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Abstract - In this paper we develop a particle filtering approach
for grouping observations into an unspecified number of clusters.
Each cluster corresponds to a potential target from which the
observations originate. A potential clustering with a specified
number of clusters is represented by an association hypothesis.
Whenever a new report arrives, a posterior distribution over all
hypotheses is iteratively calculated from a prior distribution, an
update model and a likelihood function. The update model is
based on an association probability for clusters given the
probability of false detection and a derived probability of an
unobserved target. The likelihood of each hypothesis is derived
from a cost value of associating the current report with its
corresponding cluster according to the hypothesis. A set of
hypotheses is maintained by Monte Carlo sampling. In this case,
the state-space, i.e., the space of all hypotheses, is discrete with a
linearly growing dimensionality over time. To lower the
complexity further, hypotheses are combined if their clusters are
close to each other in the observation space. Finally, for each
time-step, the posterior distribution is projected into a
distribution over the number of clusters. Compared to earlier
information theoretic approaches for finding the number of
clusters this approach does not require a large number of trial
clusterings, since it maintains an estimate of the number of
clusters along with the cluster configuration.

Keywords: Particle filtering, sequential Monte Carlo, clustering,
finding the number of clusters.

1 Introduction

In this paper we develop a particle filtering approach for
grouping target observation reports into an unspecified
number of clusters. We let each cluster correspond to one
of the potential targets from which the observations
originates. This method solves exactly the same problem
as the one by Schubert [1] and Bengtsson and Schubert [2]
except that it handles the reports sequentially and does not
need to be given the number of clusters. Thus, given a
large number of reports of target observations arriving
sequentially, it determines the number of targets and
associates each report with a target.

Basically, this is a Bayesian filter in which the state-
space grows in each step when receiving a report. It can
also be thought of as a “soft” decision tree with pruning.
The state-space is then simply all possible association
hypotheses. It is discrete and one-dimensional.

Fig. 1. Illustration of the growth of the state-space over filter
steps. Note that the numbers of the clusters are not necessarily the
same in different subtrees. The number does not reflect the
identity of the cluster. Instead, clusters are given numbers in a
specific hypothesis based on how many previous clusters there
are according to this hypothesis. The largest number in the
hypothesis reflects the number of clusters. Cluster number “0”
means that this report is regarded as clutter and not associated
with a cluster.

In Fig. 1 the structure of the state-space is visualized. At
the arrival of the first report, the state-space has only two
states, [0] and [1]. We let the value “0” mean clutter, and
let the value “1” mean a target given a target number of
“1”. Obviously, if the first report is in state [0] it means the
report was due to clutter, and if it is in state [1] it means
that the report originated from the target at hand (with
target number “1”). Thus, the state of each report
corresponds to a hypothesis about the report to target
(track) association.

When a second report arrives, the discrete state-space
grows to five possible states, Fig. 1. Each state at the first
level leads to two or three different states at the second
level (see Section 3.1). At this time [0] and [1] are no
longer part of the state-space. The state-space will now
only consist of the five elements of length two in the
bottom row of Fig. 1. Thus, the elements of the state-space
are always of the same length, where each element is an
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alternative hypothesis about the target association of all
observations. For example, the state [0, 1] means that the
first report was clutter, while the second report originates
from a target with target number “1”. We may also
conclude that there is one target according to this state,
since “1” is the highest target number of the state.

With three reports there are 15 possible states, and with
four report 52 possible states, etc.1 Since the number of
possible states grows somewhat faster than simple
exponentially, we must perform some hard pruning.

When we receive a new report, a posterior distribution
over all hypotheses is iteratively calculated from a prior
distribution using an update model and a likelihood
function. The update model updates the probability of all
active hypotheses from a previous time-step k − 1 to the
current time-step k.

Given the prior distribution, the probabilities of all
current hypotheses are updated through the update model
which is based on an association probability for clusters
given the probability of false detection and a derived
probability of an unobserved target. False detection and
detection of a new previously unobserved target are
handled as two important special cases.

The likelihood of each maintained hypothesis is derived
from a cost value of associating the current report with its
corresponding cluster. We will assume a likelihood for
each hypothesis that declines with the distance, Eq. (7),
between the new report and the cluster center.

The set of active hypotheses is maintained by Monte
Carlo sampling [3, 4] as in an ordinary particle filter [5],
[6]. At each time-step, we will only propagate those states
which have posterior probability higher than a certain
threshold. All other states are assigned zero probability
and are eliminated. This is achieved indirectly by using a
fixed number of particles. Whatever remains are the active
hypotheses maintained in the analysis. As many states with
a small likelihood are not sampled with the Monte Carlo
algorithm we avoid a combinatorial explosion. On the
other hand, some states are sampled several times, then we
record the number of particles at that state by a variable
and adjust the probability accordingly, rather than keep
several identical copies. In order to lower the
computational complexity, we will also combine any
hypotheses with equal number of clusters if their clusters
are close enough to each other in the observation space.

Apart from the actual clustering of observations, one of
the major issues of importance is the estimated number of
clusters. This is estimated by projecting the obtained
posterior distribution into a distribution over the number of
clusters. As far as we know, this is the first paper using
particle filtering for finding the number of clusters.

The intended application is for an intelligence pre-
processor method in any multi-target environment where
the number of targets are unknown and observation to
target association has to be performed before other fusion
methods can be applied, e.g., as in [7, 8].

In Section 2 we discuss the cluster problem and why the
methodology developed in this paper is needed. In Section
3 we develop a general algorithm for determining the
number of clusters from an incoming stream of reports and
discuss its worst case computational complexity. In
Sections 4 and 5 we describe a metric and a conflict based
distance measure between reports, respectively. In Section
6 we discuss parameter settings and performance on time
complexity, convergence and quality of results. Finally, in
Section 7, conclusions are drawn.

2 Clustering

When receiving a large number of observations in an
environment with several targets where observations are
not pre-associated with targets, we need to have some
association or clustering method [9, 10] to perform an
association before we can proceed.

When using a cluster method it is usually necessary to
know up-front the actual number of clusters as this is an
input parameter in most clustering methods.

When no knowledge of the true number of clusters is
available we must estimate this from data as is done in this
paper or run several different trial clusterings, with
different fixed number of clusters, as was done in Ahlberg
et al. [7] and Schubert et al. [8] with Dempster-Shafer
[11, 12] cluster using Potts mean filed theory [2, 13−17].
We could then estimate the number of clusters from the
rate of change in conflict between trials with different
number of clusters using, e.g., the L method [18]. If some
apriori information is available, such as a probability
distribution over the number of clusters such information
can be used directly in the clustering process, as was done
in [19]. This would render an approach as in this paper
unnecessary. However, in the general case when no a priori
information regarding the number of clusters is available
we must infer the actual number of clusters from data.

While it is possible to estimate the number of clusters
directly from all data without clustering using only
detection probability, the enormous number of alternative
association hypotheses must be reduced by eliminating
low probability hypotheses, otherwise the problem will be
intractable computationally. An organized approach to
manage hypotheses is to receive observations sequentially
and eliminate low probability hypotheses as we go. This
approach obviously fits well with any problem that is
sequential in nature.

3 Bayesian Sequential Clustering

Each element of the state-space in which the filtering takes
place is a vector of numbers, indicating the cluster
identities of each observed report (Fig. 1). Let the
stochastic variable Xk = [I1, ..., Ik] denote the state at step
k, and xk = [i1, ..., ik] a certain value of Xk, i.e., a certain
state. Thus, at step k we have received k observations and
all elements of the state-space xk are of length k, where ik
is a target number of an observation zk according to
hypothesis xk. Each element of the state-space is an
alternative hypothesis about the observation-to-target11, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, ...



association of all observations received. The number of
objects according to the hypothesis xk can be obtained as
nk = max(xk) = max([i1, ..., ik]). Furthermore, let the
stochastic variable Zk be the report at step k, and zk a
certain value of Zk, i.e., the observed report.

The result of the filter in each step is the discrete
posterior distribution over association hypotheses given
the history of reports z1:k. From this distribution we can
obtain the MAP estimate, i.e., the most probable
hypothesis so far. By taking the marginal of the
distribution with respect to object count, we can also
obtain a distribution over the number of objects Nk,

. The posterior is iteratively obtained from
the previous step as:

(1)

where is the likelihood of hypothesis xk,
is the update model and

 the posterior at the previous step.

3.1 Update

The update step derives a prior distribution at step k from
the posterior distribution at step k − 1, given the update
model . The state xk is a concatenation of
xk − 1 and the target number ik to which report zk is
associated in this hypothesis: xk = [xk − 1, ik]. The
distribution over xk consists of two special cases and a
general case.

3.1.1 Special case 1: Clutter.

If ik is set to “0”, the report zk is assumed to be clutter, and
not associated with any cluster. The probability of this,
pFP , is known and depends on the sensor. Thus

. (2)

3.1.2 Special case 2: New cluster.

If ik is set to max(xk − 1) + 1, a previously un-observed
target is hypothesized. This is equivalent to assuming that
a fraction

(3)

of the observations 1 to k − 1 were clutter, given that all
targets have equal probability of being observed. The
probability of this is

. (4)

This leads to the probability of a new, previously
unobserved cluster,

. (5)

3.1.3 General case: Report associated with existing cluster.

The prior for  is

(6)

given that all targets have equal probability of being
observed.

3.2 Observation

The observation likelihood states the
probability of observing report zk given association
hypothesis xk. It is dependent on differences between
reports referring to the same target (according to
hypothesis xk).

In our test example, presented further in Section 5, the
objects generating the observations are static, and live on a
two-dimensional surface. Observations are noisy versions
of the 2D object position. Denote the number of clusters
according to hypothesis xk, nk. From xk, nk cluster means

can be computed, as the Euclidean mean
position of all observations clustered in the same cluster.
These cluster means are the estimated positions of the nk
objects that generated the observations .

According to hypothesis , the
observation zk has been generated from object ik.
Assuming Gaussian observation noise with standard
deviation σ, the likelihood is

(7)

if ik > 0. When ik = 0 the likelihood is uniformly
distributed over the 2D observation space.

4 Particle Filter Implementation

The Bayesian sequential clustering algorithm is
implemented as a particle filter. The posterior distribution
over Xk is represented by a set of N state hypotheses, or
particles . The number of particles at a certain
position in the discrete state-space represents the posterior
density in that point [5, 20]. In reality, the particles at
position number h in the (discrete) state-space is
represented by a tuple where is the state and

is proportional to the number of particles at that state.
The number of such hypotheses, , is most often several
orders of magnitude smaller than N . The choice of N is
discussed further in Section 5.

Fig. 2 gives an overview of the algorithm.

4.1 Update

From each old hypothesis , new
prior hypotheses are instantiated, one for each of
the two special cases, and one each for the clusters
according to hypothesis (see Section 3.1, Fig. 3).
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Fig. 2. Pseudo code for step k in a clustering particle filter.

The new prior weights are
calculated according to Eqs. (2, 5, 6). The new
hypotheses constitute the prior distribution at
step k.

4.2 Observation

The likelihood of each hypothesis is computed
according to Eq. (7). The hypotheses , where

, represent the posterior distribution
over cluster hypotheses at step k.

4.3 Resampling

Now N particles are Monte Carlo sampled
from the discrete distribution . As described
above, the particles are represented by states, and the
number of particles at that state, .

The states also represent the posterior
distribution over cluster hypotheses at step k. However, the
new number of states is much smaller than , in that
many states with a small likelihood were not drawn
during the sampling. Due to the resampling with a constant
number N particles, the number of hypotheses do not
grow with k, as we shall see in Section 5.

4.4 Collapsing Hypotheses

When the observation space is metric, one can define a
measure d of hypothesis similarity. Here, this measure is
defined as

(8)

For all pairs of hypotheses h1, h2, we compute d(h1, h2). If
the measure is smaller than 1, i.e., within one standard
deviation, the hypothesis with the lowest weight is
removed, and the weight of the other hypothesis is set to

.
This lowers the number of hypotheses when the

variance in the set of hypotheses is low, i.e., when the
clustering algorithm is “sure” about the right solution (see
Section 5, Fig. 4a).

4.5 State Estimation

The cluster result at step k can be defined as the maximum
a posteriori (MAP) estimate

. (9)

The estimated number of clusters at step k can be estimated
as the expected a posteriori (EAP) estimate

. (10)

5 Experiments

The clustering method was implemented in MATLAB and
carried out on a desktop PC with a 2 GHz Pentium III
processor.

For testing, a 2D static scenario was generated. A
selected number of n objects xi = [xi, x, xi, y] were
randomly placed on a square. Observations were
generated from this scene. With probability pFP = 0.2, the
observations zk = [zk, x, xk, y] were sampled from a uniform
distribution U([0, 0], [10, 10]) over the square. With
probability 1 − pFP = 0.8, the observations were sampled
from a Gaussian distribution G(xi, σ), i ∈ [1, n] around
any of the objects. The standard deviation of observations
was set to σ = 0.2.

5.1 Computational Complexity

An interesting feature of the algorithm is its computational
complexity, convergence time and performance with
respect to the number of objects n in the scenario.

Fig. 3a,b show that the maximum number of hypotheses
increases as O (en). Likewise, the CPU time required to

find a solution, T, increases as O (en). This is further
discussed in Section 6.
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Fig. 3. Complexity experiment. For each number of objects n, the clustering was carried out five times. The values in the graphs above
are the medians of values extracted from these five runs.

(a) The logarithm of the maximum number of hypotheses, , as
a function of the number of objects n. Exponentially growing N .

 grows as O (en).

(c) The logarithm of the CPU time T required for the classifier to
reach a 90% certainty about the correct number of objects n, as a
function of the number of objects n. Exponentially growing N .
The computation time grows as O (en).

(e) The probability of correct number of objects n after 3n
observations have arrived, as a function of the number of objects
n. Exponentially growing N .

(b) The logarithm of the maximum number of hypotheses , as
a function of the number of objects n. Constant N . starts at a
higher value, and grows as O (en), but with a lower constant.

(d) The logarithm of the CPU time required for the classifier to
reach a 90% certainty about the correct number of objects n, as a
function of the number of objects n. Constant N . The
computation time starts at a higher value, and grows as O (en), but
with a lower constant.

(f) The probability of correct number of objects n after 3n
observations have arrived, as a function of the number of objects
n. Constant N .
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5.1.1 Choosing the number of particles.

We tested two approaches, to use an exponentially growing
number of particles N n = 600 . 1.6n, n = 4, ..., 9, and a
constant number of particles N = N 9. Fig. 3a,c,e show the
statistics using the exponentially growing number of
particles, while Fig. 3b,d,f show the statistics using a
constant number of particles. The exponential growth in
computation time with respect to n (Fig. 3c) is not entirely
due to the exponentially growing number of particles −
Fig. 3d also shows an exponentially increasing
computation time.

5.2 Comparison with Other Method

The method was compared to another, non-sequential,
clustering method, i.e., Potts spin clustering [2]. While Fig.
4a,b show the performance and result of our sequential
method on a n = 8 object problem, Fig. 4c shows the
result of the Potts spin method. The Potts spin method
requires knowledge of the actual number of clusters, while
the method developed in this paper determines the number
of clusters directly from data. The clustering result is
virtually the same, with the exception that our method
classifies outlier observations as not part of any cluster,
while the Potts spin method puts each observation into
some cluster.

The Potts spin clustering method required a CPU time
of 1.02 s for one clustering process with 150 observations
clustered into eight clusters, while the sequential clustering
method developed in this paper required an average of
11.57 s for each of 150 sequential associations between an
observation and one to ten clusters, Fig. 4a. The total CPU
time for this was 1736 s. However, when the number of
objects is unknown a separate Potts spin clustering has to
be performed for each hypothesis about the number of
objects − in a trial application we performed 21 clusterings
for different number of clusters at each time-step [8].
Furthermore, if the clustering has to be performed
sequentially, a new clustering has to be made for each new
arriving observation, in this case 150 times. Thus, the Potts
spin clustering has to be performed 3150 times in order to
achieve the same full functionality as with sequential
clustering. This would take approximately twice the
computation time compared to the sequential approach.

The method developed in this paper is only suitable
with sequential mid sized problems (with respect to
number of clusters) when the number of clusters is
unknown − in other situations, a non-sequential clustering
method is preferred. It should be noted that the method can
handle large amounts of data (as long as the number of
clusters is not growing) without computational problems
since it has a linear time complexity in the number of
observations.

6 Discussion

The behavior of the sequential clustering algorithm is
controlled by just two parameters, the false detection
probability pFP and the number of particles N , and one

(a) Statistics from a clustering of observations with n = 8.

(b) The best hypothesis at the last step of this clustering.

(c) A Potts spin clustering using the same set of observations,
with the correct number of objects as an input parameter.

Fig. 4. Comparison with another clustering method. Both
clusterings used the same set of observations. The number of
objects in the simulation was n = 8.
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measure d of hypothesis similarity determining when
collapsing two hypotheses into one. From the detection
probability we derive the probability of a new cluster and
the probability of association with existing clusters. This
model simplicity makes it very simple to adjust the
algorithm for different applications.

The experiment carried out has the same simplicity. It is
characterized by the standard deviation σ of a Gaussian
distribution around targets. The likelihood of the algorithm
is dependent on the standard deviation and thus controlled
by the experiment.
In these experiments we chose a false detection probability
of 0.2 and a standard deviation of 0.2. Together with the
random target distribution the resulting set of observations
and their clustering can be viewed in Fig. 4b. Obviously,
the target distribution is rather sparse relative to the
standard deviation and result must be viewed in that light.
However, our main interest is to compare the quality of the
clustering and performance of the sequential algorithm
relative an existing non-sequential method.

The convergence of the sequential algorithm is quite
good. After receiving roughly four observations per cluster
the probability of the correct number of clusters is higher
than 50%, after seven observations it is about 90%. Given
the very high pruning of hypotheses made by particle
filtering in keeping a fixed number of particles, this seems
quite satisfactory.

After looking carefully at Fig. 4b, the same thing can be
said about quality of results. In spite of the high pruning of
low probability hypotheses there are only some very few
observations close to cluster centers that seem
misclassified as clutter. No true clutter seem to be
misclassified as genuine observations. This result is almost
as good as that of Potts spin, Fig. 4c. One advantage of the
sequential Monte Carlo algorithm compared to Potts spin
is its ability to classify clutter as such. This is ignored in
the standard implementation of Potts spin clustering.

Finally, a computational complexity of O( ), i.e.,
exponential in the number of clusters makes the sequential
Monte Carlo method unsuitable for large scale problems.
Potts spin with a polynomial computational complexity in
the number of clusters of O( ) can manage much larger
problems. With respect to number of observations though,
the sequential algorithm has a linear computation
complexity, while Potts spin is again polynomial.

7 Conclusions

In this paper we have developed a sequential clustering
approach with particle filtering that makes it possible to
cluster observations into a unknown number of clusters.
The quality of associations made is virtually equal to a
previous non-sequential method that was fed the actual
number of clusters.

As the method has a linear time complexity in the
number of observations, but an exponential time
complexity in the number of clusters it is only suitable for
mid sized problems (with respect to number of clusters),
but can handle large amounts of observations. This is both

an advantage and a draw-back compared to the non-
sequential method. Obviously, the method fits especially
well with problems that are sequential in nature, when
computation time for each update is more important than
total computation time.
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