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Abstract—In this application oriented paper we develop 
information fusion explanation functions for simulation-based 
decision support for evaluation of military plans in expeditionary 
operations. The explanation function is based on a sensitivity 
analysis on the impact of different actions upon the success of the 
plan where we systematically vary the alternatives of each action 
of the plan, one action at a time, keeping all the other actions 
unchanged in a series of simulations. This sensitivity analysis 
shows the relative level of importance of making the correct 
selection of alternative for each action. Using the explanation 
function, a decision maker can find the most important actions of 
a plan and focus his attention on actions where successful 
decision making is crucial to the success of the entire plan. 

Keywords-decision support; simulation; information fusion; 
explanation functions, Effects-based Approach to Operations. 

I.  INTRODUCTION 
In this application oriented paper we develop information 

fusion explanation functions for simulation-based decision 
support for evaluation of military plans in expeditionary 
operations. We have developed a simulation-based decision 
support methodology with which we can test operational plans 
as to their robustness [1][2][3]. Primarily, this methodology 
highlights the dangerous options in an operational plan, leaving 
the decision maker free to focus his attention on the set of 
remaining robust plans. By using a decision support tool, a 
decision maker is able to test a number of feasible plans against 
possible courses of events and decide which of those plans is 
capable of achieving a desired military end state. The purpose 
is to evaluate plans and understand their consequences through 
simulating the events and producing outcomes which result 
from making alternative decisions regarding actions. Each plan 
consists of many actions, where several actions can be 
performed in a number of alternative ways. When a good plan 
has been found by the system we may use the explanation 
functions derived in this paper to find the actions within the 
plan with the highest impact on the success of the plan. 

Actors and actions are modeled using a scenario used by 
the Swedish Armed Forces in their Combined Joint Staff 
Exercises. The actions of the plan are simulated together with 
all actors and their reactions on our planned actions, and their 
possible follow-on interactions. As the actions may each have 
several different alternatives in which manner they can be 
carried out, together they span-up an action tree. The tree is 

searched by an A*-algorithm [4][5] where each level in the tree 
is an action and each node in the tree is an alternative for an 
action. As the action tree is searched, each node (i.e., sequence 
of alternatives leading from the root of the three to this node) is 
evaluated by the simulator and results are stored and 
communicated to the decision support side of the system. By 
using an A*-search to guide the tasks of the simulator we let the 
simulator work in a manner to achieve maximum information 
value gain. In addition, a simulation control interface lets the 
decision maker put constraints on the search, in order to 
simulate actions within his area of interest [1]. 

How we model a phenomenon depends on the purpose of 
the model and the questions we want to answer. Since our 
simulation system aims to support decision-making within an 
Effects-based Approach to Operations (EBAO) 1  [6][7] the 
modeling has to be based on EBAO and the concepts used 
within it, such as plan, action, effect, end state, etc. 

The planning process we develop corresponds to the 
selection of a subset of actions which are chosen from a set of 
alternative actions. A chosen combination of alternative actions 
constitutes a plan. The number of plans can theoretically grow 
very large since each permutation of alternative actions will 
constitute a separate plan. 

By systematically varying one action at a time keeping all 
the other actions unchanged in a series of simulations, we are 
able to perform a sensitivity analysis for each action in the plan 
based on the change in evaluation score of the plans. This 
sensitivity analysis shows the relative level of importance of 
making the correct selection of alternative for each action. 
Using the explanation function, a decision maker becomes 
informed as to which actions of the plan are crucial to its 
success. 

In section II we describe the scenario of an expeditionary 
operation. In section III we describe the military plans under 
investigation and the A*-search through simulation increments 
of alternative plan instances. We develop information fusion-
based explanation functions for analyzing the impact of 
different actions of any plan on the ability of that plan to 
achieve the sought after military end state (section IV). In order 
to have full data input to the explanation function we perform 

                                                           
1 EBAO is a military approach for the management and implementation of 

efforts at the operational level. 
�This work was supported by the FOI research project “Real-Time 

Simulation Supporting Effects-Based Planning”, which is funded by the R&D 
programme of the Swedish Armed Forces. 
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additional simulations around the original plan instances where 
only one action at a time is changed compared to the original 
plan (section V). In section VI we analyze the impact of all 
actions using the derived explanation function for some of the 
best original plan instances found by the simulation. These 
sections IV−VI are the core of the paper. Finally, conclusions 
are drawn (section VII). 

II. SCENARIO 
We make use of the same scenario that has regularly been 

used by the Swedish Armed Forces in their Combined Joint 
Staff Exercises. The scenario comprises several fictitious 
countries. Background histories offer explanations to why and 
how sentiments, stances, identities, loyalties, economic 
dependencies and inequalities have evolved over time, 
occasionally resulting in shifts of power. Phenomena that are 
commonly found in conflict areas and post conflict areas have 
been embedded in scenario contexts that make the origins of 
the phenomena plausible. 

In Bogaland, a newly industrialised country, a civil war 
broke out ten years ago when discontent within the minority 
ethnic-religious group had reached very high levels. The root 
cause was increasing social stratification caused by what 
members of the minority group perceived as unjust distribution 
of revenues from a natural resource located in an area 
populated by the minority group. The civil war put an end to 
the exploitation of the resource, in this case oil, and revenues 
dropped to very low levels. The country was split into two 
parts, roughly along ethnic lines, with each part having its own 
government. A post-war economy evolved over the next 
decade, and several irregulars and insurgents are now 
challenging the incumbent presidents. 

The incumbent presidents have signed a peace-agreement, 
and an international force, BFOR, is present to support the 
implementation of the agreement. Irregular groups in Bogaland 
seek to preserve or increase their influence by undermining the 
efforts of BFOR, the governments or competing irregulars. 
Two of the neighboring countries have much at stake in the 
conflict, because of economic interests and shared identities 
with parties within Bogaland. Actors within these neighboring 
countries support irregulars in Bogaland. 

This is the scenario that we use in simulation of alternative 
plans for the BFOR force. The scenario consists of 
participating actors, their initial states and probability 
distribution for different actions, environmental data, as well as 
the plan that is to be evaluated. The aim is to find a plan that 
drives the initial state of the scenario towards a predefined 
military end state. Specifically in this paper our focus is on 
finding the most important actions within a successful plan for 
this scenario by using explanation functions. 

III. EVENT-BASED SIMULATION OF PLANS USING A* 

A. Plans 
A plan as it is defined in the context of EBAO is a 

sequence of actions that together leads to a desired end state 
which is set by a military force. 

A typical plan instance P1 is 
[1  2  41  61  6  9  23  12  4  50  51  52  16  63  55  56  72  76  
67  85  79  80  94  95  96  105  31  57   46  47  5460.2  4448.2  
1012.0] 
where all but the last three numbers in this sequence is the 
number of the selected alternative for each action in this plan 
instance. For example, action number 3 (i.e., position 3 in the 
sequence) takes alternative number 41. Note that alternatives 
for different actions are numbered with running numbers in no 
particular order; they do not restart at 1 for each new action. A 
full plan instance is a path from the root of tree down to one 
particular leaf. Obviously, the depth of the tree is the length of 
the sequence minus three (i.e., not counting the f, g and h 
estimates). Plan instance P1 above corresponds to a sequence 
of 30 specific simulations where the actions take the numbered 
alternative listed in the sequence as its input parameter [1]. 

The last three parameters are different evaluation measures 
called f, g and h (f = g + h). They are distance measures 
calculated from changes in the scenario state and used in the 
A*-search algorithm. 

Plan simulation is performed by the simulation engine. The 
engine basically contains an implementation of the A*-search 
algorithm which uses the Monte Carlo principle for event 
based simulation. 

B. Simulating action alternatives 
The scenario consists of participating actors, their initial 

states and probability distribution for different actions, 
environmental data, as well as the plan that is to be evaluated. 
Furthermore the scenario contains an event list which consists 
of actions derived from the other actors’ agendas, and 
spontaneous/natural events. The list is dynamic and changes 
during the course of the simulation. 

Let’s define the system state, Sn as the combination of all 
actors’ state parameters and all environment parameters. 
Consider action An. It transforms system state Sn according to 
Sn = f(Sn-1, An), in the time interval [tn-1, tn]. The implementation 
of An is rarely instantaneous. Instead, it is an interaction 
between our own action, other actors’ agendas and response 
operations, and other external events. Hence, our function 
f(Sn-1, An) is designed as an event-driven simulation model in 
order to manage the complex interactions in a transparent 
manner. The events in this case are: launching of actions (our 
own or any other actors’ actions), an actor’s observations of 
initiated actions, and occurrence of an external event. 

During simulation an assessment is made of how well each 
action did perform. This is done by the function g, a function 
that measures the consequence of all performed actions as a 
distance from the initial state S0,0 to the current simulated state 

xyxS , [1]. Function h is a heuristic estimate of the remaining 

distance from 
xyxS ,  to the end state. 

We know that the goal of the simulation is to execute 
different plans and identify those plans that result in system 
states that are closest to our end state, i.e., has the shortest 
distance to it. 
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C. Searching among action alternatives 
To find good combinations of alternatives for all actions of 

the plan we apply A*-search. It means that, on the basis of a 
given system state, we simulate the effect of each alternative 
action in our plan, but only one step at the time. Doing so, for 
every alternative, we get a new system state whose distance to 
the desired end state is calculated. Given the alternative that is 
best, i.e., closest to our end state, we simulate possible 
subsequent alternative actions provided, but again only one 
step ahead in our action/event list. One of these alternatives 
leads to a condition that is closer than the others. However, it is 
possible that all the alternatives actually lead away from the 
target as seen by Figure 1.  

S0 100

S11 84 S12 79 S13 103

A13A12A11

S0 100

S11 84 S12 79 S13 103

A13A12A11

S221 88 S222 71

A221 A222

S0 100

S11 84 S12 79 S13 103

A13A12A11

S221 88 S222 71

A221 A222

S3221 98 S3222 112 S3223 87

A3223A3222A3221

S0 100

S11 84 S12 79 S13 103

A13A12A11

S221 88 S222 71

A221 A222

S3221 98 S3222 112 S3223 87

A3223A3222A3221

S211 108 S212 59

A211 A212

Step 4: Activities following S11 are now simulated and S212 is 
the “closest” and next to simulate.  

Step 2: After execution of alternative activities that follow 
S12, S222 is the “closest” to the target. 

Step 4: From S222 all the alternative activities 
that are presented are executed. S11, which was 
calculated earlier appears to be “closest” now. 

Step 1: From the initial state all 
available alternatives are simulated. S12 
appears to be “closest” to the target. 

 
Figure 1.  An example illustrating the four first steps in a simulation of a plan 
starting with initial system state S0 with the distance of 100 to the desired end 

state. The available action alternatives Ax are executed successively in the 
currently most favourable plan option. 

Therefore, we must also compare the new distance with the 
best of the distances that have been simulated and recorded in 
the previous simulation steps, but then had opted out in favor of 
a better sequence of alternative actions. The best sequence now 
becomes the basis for the next simulation step. 

The distance from the initial state S0,0 to a current state 

xyxS ,  is given by 
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We observe the difference in consequences between two 
plans. We compare the incremental changes of g called Δg as 
each plan Pi and Pj progresses down the sequence of 
additional actions Ak, where 

 ).().().( 1−−=Δ kikiki APgAPgAPg  (2) 

and i and j are indices for different plan instances and k is the 
index for action. Thus, Pi.Ak is a variable referring to the kth 
action of the ith plan. It takes an integer as its value that is the 
number of the alternative for this action, e.g., P1.A3 = 41 imply 

that action number 3 of plan number 1 performs alternative 
number 41. 

The estimated distance from the current state to the end 
state is given by 

 ( ) ( )eyxx SSyh
x
,,Δ= . (3) 

With the total distance from the initial state to the end state 
via the current state is 

 ( ) ( ) ( )xxx yhygyf += . (4) 

This is the distance function that is minimized by A*. 

IV. EXPLANATION FUNCTION 
Strat and Lowrance developed explanation functions [8][9] 

within Dempster-Shafer theory [10]. With these functions they 
where able to find the impact on the belief of any proposition 
from every contributing input factor through a sensitivity 
analysis based on numerical differentiation. They defined the 
differentiation of belief as 
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The idea is that for each proposition A of interest a 
discounting of the belief in A with a small ε is performed. Then 
the belief in proposition A is calculated twice, once with the 
undiscounted mi, and once with the discounted i

imα . From the 
difference, the impact of mi on Bel(A) can be calculated. This 
may be repeated for all other propositions. 

We extend this idea of numerical differentiation of the 
belief in propositions to the value domain that we work with in 
this application; i.e., f, g, h. As we work with plans consisting 
of several actions Ak we like to find the impact of each action 
on the evaluation { }lkiikl lAPf ).( =  of plan Pi. This impact can 
be denoted ∂fikl/∂Ak. Given that we have a discrete set of 
evaluations { }lkiikl lAPf ).( =  we approximate the 
differentiation as a normalized difference between 

).(max lAPf kiikll = and the average of all { }lkiikl lAPf ).( = . 
We have, 
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where { }lkiiklik lAPfn ).( ==  is the number of alternatives for 
Pi.Ak, and l is the index of the alternative. 

As the variance in the in this measure can be large between 
different plans Pi we may choose to study box plots for a small 
number of good plans for each action Ak. For example, in 
section VI we will study box plots for the five best plans over 
all alternatives for averages of all actions Ak, 
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This may be the first presentation to analysts investigating 
which actions of the plan is most sensitive to accurate selection 
of alternatives on the overall success of the execution of the 
plan. 

V. GENERATING ADDITIONAL SIMULATIONS 
As described in section III, the A*-search algorithm is 

intended to continuously deliver the best plans it finds 
concerning the probability of success in reaching the end state, 
reflected in the distance g from start to end state; the lower, the 
better. Each of these plans consists of a set of actions where the 
actions have several alternative ways of execution and a plan 
must choose one alternative from each of these actions. Some 
actions in the simulation turn out to be more important than 
others for plan success. In order to find out how much a plan 
relies on a selection of a certain action alternative for its 
success, one might compare a good plan Pi found by the A*-
algorithm with plans that are structurally similar to it in some 
respect. One way to do this is to compare Pi with neighboring 
plans that only differs from Pi in the selection of alternatives 
for one single multi-alternative action, see Figure 2. This 
corresponds to all neighboring plans having a Hamming 
distance [11] to Pi of exactly 1. Using the formalism from 
section III for plans with n actions, we have 
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We will in the next section perform a sensitivity analysis 
for the 150 best plans found by A*. 

Some of these plans might be good and may already have 
been simulated and delivered by A*, and hence with a bit worse 
g. Furthermore, some of them might be only partly simulated, 
still residing in the A* open set. However, since the space of 
potential plans can be extremely large (tens of million), and the 
A* open set can reach a very large size, we do not try to find 
those partly simulated plans in the open set, and simulate them 
to completion, or try to find them among the already fully 
simulated plans. Instead we simulate all neighbors to each good 
plan Pi already found with a variation compared to Pi of exactly 
one action alternative a time. For each action Ak, we simulate Pi 
where the selected alternative for action Ak is replaced by 
another alternative to Ak in the additional simulations. This is 
the set Pik consisting of |Pi.Ak| – 1 neighboring plans where 
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After having worked through all actions with alternatives, 
changing only one action at a time, we get as many 
neighboring plans to Pi as the total number of additional 
alternative actions, excluding the alternatives that are part of Pi 
itself. For a set of n actions there are |Pi.Ak| – 1 alternatives to 
an action Ak in addition to the one in Pi. We have a total of 

 ( )�
=

−
n

k
ki AP

1
1.  (10) 

neighboring plans to be compared with Pi. In our analysis, we 
use g as the quality measure of a plan and investigate how it is 
affected by systematic variations of each action of the plan. 

 
Figure 2.  Conceptually, a plan Pi is a choice of alternatives for a sequence of 

actions, one for each consecutive action to be executed, like the red colored 
path. Each cyan colored path in this six-action planning problem corresponds 
to one neighboring plan out of Pi.A4 = {1,2,4,5,6} for alternative 3 of action 4. 

VI. ANALYSING RESULTS 
In our example the planning problem is set up of 95 actions, 

similar to the 30 yellow nodes in Figure 2. Of these, 51 are 
grouped into 14 actions with 2, 2, 5, 4, 3, 2, 4, 2, 6, 8, 2, 7, 2, 2 
alternatives per action, respectively. The remaining actions are 
all singleton actions without any alternatives that appear at 
some positions between the multi-alternative actions and 
always have to be executed. Singleton actions are not included 
in this analysis because of the lack of alternatives, and are 
hence not included in the figures in this section. A typical plan 
consists of one permutation of the alternatives of the 14 multi-
alternative actions together with between 16 and 20 interleaved 
singleton actions. As described in the section V, the impact on 
plan quality when varying the alternatives for each multi-
alternative action is the main outcome of this paper. 

We perform simulations as described in section III and 
simulate 150 completed plans. “Completed” should be 
interpreted as the execution of all actions in a plan. Normally, 
we do not reach the military end state in these simulations, 
(corresponding to h = 0 in A*) even though the plan is fully 
traversed. This corresponds to plans that do not have a 
combination of actions that, after completed simulation, are 
fully successful in obtaining the goal. 

The evaluated plans have a g-distribution according to 
Figure 3.  
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Figure 3.  The g values of the 150 best plans found. 

The steps in the g values are the result of additional 
singleton actions (one additional per step) being present in 
plans of lower goodness. The best found plan, delivered first by 
A*, is represented by the leftmost, shortest, bar in the figure 
with g = 4482.2. Taking that plan as an example we can check 
how a variation of its multi-alternative actions affects g, see 
Figure 4. Each bar group in the figure contains the alternatives 
for each action not present in the original plan (red). For 
example, in Figure 4 we observe the third (cyan) bar group 
with alternatives numbered 3, 4, 5, and 6. These are four out of 
five alternatives for the third non-singleton action of the plan. 
Singleton actions are excluded in the figures. The fifth 
alternative for this action resides within the original plan (red) 
as the default for the third non-singleton action. Thus, Figure 4 
shows the increase in g if one alternative for one action is 
changed from its default value in the original plan under 
investigation. 

Orig 1 2 3 4 5 6 7 8 9 1011 12 131415 16 1718192021 22232425262728 29 303132333435 36 37
4420

4440

4460

4480

4500

4520

4540

4560

Alternative

g

 
Figure 4.  A bar chart showing the variation of g when varying the first plan 
(red) over the alternatives of each multi-alternative action (cyan). Only the 

variations of the first plan found by A*-search are shown, the first plan itself is 
only shown once instead of being repeated in each bar group. 

That analysis in Figure 4 was made for a single plan P1. To 
get a hint of the variance of g values among different plans, we 
plot box charts for the five best plans, see Figure 5. They 
correspond to the five bars in the lowest step to the left in 
Figure 3.  

Orig 1 2 3 4 5 6 7 8 9 1011 12 131415 16 1718192021 22232425262728 29 303132333435 36 37
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4440

4460

4480

4500

4520

4540

4560

Alternative

g

 
Figure 5.  A box plot showing the variance of g when varying the alternatives 

of each multi-alternative action for the five best plans. 

To get a feeling of the g-landscape for the best 150 plans 
from A*-search together with their additional simulations 
varying one alternative at a time, a 3D bar plot is studied in 
Figure 6. The noise is mainly a result of the Monte Carlo 
simulation. 

 
Figure 6.  A 3D bar plot over the g values for 150 simulated plans. The red 
bars are the same as the bar chart in Figure 3 and the first row of bars along 

the “Alternative” axis corresponds to Figure 4.  

However, the main interest of this study is the sensitivity of 
a plan as a function of the possible variations of its actions. The 
interest is two-fold; the performance of the A*-search algorithm 
is checked since “shifting in” other alternatives to the actions 
found for good plans by A*-search should give worse plans 
with higher g, that is a positive �g/�A. A high value of a certain 
�g/�A also means that that the planning problem is more 
sensitive on the choice of alternative for that action which 
means that more importance should be payed to it in the 
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planning process. When estimating P’s sensitivity on the 
choice of alternative for a certain action, we use (6)(7), giving 
�g/�A for an action. In the example, the variability of actions 
ranges between 1 and 8 alternatives. Observing the best plan 
P1, the sensitivity (6) for different actions is plotted in Figure 7.  
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30  31  32  33  34  35 36 37

 
Figure 7.  The sensitivity of the first plan P1. Each bar represents the vaue of 

�g/�A using (6) over all alternatives of each action. 

As an example of the variance for action A1 among 
different plans, the sensitivity is plotted for the best 150 plans 
P1.A1−P150.A1, Figure 8. For a few of the plans we observe that 
�g/�A is negative which means that the neighboring plans on 
average gave a lower g value than the best plan found by A*-
search. This is due to random effects of the Monte Carlo 
simulation of the subsequent additional simulation which 
introduces some noise. 
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Figure 8.  The sensitivity on the first action A1 for each of the 150 plans (in 

all plans, the first action has only one alternative). 

To introduce some additional robustness in the analysis of 
∂g/∂A we produce box plots of (7) for the five best plans P1−P5, 
see Figure 9. We notice, for example, the low sensitivity and 

low variance of the eighth non-singleton action with alternative 
16 and the rather high sensitivity of the ninth non-singleton 
action with alternatives 17−21. The latter is one of several 
actions that need to be in focus of attention of the decision 
maker. 
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Alternative  
Figure 9.  The variance in sensitivity of the five best plans. 

Finally, to get an overview, for the best 150 plans and all 
possible alternatives, the sensitivity is plotted in Figure 10.  

 
Figure 10.  The sensitivity of all data; that is the 150 best plans found by A*-

search together with all their additional simulations of neighboring plans. The 
first bar series facing the viewer is the same as in Figure 8 and the front bar 

series above the text “Alternative” corresponds to Figure 7.  
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VII. CONCLUSIONS 
We have developed an explanation function that highlights 

the actions of a military plan where the impact of making the 
best selection of alternatives is most important. 

It should be noted that this is not the same as which actions 
are most important for the overall success of the plan. There 
may for example be important actions where the impact on the 
success of the plan does not vary much between different 
alternatives, making a selection of alternative less important. 
There may even be singleton actions with only one way to 
perform it. 

Thus, what we have developed is a method that highlights 
which actions of the military plan is crucial from a decision 
making point of view. This is where decision makers should 
focus their pre-execution attentions. 
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