What this means will become clear in Section 3 where ex-

amples are provided. If the adversary knows that the target

is in the published database, S ¼ bS and bN ¼ N. Otherwise,

some larger encompassing group has to be selected. It is

always possible to find an encompassing group since the

attacker at worst could make bS equal to the entire popula-

tion of the world.

The target's anonymity is broken if step 3 in the attack

process finds the target's record as the sole candidate and the

attacker in step 4 reasonably can conclude that the targets

pseudo-identifier with high probability is unique among all

members of bS. The anonymised databasemay not span all of bS
so the attacker may not have access to the actual values of Qi

for all members ofbS. The adversary can, however, apply

generic knowledge to reason about the statistical behaviour of

pseudo-identifiers in the encompassing group. If the target is

known to be in the DBA, the attacker has in step 3 of the attack

procedure compiled a table of Qi for all of bS and can in step 4

use this to identify the target.

Suppose that, in our running example, for privacy reasons

only 75% of the anonymised responses are provided to the

management. The employees whose responses are included

correspond to the set S above. Bob is aware of Alice's brazen

defiance and wants to find her response in the anonymised

data if it should happen to be included. Bob can still perform

steps 1e3 of the attack procedure in Section 2.1 as before. In

Step 4, Bob implicitly selects bS to be all employees in the

company by arguing that if Alice's pseudo-identifier is unique
inbS and matches a single response in the anonymised survey,

that response must be hers. Note that Bob might not need

access to precise personal details about all employees.

Aggregated workforce statistics could suffice for concluding

that there is just one single parent in the 50e55 age span with

three years of employment.

What is the probability that Qt in fact is unique within the

encompassing group? This is easy to analyse using the

random-looking bit strings that are the ideally compressed

representation of the pseudo-identifiers. We find that the

probability p that Qt with entropy n is unique among the bN
pseudo-identifier samples of bS is given by,

p ¼ �
1� 2�n

�bN�1
: (10)

This is the probability that none of the other bN � 1 pseudo-

identifiers have the same bit string representation as Qt. From

Eq. (10) and the assumption 2�n << 1, we extract the entropy np
that corresponds to a given de-anonymisation probability p,

npzlog2

� bN�
� log2

�
� ln

�
p
��

: (11)

Combining Eqs. (9) and (11) we now define an information-

theoretic limit for de-anonymisation feasibility. The proba-

bility that an optimal de-anonymisation attack against target t

is successful is less than p only if the adversarial mutual in-

formation IðXt;YtjKWÞ is less than the critical entropy np of Eq.

(11) according to,

I
�
Xt;Yt

���KW�
<npzlog2

� bN�
� log2

�
� ln

�
p
��

: (12)

Eq. (12) provides hence an upper limit to the amount of

information that may overlap between the target record Xt

and the adversarial background knowledge Yt given that the

de-anonymisation risk is as most p. The quantity that is

limited by Eq. (12) is the adversarialmutual informationwhich

incorporates both the specific knowledge about the target and

any generic background information that the attacker may

possess.

2.3. Relevance and applicability of the feasibility limit

To get a foretaste of the impact of Eq. (12), consider for

example that the anonymised database includes the world

population (7.2$109 records) and that the decision maker ac-

cepts a de-anonymisation risk of 50%. The maximum over-

lapping information is, according to Eq. (12), 33 bits of

information. This corresponds to approximately 33 characters

of text in English (red font indicates the first 33 characters of

this sentence). Real databases contain typically fewer subjects

than the world population and acceptable de-anonymisation

risks are normally much less than 50%. Tolerable values of

the adversarial mutual information IðXt;YtjKWÞ are therefore

in all practical cases less than 33 bits. Given the vast and

increasing archives of personal information, this means that

proper anonymisation in many cases will have a significant

impact on the utility of datamining and that publishing useful

data while respecting the privacy of the record owners often

will be impossible.

Note that this result is independent of the technical format

of the data. In the following, database means any kind of
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information repository and record means all the information

about a specific individual in the information repository,

whatever the technical format. The adversarial background

information could likewise be in any conceivable format

including natural language and pieces of information stored

only in the attacker's mind. The advantage of applying the

concept of adversarial mutual information rather than

counting overlapping database attributes as in

(Narayanan&Shmatikov, 2008) is that all such disparate in-

formation sources are encompassed in the former more ab-

stract concept.

In this paper we generally assume that record owners are

individual persons. Depending on the context record owners

could, however, be for example families, companies, military

units or any other kind of group or organisation. Even though

the anonymised database in such cases would not be about

individuals it would still have records compiling anonymised

information about the record owner, the objective of the

attackerwouldbe to identify the recordof the target andEq. (12)

would then still indicate the feasibility of a successful attack.

What if the assailant doesn't know if the target is in the

anonymised database? Some anonymisation methods apply

for example a strategy of row-suppression in which records

that are deemed to be particularly vulnerable are deleted from

the database. In such cases, attackersmust be uncertain about

whether the target can be found the published database.

Introducing the encompassing group bS in the derivation of Eq.

(12) means that we can handle such situations as explained in

the following example. Consider a scenario in which DBA is a

medical database of U.S. army patients and the adversary

knows that the target is female and a U.S. citizen but does not

knowwhether or not the target is included in DBA. In this case,

the attacker may select bS to be the set of female U.S. citizens.

The adversary may know some useful statistical properties bK
relating to bS such as for example the age distribution or blood

group distribution. The adversarial generic knowledge KW

consists in this example of the combination of DBA andbK.
Furthermore, assume that the attacker in step 3 of the attack

procedure finds one single record that matches the pseudo-

identifier Qt. Suppose that the attacker in step 4 of the attack

procedure can apply statistical reasoning based on KW to

show that the pseudo-identifier with high probability would

be unique in a hypothetical anonymised database that is of

the same type as DBA but spans the entire encompassing

groupbS. If so, the attacker can conclude that the identified

record with high probability is the target. Using the encom-

passing set bS in Eq. (12) is critical for capturing this kind of

reasoning.
Fig. 2 e Information diagram showing the anonymised record X

pseudo-identifier information Qi. The shaded parts are noise tha

without changing the results of Section 2.2.
The ensuing part of this subsection will discuss various

technical issues relating to the applicability of the feasibility

limit. Readers that are mainly interested in how to apply the

feasibility limit can move on to Section 3.

Adding noise to Wi, Qi, Vi, Xi or Yi in Fig. 1 represents a

variety of situations where the data is unreliable or corrupted

including for example that the attacker has partially uncertain

background information. Noise injection is, however, easily

subsumed in the model of Fig. 1 by redefiningWi, Qi, Vi, Xi and

Yi as needed. Introducing noise by adding new nodes in Fig. 1

can also be incorporated by collapsing sub-networks and

making suitable re-definitions of the variables in Fig 1. This is

best illustrated in the information diagram of Fig. 2.

The attack procedure of Section 2.1 presupposes that the

attacker has functions Qi ¼ G(Xi) ¼ F(Yi) that reliably recover

the pseudo-identifier. It is perhaps more realistic to assume

that the adversary only has access to functions that return

approximations of Qi. The attacker would when have to apply

some similarity metric as for example in

(Narayanan&Shmatikov, 2008). Knowing the analytic capa-

bilities of the attacker, it would be possible to construct a

tighter de-anonymisation feasibility limit than in Eq. (12) as

exemplified in Eq. (2). Following condition E of Section 1.3 we

assume, however, that decision makers lack such detailed

insights in the de-anonymisation tools of the assailants. The

feasibility limit of Eq. (12) is based on the worst-case

assumption that adversaries can utilise the full potential of

the background information.

By using the adversarial mutual information IðXt;YtjKWÞ in
Eq. (12) where KW includes knowledge of DBA, we handle all

kinds of dependency relationsbetweendifferent records in the

anonymised database. We can for example conclude that the

adversarial mutual information is less or equal to log2(N) if the

attacker knows that the target is included in DBA. It is always

possible to construct a log2(N) long code for Qt by computing a

table of Qi for all records and use a pointer to the table entry Qt

as a code for Qt thus demonstrating that IðXt;Yt

��DBAÞ � log2ðNÞ
with equality if all Qi table entries are different. If there are

correlations within DBA to the effect that some of the pseudo-

identifiers are identical, we know that it is possible to

construct compressed codes forQt that are shorter than log2(N).

Consider for example the k-anonymity algorithm where

typically a subset of the DBS attributes are identified as

possible pseudo-identifiers and the data is processed so that

the same pseudo-identifier pattern is shared by at least k re-

cords. Universal k-anonymity means that all attributes are

assumed to be included in the pseudo-identifier. If universal

k-anonymity is applied, assailants would invariable find that
i, the adversarial background information Yi and the

t may be added or subtracted at will to any of the variables

http://dx.doi.org/10.1016/j.cose.2014.07.001
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any pseudo-identifier matches at least k different records. By

computing a table of Xi for all records and use a pointer to this

table to code for both Xi and Qi, it can be shown that both the

entropy of Xi and the adversarial mutual information in this

case are less or equal to log2(N/k), again assuming that the

attacker knows that the target is in DBA. Since the adversarial

mutual information is the information overlap betweenXi and

Yi, it can never be larger than the entropy of Xi itself and any

further specific or generic background information of the

attacker can therefore not make the adversarial mutual in-

formation larger than log2(N/k). Universal k-anonymity is,

however, very restrictive with respect to the amount of in-

formation that can be published. The maximum information

content of a universally k-anonymised record is equal to

log2(N/k) corresponding for example to 29.42 bits for 10-

anonymity and 7.2 billion records. In order to preserve the

data mining utility of the published data it is therefore com-

mon to apply k-anonymity only to a smaller set of the attri-

butes for which it is assumed that attackers have background

knowledge. In this case, the adversarial mutual information

may hence be larger than log2(N/k) if assailants have back-

ground information not foreseen by the designers of the

anonymisation process.

The feasibility limit in Eq. (12) is consistent with other

feasibility limits in the literature (see Section 1.4). The de-

anonymisation threshold of Narayanan and Shmatikov

(2008) (see Eq. (2)) is derived for a specific de-anonymisation

algorithm but shows the same characteristic linear relation-

ship between the logarithm of the number of records and a

measure of the knowledge of the attacker. Thismeasure is the

maximum number of attributes known by the assailant and

the adversarial mutual information in Eq. (2) and Eq. (12)

respectively. The qualitative discussion of the curse of

dimensionality (Aggarwal, 2008) presages the impact of Eq.

(12). Aggarwal's in depth discussion of specific examples of k-

anonymity and randomization anonymisation is consistent

with and supports the more abstract and generic limit pro-

posed in the present paper. The main difference is that the

feasibility limit proposed here is intended for decision support

applications rather than for analysis of specific anonymisa-

tion and de-anonymisation algorithms.

Smith (2009) shows that Shannon entropy and mutual in-

formation may not be ideal for estimating the risk of infor-

mation leakage in settings where an adversary tries to guess a

secret H based on the output L of a program f(H) ¼ L. The

problem is that measures based on the Shannon entropy may

severely underestimate the risk if the probability weight of H

conditioned on L is very unevenly distributed so that a first

guess has a high probability of being on the spot. Smith pro-

poses alternative risk measures based on the concept of

vulnerability which is the worst-case probability that the ad-

versary correctly guesses H in one try. Our feasibility limit in

Eq. (12) is based on the Shannon entropy so it is interesting to

relate our result to Smith's critique of using Shannon entropy

for estimating information leakage risks. In our case, the se-

cret to be guessed is the identity of the target based on

knowledge of the anonymised database, adversarial back-

ground data and other background knowledge. This is not

exactly the problem type analysed by Smith but the lesson

that measures based on Shannon entropymay underestimate
the risk of guessing outliers in skewed probability distribu-

tions should be taken seriously.

It is, in principle possible to replace the Shannon mutual

information in Eq. (12) with some alternative measure of

mutual information such as the one based on Smith's
vulnerability concept. In doing so, it is crucial that the mutual

information measure is equal to the bit-length of a code that

could serve as an index in a table of pseudo-identifiers (see Eq.

(9)). This is indeed the case both for Shannon entropy and for

Smith's alternative min-entropy; the latter is related to the

shortest possible code length. In the decision process of Sec-

tion 3.2 we apply, however, the Shannon mutual information

for the following reasons. Firstly, we expect a competently

performed anonymisation process to even out sharp varia-

tions in the relevant probability distributions. An anonymised

employee satisfaction survey will not include the education

category “Ph.D.” if there is just one Ph.D. in the work force but

will rather use a broader category encompassing everyone

with a university degree. Secondly, wewant to offer a decision

process that is useful for decision makers with scant com-

puter science preparation. Employing widely known concepts

such as the Shannon entropy makes the process easier to

explain and accept. Thirdly, the conclusions of the Shannon-

based decision process, appears, as we shall see, to be very

restrictive. It is in fact hard to find realistic examples of situ-

ations where data can be both useful and properly anony-

mised. Using the Smith measure would make our conclusions

even more restrictive but perhaps less believable since the

result could be discarded as an artefact of using a little-known

advanced information measure. Fourthly, we would like to

use the decision process even in situations where detailed

probability distributions are unavailable. Since the Shannon

entropy is an average quantity rather than an extreme value,

it is often easier to make back-of-an-envelope estimates of

Shannon entropy. However, while sticking to using the

Shannon entropy in Eq. (12), we at least partially take Smith's
important lesson into account by including a step in the de-

cision process of Section 3.2 for reasoning about outlier risks.
3. Decision-making

This section describes and exemplifies a process for making

decisions about the release of anonymised data where release

means dissemination either to the general public or to a more

limited audience in which there may be adversarial elements.

Section 3.1 relates the feasibility limit in Eq. (12) to the process

requirements in Section 1.3. The decision making process is

defined in Section 3.2 and two application examples are pro-

vided in Section 3.3.

3.1. The feasibility limit as a basis for decisions

Section 1.3 defines five principles AeE for guiding decisions

about publishing anonymised data. Is the feasibility limit of

Eq. (12) what a decision maker needs to make quantitative

judgements in the spirit of these principles? The feasibility

limit is based on the same privacy definition as in principle A

i.e. it is concerned about attackswhere the anonymised record

of an individual target is identified. Equation (12) requires the
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decision maker to define the acceptable probability of broken

privacy (principle B). Any of the records could be the target of

the attack which means that none of the record owners are

discriminated (principle C). The feasibility limit is furthermore

based on pessimistic assumptions about the skills and

perseverance of the adversary who is assumed to be able to

optimally utilize the available information (principle D). We

are according to principle E) sceptical about any prescience

that wemay have today about what kind of de-anonymisation

algorithms that may be employed in the future and therefore

Eq. (12) includes only a fundamental information-theoretic

constraint on the efficiency of de-anonymisation.

Is the feasibility limit too complex for executive decision

making? Computing the right-hand part of Eq. (12) can be

done on a scientific pocket calculator. The difficult part is

estimating the left-hand adversarial mutual information

IðXt;YtjKWÞ. This quantity is the essence of what the decision

maker must know about the target and the adversary in order

to make an informed risk estimate. It is, however, difficult to

compute because decision makers typically lack the required

information. Inmost practical situations, decisionmakerswill

not have access to generative data models, detailed statistical

distributions or quantitative insights into the knowledge of

the attacker. Detailed computations of the adversarial mutual

information are therefore in many cases out of the question.

However, many decision problems turn out to be quite

straightforward even based on rudimentary estimates of the

adversarial mutual information. This will be demonstrated in

Section 3.3. The essential advantage of Eq. (11) and the

concept of adversarial mutual information is that the decision

maker has a clear definition of what to estimate. Using an

information-theoretic measure in Eq. (12) makes the analysis

independent of both the anonymisation and the de-

anonymisation algorithms. This removes the need for algo-

rithm expert support in decision making. The central analyt-

ical task is to reason about what kind of adversaries to worry

about and what background information that they may have

access to.

3.2. Decision-making process

We recommend the following process for making decisions

about the release of an anonymised database.

3.2.1. Decision-making process
1) Find out precisely what information that is proposed for

publishing. Ignore the anonymisation process and what

information it has removed. Focus on the real-world

meaning of the anonymised information. What can you

learn about the individuals described by the data?

2) Generate an attack scenario by specifying the objectives of

the adversary, the likelihood of the scenario, the conse-

quences of a successful attack, and what the adversary

knows about the target. To save work, start with the worst-

case scenario.

3) Select the largest acceptable de-anonymisation probability

p for the attack scenario. If the adversary makes a deter-

mined effort to identify the individual behind a given

anonymised record, the probability for success is required

to be less than p. In selecting p, consider the likelihood of
the scenario and the consequences of de-anonymisation. If

p ¼ 0 is the only acceptable choice, do not publish the

anonymised data since even pure guessing gives an ad-

versary a small chance of pinpointing the target.

4) Determine if the assailant knows whether the target is in

the anonymised database.

a. If yes, count the number of records in the anonymised

database N, set bN ¼ N and use Eq. (12) for computing the

maximum adversarial mutual information np.

b. If no, identify a larger population which the adversary

knows encompasses both the target and the population

of the anonymised database. Find the size bN of this

encompassing group and use Eq. (12) for computing np.

5) Estimate the adversarial mutual information IðXt;YtjKWÞ.
This may seem to be a daunting task but back-of-an-

envelope estimates will often suffice. If the decision

makers need technical support for this step it is recom-

mended that expertise at arms-length from the designers

of the anonymisation process is enrolled.

6) Compare the adversarial mutual information to the

threshold np. If IðXt;Yt

��KWÞ � np terminate this process and

do not release the anonymised data, else proceed to step 7.

7) Consider if the targetmay be an outlier in a statistical sense

and hence could be more vulnerable than average record

holders. If the make of automobiles owned by the record

owner is included in the anonymised data, Toyota drivers

would be safely anonymous but Koeningsegg ownersmight

be at risk. If the scenario is about stalkers re-identifying

wealthy celebrities it would be prudent to refuse releasing

the data based on such scenario-critical outliers. If an un-

acceptable threat against outliers has been found, do not

release the anonymised data, else proceed to step 8.

8) Repeat steps 2e7 for as many attack scenarios as deemed

necessary for achieving the required level of security.What

sufficient security means is a critical judgement call. The

decision makers with the final responsibility for releasing

the data must therefore be involved in this process.

9) If none of the attack scenarios prohibits release of the data

according to steps 6 or 7, consider publishing the anony-

mised data.

Note that coming up with the relevant attack scenarios is a

critical part of the process which requires domain knowledge,

experience, insight and creativity. The thinking that goes into

the attack scenarios is often much more crucial than the

precision of computing the adversarial mutual information.

A lot of time and resources can be saved by considering worst-

case attack scenarios first and start with quick-and-dirty es-

timates of the adversarial mutual information. The process

may well terminate after crudely analysing a first worst-case

scenario which means that further scenario analysis or

more precise adversarial mutual information computations

are superfluous.

Note that identifying the worst-case scenario is based on

intuition on what would be the most threatening combina-

tion of scenario likelihood, consequences of broken privacy

and adversarial knowledge. What we consider to be un-

wanted consequences are also not objectively definable but

depends on cultural, political and legal factors. In some cul-

tural settings we may for example not consider it a privacy
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risk if parents learn sensitive information about their chil-

dren even if the target may suffer considerable because of the

leaked information. The person with the maximal back-

ground knowledge is also not necessarily the worst adver-

sary. The spouse of the target may for example know all the

data in the target's anonymised data base record but this

means also that he or she learns nothing new by identifying

the target's record other than that the target is included in the

database. The latter may or may not be a privacy risk; it

would for example not be a privacy risk if the released

database lists the home owners of the county while it might

be a considerable intrusion on the target's privacy if the

database is about the users of an infidelity dating site. In the

special case where publishing the anonymised data reveals

only information that was publicly available before the

release, decision makers could argue that there is no privacy

risk since adversaries can learn nothing new from the pub-

lished data. In such cases it will not be possible to come up

with a credible attack scenario. Consider for example a

database containing the age, gender and political affiliation of

all the political candidates in a general election. Since all at-

tributes of the any possible target already are open infor-

mation and it also is a public fact that the persons in the list

are candidates, decision makers could reasonably conclude

that there is no conceivable attack scenario related to the

release of the database.

It is crucial to document each step of the decision process.

This documentationmay have legal ramifications if the data is

published. Anonymisation experts will find the documenta-

tion very useful if the data is not released and amore thorough

anonymisation process is requested. Having good documen-

tation is also convenient if the decision process need to be

repeated for releases of new versions of the data or of the

same data to different users.
3.3. Application examples

In this subsection we provide two examples on how to apply

the decision-making process. The same steps as in Section 3.2

are followed in the examples. For brevity we consider just one

attack scenario in each example although a real-life process

could iterate over several scenarios.

3.3.1. Anonymised demographic data
The first application example considers including de-

mographic data in anonymised databases.

1) Each record in the anonymised database consists of

gender, zip code, year, month and day of birth as well as

sensitive data on individual use of certain healthcare ser-

vices. For brevity we will in this example not spell out the

details of the healthcare-related data.

2) The attack scenario is about a prospective employer sus-

pecting that a job candidate has health problems and

trying to identify the record of the target for the purpose of

finding out about the candidate's health status. The

employer knows the gender, zip code, year, month and day

of birth of the target but has no information related to

healthcare.
3) The decision maker accepts a 5% risk of de-anonymisation

in this attack scenario.

4) The database comprises all U.S. citizens registered in the

year 2000 census and the attacker knows that the target

belongs to that group. This means that process step 4.a can

be applied. There are 281 million records in the database.

Inserting bN ¼ 281 000 000 and p ¼ 0.05 in Eq. (12) reveals

that the maximum adversarial mutual information is

np z 26.5.

5) A rough estimate of the adversarial mutual information

assumes that gender, zip code and date of birth are

mutually independent with uniform statistical distribu-

tions and proceeds to estimate the number of bits that is

required to specify the components of the pseudo-

identifier as follows: gender (1 bit); zip code (15.0 bits);

year (6.3 bits); month (3.6 bits) and day (4.9 bits) where we

assume 33233 U.S. zip codes and a uniform age distribution

over a life span of 80 years. The total estimated adversarial

mutual information is 30.8 bits.

6) Since the adversarial mutual information is larger than the

threshold np (30.8 > 26.5), the privacy risk is unacceptable

and the decision must be to not release the anonymised

data. The decision makers realize that a more sophisti-

cated statistical analysis may produce a different estimate

of the adversarial mutual information but they find it un-

likely that their decision would be swayed even if some

advanced statistical model pushes the estimate closer to

the threshold.

7) The target is not likely to be an outlier with respect to any

of the attributes gender, zip code, year, month and day of

birth. Gender and the time of birth are known to be evenly

distributed for the age group that the target belongs to.

None of the very few people who have their own zip codes

are likely to apply for jobs in the firm.

The last step of outlier analysis is strictly not necessary as

steps 1e6 indicate that the data should not be released. It is,

however, included here to exemplify how this step can be

performed. A different attack scenario may for example be

about con artists targeting ageing people. In that case it might

be relevant to note that a person aged 116 may be identifiable

based on age alone.

The decision is based on using, in some cases, unrealistic

uniform distributions. A careful statistical analysis by

Sweeney (2000) based on the year 1990 U.S. census finds that

87% of the U.S. population is identifiable based on gender, zip

code and date of birth. Similarly Golle (2006) finds that 63.3% of

the U.S. population is identifiable based on gender, zip code

and date of birth using data from the year 2000 U.S. census.

This corroborates the simplified process in the example.

Inserting N ¼ 281.000.000 as well as the crudely estimated

adversarial mutual information of step 5 as the value of np in

Eq. (12) and solving for p leads to p ¼ 86.0% meaning that the

decision maker must accept a de-anonymisation probability

of at least 86.0% in order to make the decision to publish the

anonymised data set. This demonstrates that the simplified

estimate in step 6 as expected somewhat exaggerates

the probability for a successful attack compared to Golle's
result. This makes, however, little difference to the release

decision.

http://dx.doi.org/10.1016/j.cose.2014.07.001
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Clearly, we could use the result of the decision process as

input to another round of anonymisation processing. After

having the first attempt rejected according to the example

above, anonymisation engineers could filter out themonth and

dayof birth leaving only gender, zip codeandyear of birth in the

demographic part of the anonymised data. Re-running the

process according to steps 1e7 above, decision makers now

estimate theadversarialmutual information to22.3 bits (gender

(1 bit); zip code (15.0 bits); year (6.3 bits)). While pondering

further attack scenarios, it is found that possible adversaries

would have no knowledge on the medical status of the targets

and that they cannot have more relevant demographic knowl-

edge since the first attack scenario already assumedmaximum

knowledge.As the estimatedadversarialmutual information in

theonly relevantattackscenario is less than the thresholdvalue

(22.3 < 26.5) and no worse attack scenario is conceivable the

decision should be to release the anonymised data.

3.3.2. Anonymised air travel data
The second application example considers releasing anony-

mised data on air travel. Decision makers could apply the

process of Section 3.2 as follows.

1) The data about each individual in the anonymised data-

base consists of a list of airline flights that the subject has

travelled on or have tickets for. The information about each

flight includes departure airport, destination airport,

airline and flight code.

2) The villain of the attack scenario is a stalker who is

tracking awoman living in amid-sized European city. If the

stalker finds out about the target's travel plans he may

attempt to pursue and possibly attack the target physically.

It is assumed that the stalker has access to the released

data and knows about two outbound flights that the target

has written about in her blog.

3) The decision maker accepts a 1% risk of de-anonymisation

in this attack scenario.

4) The attacker is not sure that the target is in the anonymised

database so process step 4.b is applied. The attacker knows,

however, that the roughly one billion record owners are a

subset of the world population. Hence bN ¼ 7:2$109 and

p ¼ 0.01 are plugged into Eq. (12) with the result that the

maximum adversarial mutual information is np z 30.5.

5) A rough and ready estimate of the adversarial mutual in-

formation may be performed as follows. The anonymised

data spans a ten year period during which the target takes

many trips starting out from the home airport. The total

number of aeroplane departures from the home airport

over ten years is 106 (loosely based on Arlanda airport

statistics). Pinpointing any outbound flight requires

therefore Log2(10
6)z 19.9 bits of information. Based on the

stalker's knowledge of two outbound flights we conclude

that the adversarial mutual information is 39.8 bits.

6) Since the estimated adversarial mutual information

(39.8 bits) exceeds the upper limit of 30.5 bits we conclude

that the anonymised data cannot be published.

7) The target is unlikely to be an outlier with respect to de-

parture airport, destination airport, airline and flight code

since she is an ordinary passenger on a flight from a mid-

sized European city.
The assailant's lack of knowledge about whether or not the

target is in the database has, in this case, little effect on the

conclusion. Using process step 4.a rather than 4.b gives an

upper limit of 27.7 bits rather than 30.5 bits which is of no

consequence for the decision.

Note that the adversarial mutual information in this

example is estimated by comparing the information content

of free text in a blog with attributes of the anonymised data-

base. This is fundamentally different from counting the

number of overlapping attributes as in the Nar-

ayanan&Shmatikov limit (Eq. (2)). The concept of adversarial

mutual information is more versatile since it encompasses

using uncertain information and comparing syntactically

incongruent data. Consider for example a scenario as above

where the target blogged about a visit to the Copenhagen

Tivoli Gardens in 26May 2014; the adversary had a 25% chance

of observing the target entering the airport train in the

morning of 26 May 2014 combined with the public knowledge

that there is just one morning flight to Copenhagen from the

relevant airport. None of these three pieces of information

corresponds directly to an attribute in the anonymised data-

base but can be combined to a 25% risk of the attacker

correctly identifying a flight taken by the target. This would

correspond to 17.9 bits added to the adversarial mutual in-

formation where the 2 bit penalty compared to the 19.9 bits

per flight estimated above is due to the uncertainty of the

information.

3.3.3. Discussion of the application examples
The decision-making process in Section 3.2 is based on the

precept that privacy breach means identification of the target

record in the anonymised database. This may not be the only

risk that decision makers need to take into account. Consider

for example a stalker, according to the second example, with

access to information about just one outbound flight. The

stalker may not realize that a uniquely identified record may

not belong to the target and could therefore assault the wrong

person, perhaps with grave consequences. Although it is

impossible to guard against incompetent attackers making

incorrect inferences the lesson to be learnt from this example

is that decision makers should look out for scenario-specific

risks that cannot be captured by the decision process pro-

vided in this paper.

False positives could in particular have grave conse-

quences in government, intelligence and military de-

anonymisation operations where we, however, can assume

competent reasoning about identification probabilities. If the

anonymised data has been released according to the process

of Section 3.2, the parameter p that is selected in process step 3

will be an upper limit of the probability of correct de-

anonymisation in the attack scenario that are fleshed out in

process step 2. This means that the probability for that de-

anonymisation algorithm points to the wrong individual as

the most likely target is larger than 1-p. The competent ad-

versary will, however, be able to reason correctly about the

probability of false positives. The possibility of a ruthless ad-

versary in a high-stake conflict indiscriminately targeting in-

dividuals that most likely are false positives for the off chance

of striking the intended target should if applicable be

considered in the risk estimate of process step 3.

http://dx.doi.org/10.1016/j.cose.2014.07.001
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Note that we in both of the examples used uniform prob-

ability distributions for estimating the adversarial mutual in-

formation. The uniform distribution gives a worst-case limit

of the adversarial mutual information and is hence concor-

dant with the principle of caution. If estimates based on uni-

form distributions suggest that the data cannot be released,

decisionmakers have the option to postpone the decision and

let experts make a more careful estimate using well-founded

statistical distributions.
4. Conclusions

We have described and exemplified a process for making de-

cisions about the release of anonymised information. At the

core of this process is an information-theoretic limit on the

adversarial mutual information which is independent of both

anonymisation and de-anonymisation algorithms. Decision

makers using this process need a basic understanding of

probability and some training in the concept of adversarial

mutual information but will not need to handle complex al-

gorithms. The number of attack scenarios to be considered

and how much analytic effort that is reasonable to spend

depend on the privacy and security requirements of the

application. The higher the cost of a privacy breach the more

effort should go into the decision process.

The frequent failures of anonymisation as described in

Section 1.2 is not hard to understand in the light of the

feasibility limit that we have discovered in this paper. In

Section 2.3 we demonstrate that 33 bits of adversarial

mutual information normally is more than sufficient for

successful de-anonymisation. Given the rich sources of

digital information that is available about most of us, it is

not surprising that it in many historical cases has been

possible to muster at least 33 bits of personal background

information that overlaps with the published data and thus

re-identify record owners. Using the decision process pro-

vided in Section 3.2 it should be possible for future decision

makers to avoid publishing too weakly anonymised

information.

One could argue that the process recommended here is an

effective instrument for disputing the release of an anony-

mised database but that it appears to far less suitable for

finding reasons in favour of releasing the data. This apparent

prejudice is, however, an unavoidable property of the decision

problem rather than a bias in the decision-making process.

Releasing an anonymised database is, as discussed in Section

1.4 not an operation characterized by differential privacy and

it is therefore not possible to provide strong privacy guaran-

tees independent of the knowledge of adversaries. Thismeans

that we must reason about attack scenarios and that one

single attack scenario can be sufficient reason for not

releasing the data while only the combined analysis of all

relevant attack scenarios can forman adequate foundation for

publishing the data.

The decision-making process provides documentation of

the attack scenarios that were considered and how the risks

where analysed. This documentation is valuable in periodic

security reviews, audits and legal processes. Having

considered all relevant attack scenarios gives the decision
makers confidence in their decisions and makes the de-

cisions transparent and defendable. However, making the

decision process auditable and transparent may also open

up new avenues for criticism and litigation since the docu-

mentation exposes the unavoidable compromises and risk-

benefit balancing that is inherent in any decisions about

publishing anonymized sensitive data. Understanding the

brittleness of data anonymisation and how to make

informed decisions about data publishing are useful also in

political deliberations and in law making related to privacy

of personal information. The concept of adversarial mutual

information and how it relates to privacy risks could be

helpful also in this context.
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