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Abstract—In this paper, we propose a genetic algorithm-based
method for evaluation of operational plans within effects-based
planning. We formulate the effects-based planning problem as
a bi-objective optimization problem, in which the distance from
the initial state to the current state (g) and the distance from
the current state to the desired end state (h) are minimized.
To solve the problem, we adopt Non-dominated Sorting Genetic
Algorithm-II (NSGA-II). Considering an expeditionary operation
scenario, we simulate a subset of possible plans and present the
decision maker with a set of promising plans which are capable of
approaching the desired end state efficiently. In order to discuss
the efficiency and effectiveness of the algorithm, we compare the
results of NSGA-II with the results of A*. The computational
results show that NSGA-II is much more efficient than A* with
regard to g. On the other hand A¥* is a little more effective with
regard to h.
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I. INTRODUCTION

How we model a phenomenon depends on the purpose
of the model and the questions we want to answer. Since
our simulation system aims to support decision-making within
an effects-based approach to operations (EBAO) [1][2] the
modeling has to be based on EBAO and the concepts used
within it, such as plan, action, effect, and end state.

EBAO is a military approach to the management and
implementation of efforts at the operational level. EBAO is
defined in [3] as: “operations that are planned, executed,
assessed, and adapted based on a holistic understanding of
the operational environment in order to influence or change
system behavior or capabilities using the integrated application
of selected instruments of power to achieve directed policy
aims”. Within the framework of EBAO, effects-based planning
(EBP) is a method for developing objectives and effects to be
achieved through a series of synchronized actions within a
military operational plan, conceptually developed starting top-
down from a desired end state.

A. Problem Formulation

We make use of the same scenario that has regularly been
used by the Swedish Armed Forces in the Combined Joint
Staff Exercises. In Bogaland, a newly industrialized country, a
civil war broke out ten years ago when discontent within the
minority ethnic-religious group had reached very high levels.
The incumbent presidents have signed a peace-agreement,
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and an international force, BFOR, is present to support the
implementation of the agreement.

With a decision support tool developers of operational
plans are able to evaluate thousands of alternative plans against
possible courses of events and decide which of these plans
are capable of achieving a desired end state. The purpose
is to understand the consequences of different plans through
simulation and evaluation. Operational plans are described in
the effects-based approach to operations concept as a set of
actions and effects. For each action we may have several
different alternative ways to perform the action. Together they
make up all possible plans, which are represented as a tree of
action alternatives that may be searched for the most effective
action alternative sequences. The task of the planner is to find
a set of effective, efficient and robust plans. These plans need
to be effective in reaching the end state or coming close to
the end state with minimal effort, and should preferably be in
a neighborhood of other similar plans [4][5]. Thus our goal
is to minimize both the distance of the current state to the
desired end state, denoted by h, and overall consequence of
all performed actions as a distance from the initial state to
the current state, denoted by g. Thus, this is a multi-objective
optimization problem.

Schubert et al. [5] describe simulation-based decision sup-
port techniques for evaluation of operational plans within
effects-based planning. The distance function f, which is the
sum of g and h, is minimized by A*. As the functions g and h
are conflicting, instead of treating them as a single objective, in
this paper we formulate the planning problem as a bi-objective
optimization problem and solve it using multi-objective genetic
algorithms. Many researchers [6][7][8][9] have used genetics
algorithms for solving multi-objective optimization problems.
However, to the best of our knowledge, the existing work
does not address the multi-objective optimization model of the
planning problem discussed in this paper.

B. Simulation System

We have developed a simulator that enables a military ana-
lyst to identify the best military plans among a large number of
possible action alternatives [10]. The general idea is that when
there are many possible combinations of actions for a military
plan then a simulator can evaluate these combinations in order
to show the decision maker which possible combinations are
most successful.

The simulator is based on discrete events and the simula-
tion engine uses A* algorithm (described in the next section)
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to find the best action combinations.

II. THE PROPOSED ALGORITHM

The planning problem discussed in the previous section
is a very large combinatorial optimization problem. Due to
large search space, an enumerative algorithm may take many
years to solve the problem. Evolutionary Algorithms (EAs)
are well-known metaheuristics for sampling intractably large
and highly complex search spaces. In this paper, we formulate
the planning problem as a bi-objective optimization problem
and solve it using Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) [11]. NSGA-II is a well-known evolutionary
algorithm to solve multi-objective optimization problems. A*
can also be used for searching the optimal plan. A* is an
algorithm for finding lowest expected total distance from
initial node to one goal node. In subsection III-E, we also
compare the results of NSGA-II and A*. We use the NSGA-IL
implementation provided by jMetal framework [12] with some
modifications to avoid duplicate solutions (plans). In the next
two subsections, we describe the steps and parameter settings
of NSGA-II and A* for the proposed problem.

A. NSGA-II Algorithm

In order to use Genetic algorithms to solve an optimization
problem, the first step is to devise a suitable representation
scheme. We consider a scheme in which a plan (chromo-
some in GA) is represented by a n-dimensional vector of
main activities and a sequence of sub-activities within main
activities. An example chromosome for a problem shown in
Fig. 1 consists of eight main activities, denoted by A; to Ag,
and their sub-activities. We can also refer to main activities
and sub-activities as “actions”. For each action, we may have
several different alternative ways to perform it. The tree of
these action alternatives represents all possible plans. In Fig. 1,
numbers 1, 2, 41, 52, 54, 61, 78, and 47 denote Ids of the
chosen alternatives of the eight main activities. Each of the
main activity has zero or more sub-activities. For instance
the main activity 41 has one sub-activity and Id for the
selected alternative of the sub-activity is 17. The overall action
alternatives sequence is shown in Fig. 2, where the sample plan
comprises of 16 actions in total, 8 main activities marked in
grey and 8 sub-activities.

Ay Az Az Aa As As Az As

Main Activity ID 1|2]|41 52 54 61 78 a7

Sub Activity ID

62 | (3273349 }|[20] 69 |

Fig. 1. Chromosome representation of a candidate solution (Plan)

wiiyo | 12|41 17]52]43 62 [ 54 61 32]33 49 78] 20 69] 47

Fig. 2. A plan consisting of a sequence of actions

The NSGA-II algorithm can be summarized:

e Initialize population P, with N non-duplicate candi-
date solutions (plans) chosen uniformly at random.
Each plan is a sequence of actions.

Each chosen plan is evaluated using our simulator to
find its fitness.

For ¢

= 0to M — 1 (M is the total number of

generations) do:

[¢]

Parent A

Offspring

Parent B

Generate population (); comprising of N non-
duplicate offsprings. The offspring generation
process undergoes the following three proce-
dures.

Selection: In order to generate an offspring,
two parent solutions are selected using binary
tournament.

Crossover: Using one-point crossover opera-
tor, the chosen parents are combined to gen-
erate an offspring as shown in Fig. 3. The
crossover point ¢, is chosen uniformly at
random. The offspring inherits first ¢, main
activities (genes) from parent A, while the
remaining genes are taken from parent B.

1|2 |41 52 54 61 78 47

[17]|[43] 62 | [32]3374a9]|[20] 69 |

12|41 52 55 65 78 47
[171|[a3762]|[58 |59 ||[33 748 |20 69 |
1|2 4 50 55 65 78 47

6|8 |[37][|s8]59]|[33]48]||20] 69 |

Fig. 3. One-point crossover operation

Mutation: In mutation, we alter values of one
or more activities (genes) of the constructed
plan (child chromosome). The mutation prob-
ability for each main activity is calculated
as my, = 2.0/n, where n is the number of
main activities. For each main activity A;,
where i € {1,2,...n}, we draw a number d;
uniformly at random. If d; is less than m,,, then
we need to mutate A;. We randomly choose
one of the available alternatives for A; and the
corresponding sub-activities are also selected
uniformly at random. For instance, two main
activities (A3 and Ag) are selected for mutation
as highlighted in red in Fig. 4. First consider
As, we randomly select one of the available
alternatives, for instance alternative 45. We
must also select sub-activity alternatives if
there are any. In this example, we assume
that the selected activity alternative 45 has
no sub-activity. For Ag, suppose the selected
alternative is same, i.e., 65. In this case, we
randomly choose alternatives for each sub-
activity, which are 34 and 46 in the mutated
offspring.

All generated offsprings in (); are evaluated
using our simulator.

Build the population U, such that U; = P, U
Q. The size of U; is 2N.

Rank all plans in U; into non-dominated fronts
according to Pareto-dominance relationship.



A A A Ay As As A A

Offspring | 1 | 2 52 55 78 |47
[43]62]|[58]59] [20] 69 ]
Mutated ™5 T 45| 52 | 55 | 65 | 78 |47
Offspring
143162 [/58159||/34146| 20/ 69 |

Fig. 4. Mutation Operator

Next generation population P;;; contains N
plans, which are taken from the these non-
dominated sets in sequence. While iterating
over each front, if the size of the front is
greater than the number of remaining solutions
then crowding distance is used.

e Return the top non-dominated set, which is a Pareto-

front approximated by NSGA-IL

B. A*-search

To find good combinations of alternatives for all actions of
the plan we apply A*-search. It means that, on the basis of a
given system state, we simulate the effect of each alternative
action in our plan, but only one step at the time. Doing so, for
every alternative, we get a new system state whose distance
to the desired end state, denoted by h, is calculated. Given
the alternative that is best, i.e., closest to our end state, we
simulate possible subsequent alternative actions provided, but
again only one step ahead in our action/event list. One of these
alternatives leads to a condition that is closer than the others.
However, it is possible that all the alternatives actually lead
away from the target.

Therefore, we must also compare the new distance with the
best of the distances that have been simulated and recorded in
the previous simulation steps, but then had opted out in favor
of a better sequence of alternative actions. The best sequence
now becomes the basis for the next simulation step.

During simulation an assessment is made of how well each
action is performed. This is done by the functions g and h.
Function g measures the consequence of all performed actions
as a distance from the initial state Sp o to the current simulated
state S ,, action-by-action [4][5].

Function £ is a heuristic estimate of the remaining distance
from S, to the end state. The total weighted estimated
distance from the initial state to the end state via the current
state Sz 4, is

F(y2) = 9(yz) + 80N (ys). (D

This is the distance function that is minimized by A*. The
weight “80” was derived by experimentation to balance the
performance of minimizing g and ~ and is domain dependent.

III. EXPERIMENTAL RESULTS

In this section, a set of computational experiments and their
results are presented. The aim of these experiments is to find
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those plans which are capable of achieving a desired end state.
First, we describe the problem instance, the parameters of the
algorithm, and the methodology considered in the experiments.
After that we present the computational results of NSGA-II and
the comparison of NSGA-II and A*.

We implemented our GA in Java and run it on a PC
with an Intel Core 5 — 2.60 GHz and 4.0 GB of RAM. The
implementation of the presented algorithm is based on Java-
based framework jMetal [12] with some modifications for the
discussed problem, crossover and mutation.

A. EBP Problem Instance

Consider an expeditionary operation where a plan consists
of m actions and each action a; has ¢; choices. The plans
affect p actors, where an actor is made of either one or more
entities. Each actor is described by ¢ parameters (features)
and each parameter can have integer values between O and 3
inclusive. For our experiments, we assume that total number
of actions vary from 34 to 42 since each “main” action can
contain zero or more sub-actions. The total number of main
actions is 28.

In the considered scenario, we assume 40 different actors
(p = 40), where each actor is described by 15 parameters
(¢ = 15). Each actor assumes some desired values for these
parameters. Also, each performed action has some influence
on different actors. This means that when an action has been
executed, the parameters for specific actors, which are targeted
by the action, are updated. For example, if an action is called
“Neutralize Irregular Forces”, this means that BFOR will target
certain actors that are considered to be hostile among the 40
actors.

The actor parameters are used to calculate the distance
values, namely the g and h values for each performed action.
Since we are interested in optimal plans where fewer resources
are consumed to reach the military end state, the objective is
to minimize the g and & values.

B. NSGA-II Parameters

For experiments, the initial population size is set to 150.
The algorithm terminates after 2000 plan evaluations. Mutation
probability for each gene (main activity) is 2/28. The alter-
natives for sub-activities are chosen uniformly at random. The
outcome of an action can vary depending on the circumstances
(the operation may even fail), which can be addressed by
making the simulation stochastic [5]. Due to the stochastic
nature, the simulator uses Monte Carlo simulations for ob-
taining a frequency function of the entire outcome space. In
our experiments, we set the Monte Carlo simulation parameter
equal to 20.

C. Experimentation Methodology

Due to stochastic nature of the problem, we run 20 replica-
tions for each evolved solution (plan) found by the algorithm
and calculate mean of g and h, where g is the total distance
covered from the start location to the current position and h
is the estimated distance from the current position to the goal
(end) state.



In subsection III-E, we compare the results of NSGA-II
with A*. The methodology for the comparison is as follows.
From 10 000 plans simulated using A*, we select the top 100
based on f value (f = g + h) and run 20 replications for
each to compute g and h. Similarly we run NSGA-II with the
initial population size N = 150 and choose the top 100 from
the evolved 150 plans based on f value. To compute § and h,
we run 20 replications for each. After calculating g and h for
100 plans, we compare the results of NSGA-II and A* in two
separate graphs.

In multi-objective problem, instead of one optimal solution,
we have a set of solutions. We have a Pareto-set which is a
set of non-dominated solutions. For A* and NSGA-II, we find
a set of non-dominated plans for each. In order to evaluate
the obtained solutions of a multi-objective problem, we need
to assess the quality of the obtained non-dominated set of
solutions [6]. The quality of the obtained solutions depends
on two properties: (i) convergence to the Pareto front, (ii)
diversity of solutions. In order to measure these two properties,
a number of quality measure indicators have been proposed
[12]. Some of them are Hypervolume (HV) [7], Epsilon [13],
Generational Distance [8], Inverse Generational Distance, and
Spread [9]. HV is considered to be most widely used and an
accurate indicator to measure both properties (convergence and
diversity) at the same time [6].

The volume covered by the candidate solutions of the
obtained Pareto front approximation in the objective space
is calculated by HV. Fig. 5 illustrates a bi-objective problem
where two objectives f; and fs should be minimized. The ap-
proximated Pareto consists of 5 solutions (S1, S2, S3, S4, and
S5), whereas the true Pareto-optimal is unknown. HV of the
obtained Pareto front is calculated with respect to the reference
point R. HV is the union of the areas enclosed by the set of
non-dominated solutions and R. This is shown in Fig. 5, where
HV is the volume enclosed by the outer dotted border. The
worst value of each objective from a Reference Pareto Front
(RPF) is used for calculating a reference point. RPF is the set
of all non-dominated solutions found in different experiment
settings for a specific problem instance. The solutions in Pareto
set are normalized between 0 and 1 to ensure that HV is always
equal to or less than 1. In our problem the RPF is composed
of all non-dominated solutions obtained by NSGA-II and A*
algorithms.

Point)

Fig. 5. Hypervolume of a non-dominated set of 5 solutions

D. Computational Results of NSGA-II

In this section we present the computational results of the
planning problem which are obtained using NSGA-II. The re-
sults shown in this section correspond to initial population size
N = 150 and 2000 plans evaluations (after 2000 evaluations
we terminate). The objective is to minimize g and h. Here
we present the decision maker with 100 such alternative plans
which are most close to the desired end state with minimum
effort. To make it simple, we select the top 100 based on f
value from 150 evolved plans. We run 20 replications for each
evolved selected plan and calculate mean values for g and h.
Because of room constraints, we just present the top 10 plans
based on g and A in Tables I and II.

Table I shows the best 10 alternative plans with respect to g,
where g of a plan is the average consequence of all performed
actions as a distance from the initial state to the current state.
Table II shows the best 10 alternative plans with respect to h,
where h of a plan is the estimated distance of the plan to the
desired goal state. The smaller is the distance, the closer to
the goal state we are. Decision makers can choose the plans
considering both of these criteria g and h. For example if a
decision maker wants to minimize the total distance from the
initial state to the current state then he/she should prefer the
first plan with g = 2261.33 and 34 activities (see Table I).
The second plan in Table I also consists of 34 activities but it
is worse than the first one in both criteria. There is only one
activity in the second plan which is different from the first one
and that is activity number 28 (103 instead of 102). Though
both g and h for the second plan are worse than the first one,
still the decision maker may be interested in such a plan as a
backup.

On the other hand if a decision maker is interested in

TABLE I
Topr 10 PLANS IDENTIFIED BY NSGA-II BASED ON g

# Plan Objective Function
Values
g h
1 {1, 2,41, 42, 44, 6, 20, 7, 12, 62, 64, 50, 60, 52, 17, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 102, 106, 29, 30, 58, 46, 47} 2261.33 816.705
2 {1, 2, 41, 42, 44, 6, 20, 7, 12, 62, 64, 50, 60, 52, 17, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 103, 106, 29, 30, 58, 46, 47} 2266.495 818.03
3 {1, 2,41, 61, 44, 6, 20, 7, 11, 65, 49, 50, 60, 52, 16, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 103, 106, 29, 30, 58, 46, 47} 2266.575 818.115
4 {1, 2, 41, 42, 43, 6, 20, 5, 12, 65, 49, 50, 60, 52, 16, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 102, 105, 29, 30, 57, 46, 47} 2268.065 817.635
5 {1, 2,41, 42, 43, 6, 20, 5, 12, 62, 64, 50, 51, 52, 17, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 103, 107, 29, 30, 58, 46, 47} 2268.18 818.8
6 {1, 2, 41, 61, 43, 108, 20, 7, 12, 65, 49, 50, 51, 52, 17, 63, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 104, 105, 29, 30, 58, 46, 47}  2268.465 816.765
7 {1, 2,41, 61, 43, 6, 20, 7, 12, 4, 49, 50, 60, 52, 16, 3, 54, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 104, 105, 29, 30, 57, 46, 47} 2268.475 817.675
8 {1, 2, 41, 42, 44, 108, 20, 5, 12, 4, 64, 50, 60, 52, 17, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 102, 106, 29, 30, 58, 46, 47} 2269.8 817.305
9 {1, 2, 41, 61, 43, 6, 20, 7, 12, 62, 64, 50, 51, 52, 16, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 103, 106, 29, 30, 58, 46, 47} 2270.385 818.06
10 {1, 2,41, 42, 44, 108, 20, 7, 12, 62, 49, 50, 51, 52, 17, 63, 53, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 104, 105, 29, 30, 57, 46, 47}  2270.635 817.825




TABLE 11 _
ToP 10 PLANS IDENTIFIED BY NSGA-II BASED ON h

# Plan Objective Function
Values
g h
1 {1, 2,41, 42, 44, 108, 20, 10, 23, 14, 109, 4, 64, 50, 51, 52, 16, 63, 54, 55, 56, 68, 75, 67, 86, 90, 79, 80, 94, 98, 95, 96, 102, 105, 31, 32, 33,  2708.35  814.95
34, 57, 46, 47}
2 {1,2,41,42,43, 6, 20, 5, 13, 15, 65, 49, 50, 60, 52, 16, 3, 53, 55, 56, 66, 67, 81, 93, 79, 80, 97, 95, 96, 104, 106, 31, 32, 33, 34, 57, 46, 47}  2509.7 815.42
3 {1,241, 42,44, 6, 20, 7, 12, 62, 64, 50, 60, 52, 18, 28, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 104, 106, 29, 30, 58, 46, 47} 2338.23  815.785
4 {1, 2,41, 42, 44, 108, 20, 7, 12, 65, 49, 50, 51, 52, 16, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 104, 107, 29, 30, 57, 46, 47} 2276.47  815.81
5 {1,2,41, 61, 43, 108, 20, 8, 23, 14, 15, 65, 64, 50, 60, 52, 16, 63, 48, 55, 56, 69, 75, 67, 85, 93, 79, 80, 94, 100, 95, 96, 102, 105, 29, 30, 58,  2584.255 815.895
46, 47}
6 {1,2,41,42, 44,108, 20, 5, 11, 4, 64, 50, 60, 52, 16, 3, 48, 55, 56, 72, 78, 67, 84, 92, 79, 80, 97, 95, 96, 103, 105, 31, 32, 33, 34, 58, 46, 47}  2516.075 816.14
7 {1,2,41,42, 44,6, 20,7, 14, 15, 65, 49, 50, 60, 52, 16, 3, 53, 55, 56, 69, 77, 67, 84, 92, 79, 80, 97, 95, 96, 103, 105, 31, 32, 33, 34, 58, 46,47}  2580.005 816.21
8 {1,2,41,42,43,6,20,9, 24, 13, 15, 4, 64, 50, 60, 52, 16, 63, 53, 55, 56, 66, 67, 83, 92, 79, 80, 97, 95, 96, 104, 106, 31, 32, 33, 34, 57, 46, 47} 257523  816.295
9 {1,2,41,61, 43, 6, 20, 7, 12, 4, 49, 50, 60, 52, 16, 3, 48, 55, 56, 66, 67, 88, 79, 80, 94, 100, 95, 96, 102, 105, 29, 30, 58, 46, 47} 2322.025 816.32
10 {1, 2, 41, 42, 44, 108, 20, 7, 11, 62, 49, 50, 51, 52, 17, 63, 53, 55, 56, 66, 67, 89, 79, 80, 97, 95, 96, 101, 105, 29, 30, 57, 46, 47} 2274.535 816.375

those plans which come closer to the goal state irrespective of
the consequences of all performed actions then he/she should
prefer the first plan with h = 814.95 as shown in Table II.
The plan consists of 41 activities and the total distance from
the initial state to the current state is 2708.35. The h values
are close to each other while the g values have wider range.

For the bi-objective optimization problem, there can be a
set of non-dominated solutions. A solution is non-dominated
(Pareto-optimal) if there is no other solution which can im-
prove at least one of the objectives without worsening any
of the other objectives. Considering g and h of the top 100
non-duplicate plans, we find a set of non-dominated solutions
as shown in Table III. We can see 7 non-dominated solutions
which can be the best plans for the operation. The decision
maker can select plans according to his/her preferences and
different circumstances. For example in case of the first
plan, the distance (from the initial state to the current state)
g = 2708.35 is a bit higher than the other 6 plans. On the
other hand, the sequence of activities within this plan brings
more closer to the goal state (h = 814.95). If we consider the
last plan the total distance from the initial state to the current
state is minimum (g = 2261.33) but it is a bit away from the
goal state as compared to the first plan. It is a kind of tradeoff
between overall consequences of performed actions and goal
state. If we look at the results, the h values of 7 non-dominated
solutions are close to each other but the g values have wider
range. The set of alternative plans with different distances from
the initial state to the current state can be useful in different
circumstances to reach the desired end state. The Pareto front
represented by NSGA-II is shown in Fig. 8.

E. Comparison of NSGA-II and A*

In order to discuss the efficiency and effectiveness of
NSGA-II, we compare the obtained results with the results
reported in [5], that were obtained using A*. Out of 10 000
plans simulated using A*, we select the top 100 based on
f values. In case of NSGA-II, we terminate after 2000 plan
evaluations and select the top 100 plans based on f value.
To compute g and h, we run 20 replications for both. The
comparison of the computational results of NSGA-II and A*
is shown in Fig. 6 and Fig. 7.

In Fig. 6, we compare g of the computational results
obtained using these two algorithms. On x-axis we have 100

442

plans which are sorted based on g. This Figure shows that
NSGA-II is much more efficient than A* in getting good g
values.

_ Now we look at Fig. 7 where the comparison is based on
h (distance to the goal state). On x-axis we have 100 plans
which are sorted based on h. The two algorithms show almost
similar results for most of the plans. For the top 24 plans,
A* is slightly better than NSGA-II. On the other hand from
plan number 74 to 90, NSGA-II is slightly better than A*.
Considering the top plans we can say that A* is a little more
effective in approaching the goal state.

The Pareto fronts obtained by both algorithms is shown in
Fig. 8. The fronts are composed of non-dominated solutions
which are obtained using steps mentioned in methodology
section III-C. The performance of the algorithms can be also
compared using HV values. The higher the HV of obtained so-
lutions the better is the algorithm. The HV of the Pareto-fronts
obtained by NSGA-II and A* are 0.57 and 0.50 respectively,
which indicates that NSGA-II is better than A*.

Overall we can say that NSGA-II is much more efficient
than A* in getting good g. On the other hand A* is a little
more effective in getting good h (approaching the goal state).
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Fig. 6. Mean g-value for top 100 sorted plans based on g for both algorithms



TABLE 111
PARETO-OPTIMAL SOLUTIONS IDENTIFIED BY NSGA-II

#  Pareto-optimal Plan Objective Function
Values
g h
1 {1,241, 42, 44, 108, 20, 10, 23, 14, 109, 4, 64, 50, 51, 52, 16, 63, 54, 55, 56, 68, 75, 67, 86, 90, 79, 80, 94, 98, 95, 96, 102, 105, 31, 32, 33,  2708.35 814.95
34, 57, 46, 47
2 {1,2,41,42, £3, 6, 20, 5, 13, 15, 65, 49, 50, 60, 52, 16, 3, 53, 55, 56, 66, 67, 81, 93, 79, 80, 97, 95, 96, 104, 106, 31, 32, 33, 34, 57, 46, 47}  2509.7 815.42
3 {1,2,41,42, 44,6, 20, 7, 12, 62, 64, 50, 60, 52, 18, 28, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 104, 106, 29, 30, 58, 46, 47} 233823  815.785
4 {1,2,41, 42, 44, 108, 20, 7, 12, 65, 49, 50, 51, 52, 16, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 104, 107, 29, 30, 57, 46, 47} 2276.47  815.81
5 {1,2,41, 42, 44, 108, 20, 7, 11, 62, 49, 50, 51, 52, 17, 63, 53, 55, 56, 66, 67, 89, 79, 80, 97, 95, 96, 101, 105, 29, 30, 57, 46, 47} 2274.535 816.375
6 {1,2,41, 61,43, 6, 20,7, 12, 65, 64, 50, 60, 52, 17, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 103, 106, 29, 30, 58, 46, 47} 2270.86  816.405
7 {1,2,41,42, 44, 6, 20, 7, 12, 62, 64, 50, 60, 52, 17, 3, 48, 55, 56, 66, 67, 88, 79, 80, 97, 95, 96, 102, 106, 29, 30, 58, 46, 47} 2261.33  816.705
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IV. CONCLUSION

In this paper, we formulate the effects-based planning
problem as a bi-objective optimization problem and solve it
using a widely used multi-objective evolutionary algorithm,
NSGA-IL

Considering an expeditionary operation scenario, we simu-
late a subset of possible plans and present the decision maker
with 100 such alternative plans which are capable of achieving
a desired end state efficiently. Considering g and h of top 100
non-duplicate plans, we find a set of non-dominated solutions
as shown in Table III. The decision maker can select plans
according to his/her preferences and different circumstances.
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In order to discuss the efficiency and effectiveness of the
algorithm, we compare the results of NSGA-II with the results
of A*. In Fig. 6 and Fig. 7, we compare g and h of the
computational results obtained using these two algorithms.
Looking at the results, we can say that NSGA-II is much more
efficient than A* in getting good g. On the other hand A*
is a little more effective in getting good h (approaching the
goal state). We use the HV values to compare the two Pareto-
fronts shown in Fig. 8. The HV of the Pareto-fronts obtained
by NSGA-II and A* are 0.57 and 0.50 respectively, which
indicates that NSGA-II is better than A*.
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