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Chapter 1

| ntroduction

1.1 Outline and summary

In this report we describe a preliminary study exploring the possibilities of improving military logistics processes
by applying so called swarm intelligence methods. The study was financed by the Swedish Defence Materiel
Administration. The purpose of the study was to do a thorough literature survey in order to be able to decide
whether to try to use swarming to solve logistics-related optimization problems. We have found a large number
of papers that deal with problems similar to those occurring in network-based defense logistics, and hence we are
confident that a further study will reveal many useful applications of swarming to military logistics.

In this introductory chapter, we give an introduction to logistics and supply chain management in section 1.2.
Section 1.3 then briefly presents one specific important logistics problem, spare parts optimization. This is the
problem which a possible follow-up study should focus on.

In section 1.4, the reader is given a first glimpse of swarming. Here we discuss the origin of swarm intelligence
methods, and present some applications of it. For completeness, section 1.5 briefly describes some of the previous
applications of swarming for military purposes. We believe that the concept of swarming will prove an essential
part of any successful implementation of a network-based defense.

In chapter 2, we turn to ant colony optimization, the first and arguably most successful optimization method
based on swarming. We introduce the algorithm by focussing on a specific problem, the Travelling Salesman
Problem, which is described in section 2.2. The basic ant colony optimization method is then described in sec-
tions 2.3 and 2.4, while section 2.5 describes the Max-Min improvement of it. Other refinements are described in
sections 2.6 and 2.7. The theoretical description of ant colony optimization is finished in section 2.8, where we
present results relating to the guaranteed convergence of it. Applications of ant colony optimization for logistics,
routing and scheduling are described in sections 2.9.1, 2.9.2 and 2.9.3. The chapter concludes with a section on
miscellaneous applications.

Particle swarm optimization is described in chapter 3. This chapter starts by introducing the algorithm and
comparing it to evolutionary computing methods in section 3.1. Extensions are described in section 3.2. These ex-
tensions are very relevant for military logistics, since they deal with dynamical optimization, constraints, and how
to optimize several functions at the same time. Section 3.3 describes applications of particle swarm optimization.

Chapter 4, finally, presents our conclusions and gives some possible directions for future work.

The main result of this study is the bibliography. Here we collect a large number of papers on various as-
pects of swarm optimization. We also include appendices explaining the concept of NP-completeness and hard
optimization problems and giving a list of swarm-related web-sites. This list is certainly not as complete as the
bibliography.

1.2 Supply-chain management in network-based defense

The Swedish Armed Forces is going trough a fundamental transformation from a defense against invasion of
mainland Sweden to an international active objective defense force. Defending Sweden and contributing to inter-
national security by participation in a full spectrum of operations together with UN, NATO and EU.

Today the spectrum of operations from war to military operations other than war (MOOTW) is almost infinite
which requires a flexible force structure that is adaptable to world wide operations, against opponents that are not
traditional military forces but more often clans, para-military forces, criminal groups, terrorists etc in a changing
environment with or without traditional frontlines.
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A flexible force structure is created with a modular based force concept. A module is the smallest entity in
the system that can be put together with other modules in order to create a unit. An example of a module can be a
medical expert, or an airplane with its crew, or a number of people with specific training, equipment and readiness.
In the future one of the challenges would be to create a required objective force unit out of a number of modules,
ready to deploy, in a very short time. The number of modules in the future Swedish Armed Forces is probably
enormous.

The logistical concept for future operations, domestic or international, has to be able to support the modular
based force concept “from factory to foxhole”. The logistical concept has to be able to deal with every aspect
of the supply and value chain with domestic and international suppliers, different supply concepts together with
others in joint operations or alone.

In order to fulfill its task the future logistical concept and system has to be able to organize and facilitate the
flow of information, people and equipment (material, spare parts, water, fuel etc) in a way that ensures that the
right equipment, people and information end up at the right place at the right time in the right way all the way
from the very first idea all the way through the supply chain to the soldier/operator in the field. Traditionally
Sweden have had a few main suppliers (SAAB, Volvo, Hagglund etc) and a force structure with well defined pre
fixed units (platoons, companies, battalions, brigades etc) and objectives only within its own borders which was
not an easy task to make work but still much less complex, fragmented and unknown than what we have today and
what we will have in the future. Many of the domestic Swedish suppliers are no more Swedish and with a more
international security and military doctrine more foreign suppliers have become an option. As we said earlier we
will not in the future have pre fixed units that belong primarily to a geographical area and a specific task within our
national borders but a broad range of capabilities and modules ready to be configured into objective force units.

We have therefore to find different ways to manage the future supply chain and find different logistical concepts
in order to manage future (and current) operations.

A set of challenges for logistics in a transformed army has been formulated in (RAND, 2003). In particular,
distribution-based logistics, which aims at reducing stockpiles, is a natural candidate for solving using swarm
methods. This problem can be seen as an extension of the spare parts optimization problem described below.

1.3 Spare parts optimization

Spare parts optimization can be seen as a prototype problem for supply management in network-based defense.
The variant of it which we will describe here is based on the one presented and analyzed in (Alfredsson, 1997).

Consider a military expedition that needs to have a certain amount of aircraft airborne at all times. This will
require several air-bases and a supply-chain that provides these with necessary spare parts (and fuel, ammunition
and other expendables). Consider a setting where there are A bases. Each base a has a certain number N, of
aircraft. During missions, these aircraft will suffer damage and parts of them will need to be replaced and/or
repaired. If there are K resources/parts that can fail on the airplanes®, each base needs to have supplies of K
different resources. Our problem can now be formulated quite succinctly as “determine the amount of supply of
each type at each base so that the number of grounded aircraft is minimized while limiting transportation costs”.
In the spare parts optimization problem, the demand for part % at site a is referred to as \,x. This quantity is
determined from the failure rates of the parts (Alfredsson, 1997).

Sometimes a faulty part of an aircraft can be repaired directly, in other cases it needs to be replaced and
repaired. Such repairs can sometimes be performed at the base, but for complicated parts it is necessary to send
the part to a central depot and have it repaired there. Such transports cost, and it is thus necessary to limit them.
Repairs also take some amount of time, and it is thus necessary for each base to have a large-enough supply of
each part so that it can keep as many of its aircraft airborne as possible. In (Alfredsson, 1997), 7" and R denote
the average time to ship a part to a base and the time needed for repair, respectively, while the current stock level
at a base is denoted S. Thus, T, would denote the time to ship part & to base a. Items that have been ordered
or are undergoing repair are said to be in the pipeline; the number of items in this and the expected time an item
remains there are called X; and L. Given this information, it is possible to calculate the mean waiting time for
a spare (Alfredsson, 1997), W = B/, where B, the expected number of backorders, can be found from the
distribution of X;. The mean waiting time for a spare can now be calculated to be

_ Za Zk Bak
MWTS = b, (1.1)

LFor simplicity, we will assume that all aircrafts are identical. Extending the formulation for different types of aircraft is trivial.
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This gives us the meantime to repair aircraft as

MTT
MTTR = 2ma 2o Aak Rak (1.2)
Za Zk )\ak
which finally leads to an expression for the number of operational aircraft
NOR = "> Xk MTTRay, + Bax. (1.3)

a k

Equation 1.3 is the objective function for optimization. For more details on the approximations and calculations
needed to get to this equation, see (Alfredsson, 1997). We also need to take account of budget constraints that
limit the number of parts that we can store at each site, which leads to a more difficult optimization problem.

The very simple spare parts optimization problem that we have formulated here can nevertheless be seen as a
prototype problem for supply-chain management. We can make several extensions of it to make it more realistic.
First, the assumption of one central depot is not necessarily valid. We can have several manufacturing sites and
several warehouse sites. Note that each air-base could be seen as a warehouse; it could send some of its surplus
to another base if the supply is too low there. Second, it is trivial to consider any kind of resource instead of parts
for aircraft.

An interesting extension of this is supply-chain management for international operations other than war. Here,
we have several different types of resources that are needed. The needs for different types of resources at different
places can change very rapidly. Some requirements might also be more important than other. Since the needs
might change quickly, an adaptive method for finding the correct flow of resources is needed.

Let there be N different sites, including both factories, warehouses and areas of operations. If there are
K different types of resources (food, medicine, police, etc), we need to keep track of KN different variables
representing supplies at each time. Let X (7, a, t) be the amount of resource-type a on site ¢ at time ¢. The need
for resources is not the same as the amount of supply, we let F'(4, a, t) represent this.

Our goal is to get X as close to F' as possible. If F' is suddenly changed, we also want to be able to quickly
redistribute the resources so that a new optimum is found. We describe the flow of resource a from site i to j at
time ¢ using T'(4, 4, a, t). This is the variable that we optimize over. Furthermore, let C(a, 4, j) be the cost to move
resource a from i to j. We then want to minimize the total cost, given by

> C(a,i,)T(i, j,a,t), (14)
1,7,a
while simultaneously keeping
X —F (1.5)
as small as possible. Here || - || could be any metric; it could for instance be used to represent the fact that some

sites or resources might be more important than others. A further complication could be introduced by allowing C
to vary in time. For brief introductions to traditional ways of formulating and solving logistics related optimization
problems, see (Gustafsson, 1994; Brenner, 1986)

1.4 Introduction to swarming

History teaches us that the behavior of large masses of people can sometimes be very stupid. But crowds can also
display surprisingly smart behavior. Recently, attempts have been made to mimic this collective intelligence of
crowds in computers. For a general introduction, see (Wolpert and Lawson, 2002)

Amazon.com uses a seemingly simple form of collective intelligence. When displaying a book, the site also
shows books that people who bought the first book have bought. Clicking on one of these books leads to a page
where yet more books that have been bought by persons buying the second book are shown. In this way, it
is possible for a browser to utilize the collective intelligence of all other book-buyers and find new, interesting
books.

The search site Google can be seen as another form of collective intelligence. Here, the page ranking system
increases a page’s rating if many people link or surf to it. Another example is Alexa, which was a system for finding
related sites. (A swarming approach to a similar but more restricted problem is reported in (Semet et al., 2003).)

Many artificial intelligence approaches and optimization methods rely on centralized and hierarchically orga-
nized systems. These are most often built from a top-down perspective. Lately, an alternative approach has begun
to emerge, inspired in part by swarming and the behavior of social insects. In contrast to naive belief, insects like
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ants or bees are not centrally controlled hierarchically by a queen ant or bee. Instead, these insects collaborate
to solve complicated optimization problems implicitly (Gordon, 2002; Sumpter and Beekman, 2003; Sahin and
Franks, 2002; Buhl et al., 2002). This collaboration is controlled by communication, sometimes directly (e.g., bees
dancing to show directions to food) or indirectly, by individuals changing their environment and thus providing
guidelines for colleagues (this is called stigmergy).

Swarm intelligence is a relatively new methodology that takes its inspiration from the behavior of such so-
cial insects and flocking animals. Its uses include crowd modelling for movies (Koeppel, 2004), optimiza-
tion (Bonabeau et al., 2000), military history (Edwards, 2000). Variants of it have also been used in social
sciences (e.g., sugarscape (Epstein and Axtell, 1996)). For introductions to swarming and the optimization meth-
ods described in this report, see, e.g., (Bonabeau and Meyer, 2001; Bonabeau and Théraulaz, 2000; Bonabeau
et al., 1999; Bonabeau, 2002b; Bonabeau et al., 2000; Bonabeau, 2002a; Tarasewich and McMullen, 2002)

Originally, swarm intelligence was used in order to explain emergent biological phenomena suck as the flock-
ing behavior of birds and fish or nest-building of termites. It has also been used for modelling robot behav-
ior (Arkin, 1998). Swarming is a simple case of so-called agent-based modelling.

The basic principle of swarming is very simple: by having a relatively large number of agents following very
simple rules, complicated group-behaviors emerge. One of the key features of swarming is that it may not be
possible to understand the emerging global behavior by analyzing these simple rules. The only way to predict the
behavior of a complicated agent system may be to simulate it. After analyzing many such simulation, it might be
possible to extract “rules” governing the aggregate behavior of the system. In some cases, it might even be possible
to relate these to the microscopic rules followed by the agents. In other cases, however, the microscopic rules may
be completely counter-intuitive and seem to destroy rather than create the desired global behavior: “doing wrong
locally might be right globally”.

Such systems have a number of desirable features. They are robust, flexible and self-organizing. Robust since
not all individual ants need to solve the problem. Flexible, since they can adapt in real-time to changing conditions.
The self-organizing properties of swarming are important since they mean that there is no central command and
control post that decides what the agents should do. This reduces the vulnerability of the system. Swarming can
be seen as one kind of self-organizing system (Johnson, 2001).

To give a taste of how swarming works, consider the following game?. Take a large number of people and
randomly assign a protector and an attacker to each person. Tell them that they must move around so that their
protector is between them and their attacker. How will the crowd move? Since one person’s attacker might be
another one’s protector, the motion of the crowd will be random. Consider the difficulty faced by an observer
who enters the room while the crowd moves around and tries to discern the rules governing it. Contrast this to the
situation that arises when the rule is changed in a very simple way: each person tries to move so that they are in
between their attacker and protector. Now, everybody will try to move to the center of the crowd.

Similar sets of rules can be used to explain how flocks of birds and schools of fish form3. This was the first and
arguably still most successful application of swarming. Computer simulations show that such flocks and schools
can be formed by having a large number of simple agents following very simple rules (e.g., “don’t collide”, “try to
move in the same directions as your neighbors”, and “try to reach the center of your neighbors”). This technique
has been used in many movies (one recent example is Return of the King (Koeppel, 2004)). Here swarming is
used to create realistic-looking scenes with hundreds of computer generated actors.

The resulting aggregations are an emergent phenomenon, occurring when a large number of agents interact.
Similar rules have been found to explain how ants and other social insects find food, how termites build nests,
and many other phenomena. The method used by ants to find food has inspired an optimization method (ant
colony optimization) that has been successfully used to approximately solve a wide variety of hard optimization
problems. The method uses a large number of simple agents that communicate by depositing pheromone in the
search landscape of the optimization problem.

The simplest method for solving optimization problems using swarming is based on how some species of ants
find food. When an ant leaves its ant-hill, it leaves pheromone in its trail. It uses these to be able to find its way
back to the nest. When it finds a food-source, it backtracks in its own steps and enhances the pheromone. This
will attract other ants, who will find the food and in turn enhance the smell further. This very strong feedback thus
leads to a rapid increase of pheromones on the path that leads to the food. If the food-source is removed, the smell
will cease to be enhanced and will soon evaporate. Then when another ant finds a new food-source, a new trail
will appear. The ants are thus able to quickly adapt to changes.

In order to solve optimization problems, virtual ants are set loose in a fitness-landscape. When they find a

2See http://www.icosystems.com/game.htm , where a Java applet showing the game can be found.
3See http://www.red3d.com/cwr/boids/ for a more detailed explanation of this. This site also contains programs and a large list of refer-
ences.

10
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good solution to the problem, they leave virtual smell that attracts other virtual ants. This leads to a naturally
robust method of solving optimization problems.

Each swarming agent reacts according to simple rules. One example of such rules are: “if there are few objects
around me, pick one of them up” and “if there are many objects around me, drop the objects that | am carrying”.
Such rules lead to clustering, and variants of it can be used to explain how termites build their nests (Bonabeau
et al., 1999) The same principle can also be used for sorting objects. Feedback is a very important principle in
all swarming. Feedback can both reinforce and suppress behavior, depending on its desirability. When ants try to
find food, the pheromone-path to a good food-site will be reinforced as long as it remains good. A small initial
change in smell will thus be amplified and lead to large smell-differences in the terrain.

In addition to its use in the movie industry, swarming has been utilized for experimental archaeology. Agent-
based simulations performed at the Santa Fe Institute have managed to accurately reproduce population and migra-
tion patterns of the Anasazi people of the American Southwest*. Methodology for including spatial information
from Geographical Information Systems in agent-based modelling are discussed in (Gimblett, 2001). Similar
methods have also been applied for studying crowd formation in carnivals and how crowds move in panic(Batty
et al., 2003b; Batty et al., 2003a; Helbing et al., 1997)

Another application of swarming and agent-based simulation to logistics is implemented as a rule-based flow-
handling system. Such a system has been implemented by Southwest Airlines several years ago. The airline
reportedly saves $2 million per years on this. The BIOS consulting group (later acquired by NuTechSolutions®),
used agent-based modelling to simulate the behaviors of local freight-managers in the Southwest flight-network.
The problem they were trying to solve was to minimize delays and maximize throughput of parcels. When an
airport receives a lot of parcels, it may not have enough outgoing flights going to the correct destinations; this
introduces unwanted delays in shipping. By experimenting, the found that introducing counter-intuitive rules for
how local managers should allocate parcels to flights led to a very significant decrease in delays. Unfortunately,
the exact rules discovered have not been published. One example of such a rule could be “with probability 0.07,
send the parcel on the first outgoing flight, even if it’s in the wrong direction”. Such rules seem to lead to undesired
local behavior, but the aggregate behavior leads to a globally better optimum than trying to do best locally.

(Johnson, 2001) gives a popular-level description of how swarming could be used to improve networks such
as the World Wide Web. The Internet is the most successful example of a thoroughly decentralized structure
that works. There are many ideas for how swarming could be used to improve routing in Internet, although the
financial investments in legacy systems have so far been too large for any large scale experiments to be done®.

1.5 Possible military applications of swarming

Traditionally, military logistics and military command and control in general have been implemented in a top-
down, centralized manner. Hence, the use of swarm intelligence for military purposes has so far been rather
limited. Recent applications of it to sensor control and adaptation are described in (Gaudiano et al., 2003; Schrage
and Gonsalves, 2003). In (Nygard et al., 2001), the authors use the collective intelligence of a swarm of UAVSs to
find and attack enemies. Possible future uses of UAVs are described in (James, 2000; Lua et al., 2003). Similar
approaches to target acquisition by a network of sensors are taken in (Bowyer and Bogner, 2001; Brown et al.,
2002).

Flocking has been used to model the behavior of military forces performing various kinds of missions (Carling
et al., 2003), but the main focus of that paper was the analysis of the resulting communication network. More
advanced models for simulating aircraft using swarming are (Trahan et al., 1998; Agassounon, 2003)

Ideas for high-level uses of swarming are considerably more limited. In a recent special section, Aviation
Week and Space Technology (Hughes, 2003), have explored the possibilities of using swarming for network-
centric warfare. Of particular interest here is the short article by Arquila and Ronfeldt.

They have also described the possible future uses of swarming on the battlefield in a longer book (Arquilla
and Ronfeldt, 2000). An historical essay describing several cases where swarming tactics have been successfully
used in military history is (Edwards, 2000). RAND also argues’ for the need for future military organizations to
be decentralized and use results from complex systems science.

In (Palmer et al., 2003), humans are used as a test-bed for swarming algorithms. An approach such as this
enables researchers to study the behavior of agents that may not always follow the rules given to them, and also

4see, eg., http://www.santafe.edu/sfi/publications/wpabstract/200212067 and http://www.santafe.edu/sfi/publications/Bulletins/bulletin-
winter98/swarm.html

Shttp://www.nutechsolutions.com

Shttp://people.cs.uchicago.edu/~matei/P2P/BetterNetworks.html

http:/iwww.rand.org/publications/IP/IP193/

11
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makes it possible to try to develop methods for reverse-engineering rules from observed behavior — this is a
potentially very important application for Military Operations Other Than War.

Recently, a conference focusing on military application was sponsored by the US DoD’s Command and Con-
trol Research Program (DoD, 2003). Unfortunately, most of the work described there is both very preliminary
and low-level. An algorithm inspired by ant behavior was recently used for a subproblem of threat assess-
ment (Svenson and Sidenbladh, 2003).

Air traffic control is an important problem for both civilian and military purposes. A collective intelligence
approach to this is described in (Burdun and Parfentyev, 1999)

Mine detection is a very important problem. An approach to it that uses a large number of “ants” that collec-
tively find and defuse mines is described in (Ferat and Kumar, 2002). Here, the authors assume that defusing a
mine requires the cooperation of a certain number of “ants”. A related work is (Yuigying et al., 2003), which uses
ant algorithms to guide robots; here the number of robots that is heeded to accomplish a certain task is determined
using pheromone.

12
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Chapter 2

Ant Colony Optimization

Certain types of ants communicate findings of food sources to others in their colony by deploying a pheromone
(smell) trail in their own footpaths from the found food source to the hill (Bonabeau et al., 1999). The deployed
pheromone evaporates over time, which means that short trails, on average, have stronger smell than long ones.

When other ants come upon the trail, they follow it with a higher certainty the stronger the smell. Since all ants
deploy pheromones, all trails together form a complex energy landscape that changes over time. Paths of strong
smell will form along the shortest trails from the hill to the major food sources. When a food source disappears,
the smell path to this place evaporates (Bonabeau et al., 1999).

This efficient approximative method of finding the shortest path between interesting places in a time-varying
environment has inspired a group of optimization algorithms jointly called Ant Colony Optimization (ACO). We
will first describe the theory and fundamental ideas behind ACO. Then, applications of this technique to a number
of types of optimization problems in the real world are discussed in sections 2.9.1 t0 2.9.4.

2.1 Introduction

ACO is an approximative optimization algorithm, which means that it, in general (see Section 2.8), does not give a
provably optimal solution to the optimization problem. Thus, it is not interesting for problems which can be solved
exactly in an efficient manner. Instead it is useful on problems which are impossible or very time consuming to
solve exactly (i.e., NP-complete problems, see Appendix A). Such problems include difficult logistics problems,
routing in telecommunication networks and scheduling of school classes. This chapter is a brief introduction to
ACO. For a more extensive description, see (Bonabeau et al., 1999; Dorigo and Stiitzle, to appear; Maniezzo and
Carbonaro, 1999).

The first ACO method, Ant System (AS) (Dorigo et al., 1996) was described for the famous NP-complete
Traveling Salesman Problem (TSP). We will also use TSP to describe AS and ACO for three reasons:

1. Itis a logistics problem, and this report is targeted towards logistic applications.
2. Itis very easy to visualize.

3. Itis often used as a benchmark problem to compare different algorithms.

2.2 The Traveling Salesman Problem

A traveling salesman wants to visit IV cities. The cities are connected by E roads, where the road between city
i and j is of length d;; (see Figure 2.1(a)). The salesman can only visit each city once, and must start start end
end in the same city. The optimization problem is here to find the path, i.e. the sequence of cities, [i1, 2, . .., iN]
which minimizes the total traveling distance d = Zszg iy yin-

A first attempt at solving this problem approximately could be to use a greedy algorithm, see, e.g., (Bonabeau
et al., 1999). Start at city ;. Select the city i, as the one closest to ¢; (with a minimal d;,;,). Repeat this until all
cities are covered, avoiding cities already visited. This method will not always find the optimal path (see Figure
2.1(b,c)).
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(a) A graph. Each node corresponds to a city.
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(b) The shortest path as found by the greedy agorithm. (c) The true shortest path through all cities.

Figure 2.1: The Traveling Salesman Problem. Each node in the graph corresponds to a city. What is the shortest
path on which the salesman visits all cities exactly once? A greedy algorithm will not necessarily find the shortest
path. Instead, it will find a path which initially has short inter-city distances.

2.3 Ant System

Inspired by the use of pheromone in certain species of ants, Dorigo et al. (1996) developed Ant System (AS). The
idea is to let a number of simulated agents, or ants, build different solutions to the TSP by moving in a probabilistic
manner between nodes (cities) in the graph. When a tour is completed, the ant deposits “pheromone”, implemented
as a weight, on the tour. Shorter tours receive more pheromone than longer tours.

When in city 4, an ant decides which city j to move to depending on (Bonabeau et al., 1999):

1. Whether or not the city j has already been visited in the ant’s tour. Remember that each city should be
visited only once. Each ant & maintains a “tabu list” over cities that it has visited. From this list and from
the graph, it can produce a list J* over the cities that it is allowed to move to from i.

2. Theinverse v;; = 1/d;; of the distance between cities ¢ and j. This is the heuristic desirability of choosing
city ¢ when in 4, and corresponds to the local rule used in the greedy algorithm described above.

3. The amount of pheromone 7;;(t) previously deposited between cities ¢ and j. This is a measure of how
successful this selection of route has been for other ants, and is updated over time ¢ (where time can be
interpreted as generation of ants).
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Expressed in mathematical terms, the probability that ant £ moves to city j whenin i is (Bonabeau et al., 1999):
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where v and (3 are parameters that control the influence of the trail length and the pheromone. If « = 0and g = 1,
we get a stochastic greedy algorithm.

The amount of pheromone deposited on edge (i, j) by ant k after the completion of the tour is (Bonabeau
et al., 1999):
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where T (t) is the tour done by ant k, L¥(t) is the length of this route, and Q is a parameter. Without pheromone
evaporation, the ants will quickly get stuck in local minima (Bonabeau et al., 1999). Therefore, the pheromone
map is updated as:

Tij (t + 1) = (1 — p)Tij(f) + ATij(ﬁ) (2.3)

where p is a parameter that controls the speed of pheromone evaporationand A7;;(t) = > ;- , ATZ-]; (t) is the sum
of pheromone trails for all m ants.

While the first generation of ants will select both long and short routes through the graph, the following
generations will converge to selecting the shortest routes. The question is whether it finds the optimal route, and
how fast it converges. AS was tested against other approximative algorithms dedicated to solving TSP. The results
(Dorigo et al., 1996) showed that for small problems (less than 30 cities) AS performed equally or better than
other algorithms. However, for large problems, AS found good solutions quickly, but did not find the optimal
solutions within a (large) bounded number of iterations t.

In the next sections, we will briefly review a number of suggested improvements to AS. This group of improved
algorithms have been named Ant Colony Optimization (ACO) algorithms (Bonabeau et al., 1999).

2.4 Ant Colony System

Due to the failure of AS of finding the optimal solution to TSP on large graphs, Dorigo and Gambardella (1997a;
1997b) suggest an improved algorithm, called Ant Colony System (ACS).

In general, the changes in ACS are intended to make the ants’ search more efficient to enable a fast solution to
TSP on large graphs. In benchmark tests ACS performed well in comparison to other state of the art algorithms
(Bonabeau et al., 1999; Dorigo and Gambardella, 1997a; Dorigo and Gambardella, 1997b).

The major differences (Bonabeau et al., 1999) between AS and ACS are outlined in the paragraphs below.

Transition rule. In ACS, ant k chooses city j to travel to according to the rule:

_ [ avgmaxie () ()”) fa<ao @4

where q is a random variable uniformly distributed over [0, 1], go € [0,1] is a parameter and J € JF is a city
chosen according to the probability distribution:

7is (1) (vig)”
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which is similar to the AS transition probability in Equation 2.1. A high go means that the ants do not explore to
the same extent as in AS - instead, they tend to exploit the previously deployed pheromone trails. When ¢ is low,
the ants explore new tracks with a certain probability. The parameter ¢y can be tuned during algorithm execution,
and fills the same purpose as the temperature parameter in simulated annealing.

piy = (2.5)

Pheromone trail update rule. In AS, all ants update the pheromone map. To further direct the exploration of
the trails in ACS, only the ant that found the shortest tour 7'+ is allowed to deposit pheromone in each tour. Due to
this, ACS is sometimes denoted an “elitist approach”. Furthermore, no evaporation of pheromone occurs on edges
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not belonging to 7. This means that the pheromone map is intact save for the shortest tour which is updated in
the same manner as were all tours in AS. The update rule is:

7ij(t + 1) = (1 = p)7i; () + pA7i;(t) (2.6)

where (7, j) are edges belonging to 7', p is a parameter that define rate of pheromone evaporation and A;; (t) =
1/L*, L™ being the length of 7.

Local updates of pheromone trail. The pheromone on the edges is also updated locally: Every time an ant
travels on an edge (¢, 7), the pheromone concentration on that edge is updated as

Tij (ﬁ) — (1 — p)Tij (t) + pT1o (2.7)

where 7 is the initial pheromone value. This will have the effect that ants are discouraged to go on edges
frequently visited by earlier ants, making less visited edges more attractive. Thus, the ants tend to spread out,
lowering the probability that the best route is left unexplored.

Use of candidate list. A candidate list is often used in algorithms designed to solve the TSP, and has been
included into ACO (Dorigo and Gambardella, 1997a; Dorigo and Gambardella, 1997b). Each city  in the graph
has a candidate list, which is a list of preferred cities to travel to from ¢. An ant first selects a city from the
candidate list, only if there are no possible options left (all cities in the list have already been visited in the tour)
will the ant select another city.

Local search. To further enhance the performance of ACS, a local search procedure (Dorigo and Gambardella,
1997a) is employed. The purpose of local search is in the case of ACS to bring each ant’s tour to its local optimum.
Dorigo and Gambardella (1997a) use 3-opt, an iterative method in which three edges at a time are switched until
a local optimum is found.

25 MAX — MZIN Ant System

Independently from ACS, Stiitzle and Hoos (2000) present another algorithm derived from AS, the MAX — MIN
Ant System (MMAS). The primary goal with MMAS (as with ACS) is to prevent stagnation, i.e., prevent the
ants to get stuck in a suboptimal local minimum. MMAS performs comparably with ACS on large TSP problems.
The main differences between AS and M MAS are described in the following paragraphs.

Pheromone trail update rule. As in ACS, only the ant that found the shortest route 7" is allowed to update
the pheromone map (which also makes MMAS an elitist approach). The update rule, similarly to ACS, is:

7ij (t + 1) = pri;(t) + ATij(t) (2.8)
where (i, j) are edges belonging to 7', p is a pheromone evaporation parameter and A7;;(¢t) = 1/L*, where L+

is the length of T,

Pheromone trail limits. To prevent one trail from being overly enforced early on in the search, the pheromone
values on all edges (4, 7) is limited to the interval [Tmin, Tmax]-

Pheromone trail initialization. While in AS, the trails are initialized with a low start pheromone value 7, all
pheromone trails are here initialized to a maximal start value, m,.. This encourages early exploration of the
whole graph, so that the global optimum is reached faster.

Pheromone trail smoothing. Stitzle and Hoos also suggest smoothing of pheromone trails, which would be
useful to any elitist approach. Mathematically, the smoothing can be expressed as:

*

Tij (ﬁ) = Tmax — (Tmax — Tij (ﬁ)) (2.9)

where 4 is a parameter € (0, 1] where 1 corresponds to no smoothing. The benefit of smoothing in this way is that
exploration is encouraged since paths with low pheromone value become more probable choices.
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2.6 Other improvements

Bullnheimer et al. (1997a) introduce another elitist strategy which they call AS,,,;. The ants are ranked according
to solution quality (trail shortness in the case of TSP). Instead of using only one elitist ant, the o best ants are here
allowed to deposit pheromone. The pheromone trails are scaled so that no ant can deploy a higher amount of
pheromone than an ant higher in the ranking. The results of AS.....; were significantly better than with AS, but no
comparisons to ACS or M MAS were made.

Other improvements generally build on ACS. Montgomery and Randall (2002) builds on ACS by adding the
concept of anti-pheromone, thus discouraging ants from following the bad trails along with the encouragement of
ants to follow the good trails. Roux et al. (1999) augment ACS by using a Tabu search instead of the 3-opt search
suggested by Dorigo and Gambardella (1997a). To prevent stagnation early on in the search, Fidanova (2002)
suggests additional reinforcement of pheromone to guide the search to unexplored areas. The performance is
comparable to MMAS. Merkle and Middendorf (2002a) introduce a normalization procedure for the pheromone.

ACO algorithms in general rely on a number of parameters such as the number of ants, the initial pheromone
value and the speed of pheromone evaporation. By optimizing these parameters, the performance of the algorithm
can improve significantly (Botee and Bonabeu, 1998). Botee and Bonabeu (1998) and, independently, Pilat and
White (2002) use genetic algorithms to optimize the parameters.

Merkle and Middendorf (2002d) introduce a method for handling permutation problems using ant colony
optimization. They find that dividing the problems into subproblems and possibly also freezing the pheromone
gives better results for their problem.

The process of laying pheromone that real ants do is called stigmergy. Another possible way for social insects
to communicate is by recruitment, i.e., asking a neighbor to do the same thing you do. A method based on this
has been introduced (Dro and Siarry, 2002). The difference is that in one extreme case of the method they present,
ants communicate one-to-one instead of one-to-many as in the normal algorithm.

The Best-Worst Ant Colony System (Cordon et al., 2002) is a combination of ant colony optimization and
evolutionary computing. It introduces changes to the pheromone updating and restarts all ants when the difference
between the best and worst solutions found is small. In a similar vein, (Acan, 2002) describes a combination of
genetic algorithms and ant colony optimization.

A problem with any heuristical search method is that there are always many possible moves to consider in the
search-space. In an attempt to overcome this difficulty, Randall and Montgomery (2002) investigate the benefits
of restricting the candidate set of moves. They introduce several different methods of restriction, and find that
different methods work best for different problems. This is a preliminary study; future work both on finding a
general restriction that work for many problems and on finding restrictions for specific problems is needed.

2.7 Parallel implementations

The inherent structure of the ACO algorithms, with a large number of agents working relatively autonomously,
makes them suited for parallel implementations (Piriyakumar and Levi, 2002; Randall and Lewis, 2002). Randall
and Lewis (2002) suggest several different parallelization strategies depending on the problem at hand (e.g., how
much communication between ants is necessary).

Another parallel implementation of ant colony optimization is described in (Merkle and Middendorf, 2002b).
The authors change the behavior of the algorithm slightly and manage to find an algorithm whose running time is
linear in the input size.

2.8  Will the algorithms always find the global optimum?

ACO methods are heuristic in the sense that they do not originate from mathematical deduction, but from studies
of the behavior of real ants. However, there are empirical indications (Bonabeau et al., 1999; Dorigo and Gam-
bardella, 1997a; Dorigo and Gambardella, 1997b; Stiitzle and Hoos, 2000) that certain ACO algorithms always
find the global optimum even in very large problems. The question is what mathematical properties give this stable
performance. Can it be mathematically proven that an ACO algorithm is bound to find the optimal solution?

One way to achieve this is to map an ACO algorithm to a well known algorithm. Birattari et al. (2002) develop
the Ant Programming framework which encompasses ACO. This wider framework makes it possible to compare
ACO directly to reinforcement learning algorithms, which are well studied. Meuleau and Dorigo (2002) study
the relationship between ACO and stochastic gradient descent, which also is extensively studied. They show that
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some ACO algorithms can be directly reformulated as stochastic gradient descent algorithms in the pheromone
trail space.

Gutjahr (2000) develop a Graph-Based AS, which can be seen as a restricted version of ACS. The restrictions
are intended to make sure that the algorithm is convergent. However, the empirical performance of this algorithm
is not tested (Stutzle and Dorigo, 2002). To this end, a convergence proof was developed by Stiitzle and Dorigo
(2002) for the two well-known ACO variants MMAS and ACS. The proof shows that optimal solution will be
found with a probability 1 — ¢,¢ — 0 using any of these algorithms. Gutjahr (2002) has after this published a
proof that an extended version of Graph-Based AS will converge with probability 1, a stronger claim.

Merkle and Middendorf (2002c) take another direction. While others (Gutjahr, 2000; Gutjahr, 2002; Stiitzle
and Dorigo, 2002) have proven convergence for elitist approaches (where only one of a few ants may deposit
pheromone), Merkle and Middendorf suggest a deterministic model of the ACO dynamics, which makes it possible
to study analytically a more general ACO algorithm. They show that their deterministic model corresponds closely
to an ACO algorithm in simulations.

2.9 Applications

The ant colony optimization algorithm has been successfully applied to a number of problems. In this section
we briefly describe some of them, with an emphasis TSP and routing, since these problems appear naturally in
logistics.

Ant colony optimization has a number of very attractive features that makes it a natural candidate to apply to
any new optimization problem. Among these features are

e lItis easy to implement.

e It is a generic algorithm, that works for any optimization problem that can be formulated in terms of an
objective function.

e There are mathematical proofs that it converges on the exact solution for some problems.

e It is faster than other approximative methods for solving optimization problems.

29.1 Traveling Salesman Problem

Many difficult logistics problems can be described in the form of a TSP. A number of TSP extensions have been
made, including probabilistic TSP and dynamical TSP. These are probably more relevant than TSP to regard if
interested in a logistics application.

The probabilistic TSP can be described as a TSP where each node has a cost associated with not being visited.
The objective function — the function to minimize to find the optimal solution — takes this cost, as well as the
length of travel into regard. In the original TSP, this cost would be infinite, i.e., the solution requires a visit
to all nodes. Bianchi et al. (2002a; 2002b) are the first to apply ACO to probabilistic TSP. They compare two
approaches, ACS and pACS. The latter approach updates the pheromone slightly differently than ACS, using a
statistical measure of tour length instead of the actually observed length. When the probabilistic TSP is more
“TSP-like” with high costs, ACS perform better, otherwise pACS is more suited to solve the problem. Branke and
Guntsch (2003) proposes two ways of improving the ACO performance on probabilistic TSP. Firstly, they suggest
making the computation of the tour length more approximate to speed up computations. Secondly, they suggest
using problem-specific heuristics to guide the optimization.

Up to now, all work on ACO described in this chapter has concerned static TSP formulations. However, as
discussed in chapter 1 there is great potential in using swarm methods to solve dynamical problems.

Many time-varying logistics problems can be described as a dynamical TSP, i.e., a TSP in which the objective
function (the distance between nodes) changes over time. An application of this is traffic jams (Eyckelhof and
Snoek, 2002), in which the travel times between cities change over time. Angus and Hendtlass (2002) applies
ACS to a dynamic TSP, and compares the computational cost of letting the pheromone map update continuously
over time against starting optimization from scratch multiple times. They find that the pheromone map is able to
adapt continuously to the changing underlying conditions, and that the computational cost is lower than that of
performing the whole search over and over. Eyckelhof and Snoek (Eyckelhof and Snoek, 2002) instead adapts AS
to the dynamical problem, and introduce a number of improvements such as “shaking”, a type of smoothing of the
pheromone map. Guntsch and Middendorf (2002) suggests transferring a set of solutions over time, instead of the
whole pheromone map. This could speed up computations.
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Other applications of ACO to logistics problems include a continuous problem of layout optimization (Sun
and Teng, 2002) which can be formulated as a form of TSP, a generalized minimum spanning tree problem (Shuy
et al., 2003) which is an NP-complete problem just as TSP, and design of a water distribution system (Maier
et al., 2003). A combination of swarm optimization and genetic algorithms has been used to optimize the layout
of highway networks (Jha, 2002). A related application is (Hoar et al., 2002), where swarm simulation is used to
minimize traffic congestion in cities.

An application that seems very similar to spare parts optimization is described in (Silva, Runkler and Sousa,
2002). Here the task is to optimize the logistics processes at Fujitsu-Siemens Computers. According to the paper,
the results were successful: a new, improved scheduling process was found. The problem they solve can be
described as minimizing stored stock while simultaneously delivering goods to consumers at the correct time. As
in the spare parts optimization problem (Alfredsson, 1997), a Poisson process is used for determining demand.
Since there is not an exact one-to-one correspondence between the two problems, the approach taken here must be
modified somewhat before tackling the spare parts optimization problem. The approach taken in (Silva, Runkler
and Sousa, 2002) nevertheless seems very promising also for our problem.

An interesting application of scheduling to determine positions using a minimum number of GPS-receivers is
described in (Saleh, 2002)

2.9.2 Routing

Routing denotes the problem of directing information flow in a network so that it reaches its recipients as fast
as possible. The advent of the Internet has made it a very important problem. The problem would be trivial if
we could connect every site to every other, but this is not possible except for very small network sizes. Instead,
messages containing information must be transmitted via other sites. Since most sites are connected to several
others, they must chose which one(s) to transmit a packet of information through. The most straight-forward
approach would be to transmit it to every neighbor, but this would lead to serious bandwidth problems. Instead,
an algorithm for choosing which neighbor to send it to must be used.

Similar problems are faced by distribution companies that must send its buses or trucks so that all customers
are serviced without too large delays. The difference between this problem and the Traveling Salesman Problem
is that a milk-delivery company, for instance, in general has several delivery trucks and does not always need to
enforce the constraints of visiting each customer at most once.

Ant algorithms for routing in computer and communication networks have been studied by (Kassabalidis et al.,
2001; Randall and Tonkes, 2001; Okino, 2002; Garlick and Barr, 2002; Sim and Sun, 2002; Suiliong et al., 2002;
Denby and Hegarat-Mascle, 2003), while the problem of loops in routing is described in (Canright, 2002). This
paper argues that ant-based routing algorithms will not form stable loops. A paper by Wittner and Helvik (2002)
studies the opposite problem where one wants to find two paths from a source node to the destination node. In
some networks, this is necessary from a security point of view, when it is crucial that there exists a backup path for
information. The algorithm they use deviate substantially from “traditional” ant methods, and needs to be further
refined before it can be applied to real networks.

(Bullnheimer et al., 1997b) solve the routing problem where there is one central depot and a number of cus-
tomers that must be visited by exactly one vehicle. Each customer is associated with a service time (keeping the
vehicle busy for that time) as well as a demand giving the amount of materiel it needs. This problem is hence very
similar to the spare optimization problem described in section 1.3. One wants to plan movements of a number of
vehicles so that the total length travelled is minimized, while meeting the constraints of satisfying each customer.
For the example problems solved in (Bullnheimer et al., 1997b), their ant algorithm managed to find the previously
known best solutions but did not improve on them. They suggest several options for improving their algorithm,
e.g., by combining it with a good local search method in a similar way as is often done when solving TSP using
ants.

Introducing time constraints on when particular customers should be serviced leads to further complications.
This problem has been tackled by (Ellabib et al., 2002). This problem combines the difficulties of both routing
and scheduling, and the solution proposed by Ellabib et al should be augmented with a local search procedure to
further improve their results.

An interesting combination of ant colony optimization and particle swarm optimization is presented as fu-
ture work in (Reimann et al., 2002). This paper also solves a routing problem where there are time constraints.
Reimann et al combine their method with local search, and find better results than Ellabib et al. The most inter-
esting aspect of this paper, however, is their suggestion to use a particle swarm-like method of adjusting each ants
individual parameters during the optimization run.
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2.9.3 Scheduling

The archetypical scheduling problem is how to schedule classes in a school so that no student is required to be
at two different places at the same time. In the literature, the problem is sometimes mapped to a graph coloring
problem (Costa and Hertz, 1997). Here, the task is to color all vertices in a graph so that no edge joins two
vertices of the same color. Allowing such edges but associating them with a cost leads to the set partitioning
problem discussed above.

The MAX — MZN Ant System discussed in section 2.5 is applied to such a problem in (Socha et al., 2002).
The method compares favorably to other local search methods, and shows that the ant system can handle problems
with a large number of constraints. Blum (Blum, 2002) shows that several improvements of the MAX — MIN
algorithm can be made. By initializing the pheromone randomly at each restart of the algorithm, the probability
of reaching the same solution several times is reduced. Hence, this increases the explorative capabilities of ants.
Another improvement comes from retaining a set of elite solutions, convergence is then tested against this set
instead of just against the best found solution so far.

For manufacturing industries, it is important to schedule production in the most efficient manner. Often the
same machines are used for producing different types of goods, but since there is often a setup time before a
machine can be switched to another mode, it is important to optimize the allocation of machines. There have
been several attempts to solve this using ants-inspired methods (Bauer et al., 1999; Merkle and Middendorf, 2001;
T’kindt et al., 2002; Wang and Wu, 2002; Gravel et al., 2002; Gagné et al., 2002; Vogel et al., 2002; Blum and
Sampels, 2002; Nouyan, 2002; Bautista and Pereira, 2002; Merkle and Middendorf, 2003).

A comparison between ant colony optimization and local search for this type of problems can be found
in (Gottlieb et al., 2003).

Other problems related to scheduling are studied in (Cincotti et al., 2003; Mohanty et al., 2003).

Load balancing is a problem that is related both to routing and scheduling. Here, the objective is to maintain
functionality in a network when the amount of traffic in it reaches so high levels that optimal paths cannot be used
for all transmissions. In (Schoonderwoerd et al., 1996), a comparison between an ant-based method and some
traditional algorithm is made. The authors find that their method leads to fewer lost transmission than the others.

2.9.4 Other applications

The satisfiability problem is one of the corner-stones of computational complexity theory (see Appendix A). An
ant colony optimization method for solving it is described in (Schoofs and Naudts, 2002).

Another important NP-complete problem that is related to scheduling problems it set covering. Here the task
is to partition a set into disjoint subsets so that the sum of the costs in each subset is as small as possible. An
ant-based approach to it is described in (Maniezzo and Milandri, 2002). (Fenet and Solnon, 2003) apply ant
optimization to the max clique problem.

A combination of the ant system and local search is used for the set covering problem in (Rahoual et al.,
2002). The authors also describe a parallel implementation of it. The set covering problem consists of finding
the minimum number of vertices in a graph that need to be populated in order to watch all nodes, given that an
agent at node ¢ can watch all neighboring nodes. A variant of it is the Museum Guard problem, where the task
is to assign guards to rooms in a museum. The paper finds that the combination with a local search method is
crucial for getting good results. The results here could be used for determining optimal placements of supply sites
or watchposts in military operations other than war, for instance.

Clustering is an important problem in many applications that need to group similar objects. Military applica-
tions include force aggregation, where one wants to find, e.g., platoons of vehicles. It can also be used to find Web
pages that are similar, or to extract information from text. Papers that solve this problem using swarm optimization
include (Hoe et al., 2002; Bin et al., 2002; Folino et al., 2002; Yang and Kamel, 2003)

Game theory has application far beyond the often very silly games often used to describe it. In (Branke et al.,
2002), the results of using ant colony optimization to develop strategies for Nim and Tic-Tac-Toe are presented.
Among other things, game theory has uses in sensor adaptation and allocation for information fusion (Johansson
et al., 2003).

Other, rather esoteric, applications of ant colony optimization include image processing (Vallone, 2002; Ouad-
fel et al., 2002), area covering by real robots (Svennebring and Koenig, 2002), and protein folding (Shmygelska
et al., 2002). It has also been used for time-series prediction of pollution (Lu et al., 2003). Many learning prob-
lems can be solved using some sort of Bayesian network (Pearl, 1988). Ant colony optimization has been used to
optimize the process of designing and using these (Gamez and Puerta, 2002; de Campos et al., 2002), and also for
data mining (Parpinelli et al., 2002) and task coordination (Bianchi and Costa, 2002).
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Chapter 3

Particle Swarm Optimization

In 1995 Kennedy and Eberhart introduced the Particle Swarm to simulate social interactions. The purpose was to
demonstrate the idea of individuals gaining evolutionary advantage by sharing information. Instead of just blindly
running through life reflecting only over your own personal experiences, taking account of the behaviors and
success rates of surrounding people could be useful. By imitating the most successful of your fellow companions
it is plausible that you could reach a more advantageous position. This way of sharing experiences by imitation is
commonly believed to be one of the key ingredients of intelligent life. Considering the human superior ability to
imitate, this could give us reason for the sudden success of our own species (Kennedy et al., 2001).

The Particle Swarm model is not only promising in the field of social simulations. A stripped-down version of
the model was presented as a novel and generic optimization technique, the Particle Swarm Optimizer (PSO). The
model is as simple as it is powerful. Consider a set of individuals, a population, moving around in a search space.
Every point in this space is associated with a certain score, corresponding to the evolutionary concept of fitness
(or utility). In order to explore the space efficiently and maximize their own score, each individual is equipped
with two special features. First, it has a memory of the best point it has visited so far, i.e., its personal experience.
Secondly, it can look at neighboring individuals and compare their positions and scores with its own. In order to
find new positions these features are combined to yield an acceleration towards both the individual’s own previous
best and the best of its neighbors.

As an optimization technique the PSO is known to be both simple to implement and robust. It does not need
a differentiable objective function and can easily be adapted to new types of problems. The search mechanism is
completely heuristic, which according to the inventors should be seen as an additional feature: “We don’t agree
that human thinking is faulty; we suggest on the contrary that formal logic is insufficient to solve the kinds of
problems that humans typically deal with.” (Kennedy et al., 2001)

3.1 The basic PSO algorithm

The PSO comes in many different variants. There are, however, seldom any major conceptual differences. We
will present the most common one, used for optimizing a real-valued objective function, f(&), defined on a
real-valued D-dimensional search space, i.e. ¥ € RP. The algorithm is initialized with a swarm of n particles
randomly distributed over the search area. The swarm is then set loose in the sense that for a number of iterations
each particle moves and updates its velocity in an autonomous manner striving for the optimal position. The
updating rules for the ith particle are described as follows:

F) = Tlt—1)+ 6 3.1)
’171(15) = wi(t—1)4 11 (ﬁz — Z;(t — 1)) + Cap2 (ﬁg — fi(t — 1)) (3.2

The new position of the particle is given by its old position plus its current velocity. The velocity in turn,
is determined by a linear combination of three terms. The first is simply the speed from the previous time step,
weighted with an inertia weight, w. The second term represents the particle’s desire to return to its previous
best position, which is denoted ;. Finally, the third term gives the attraction of seeking the best position among
the particle’s topological neighbors. We denote this shared high-score 5, where index g stands for global. The
impact of the last two terms are controlled by two constants ¢; and co together with the random numbers ¢, and
2, taking values (uniformly) between 0 and 1.
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Vi
Figure 3.1: The forces acting on particle ¢ are proportional to the distance to the particle’s previous best, 7;, and
to the best of its neighbors, 5, multiplied with random numbers. The effect is the same as if it was attached to
two springs with random varying spring constants.

Note that equation (3.2) is simply Newton’s second law,
m;(t) = F, (3.3)

and the terms on the right hand side can be seen as the effective force acting on particle ¢ (Figure 3.1). Note that
the inertia w is thus a kind of inverse mass.

Depending on the specific problem and parameter choices it is sometimes necessary to add a constraint on
the size of the velocity. If not, the particles may gain too much momentum and spread out to infinity. A V.
parameter is therefore introduced that cuts the velocities according to:

Vij (t) = Vmawv if Vij (t) > Vinaz (34)
Vij (t) = *Vmama if Vij (t) < —Viaa (35)

The stopping criterion for the PSO algorithm is user defined. It commonly consists of a maximum number of
allowed iterations complemented with some sort of convergence criterion. This can be, e.g., when no improvement
in best position has been found in a certain number of time steps, either for the whole swarm or for each individual
separately.

The neighborhood connected to and influencing a single particle can take on many different shapes. Concep-
tually one distinguishes between the gbest- (global) and the Ibest-neighborhoods (local). In the gbest all particles
are connected to one another and consequently share the same p,, the current best position in the whole swarm.
In the Ibest the neighborhood is a subset of the swarm. The choice of subset varies, but the most basic version is
to choose the k-nearest neighbors defined on a chain-lattice topology (the 2-nearest neighbors of the ith particle
are the ones indexed ¢ — 1 and ¢ + 1, modulus . These are usually not the closest particles in a geometric sense).

3.1.1 Parameters

Most results for parameter settings in the PSO are based on empirical investigations. In most cases the PSO turn
out to be robust. Reasonably good parameter selections do not seem very hard to find.

The ratio of the parameters ¢; and ¢, sometimes referred to as the trust parameters, determine to what extent
the individuals of the swarm should rely on own experience, called cognitive learning, or that of others, social
learning. Experiments have shown that the trust parameters do not play an essential role for the convergence of
the PSO. In some cases though, evidence exist that a slight bias towards cognitive influence can provide better and
faster solutions (Parsopoulos and Vrahatis, 2002). The most popular values are ¢; = ¢ = 2.

More effort has been put on investigating the influence of the inertia weight, w. It was introduced to alleviate
some convergence problems encountered by early versions of the PSO (Shi and Eberhart, 1998a). In some cases
the PSO showed great global exploring capabilities, but very poor performance when closing in on an optimum.
In other cases it was the opposite and the algorithm converged prematurely to a non-global optimum. The inertia
weight presented a solution. Decreasing its value reduces the impact from a particle’s previous velocity, making
the swarm more sensitive to influences from previously found optima, thereby increasing local exploitation. This
ability to tune the balance between local and global search is one of the major advantages of the PSO, and makes
it well suited to handle complicated objective functions. A fruitful approach for making the tuning of w problem
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independent is to adopt an annealing scheme (Shi and Eberhart, 1998b). Starting with a large w and then gradually
lower it will yield an initially extensive search that later turn into a more and more focused local exploitation
(compare simulated annealing (Kirkpatrick et al., 1983)).

There is no recipe in the literature for making a proper choice of the V,,,,,. parameter. Shi and Eberhart (1998Db)
have empirically determined a relationship between V,,,..,. and the inertia weight. On one specific function they
found that a larger V,,,.. worked best with a smaller inertia weight and the other way around. The actual values
are problem dependent and usually determined by trial and error.

Recently a more thorough theoretical approach for determining criteria for PSO parameter settings has been
undertaken (Clerc and Kennedy, 2002; Trelea, 2003). Rearranging the equations of motion and neglecting the
stochastic parts makes it possible to analyze the dynamical system of each particle. The characteristics of the
system’s eigenvalues, which depend on the choice of parameters, determine if and how the particle will converge.
Experiments support that the results also approximately apply to the fully stochastic system. Hence, starting from
such calculations the trade-off between global and local exploration can be determined independent of the problem
at hand.

Although these results are promising the effect of the social interaction remains to be theoretically examined.
The number of particles and the choice of a particle’s topological neighborhood play a vital role in the overall
convergence properties. So far, these have been chosen more or less ad hoc (ranging from at least 10 to 300)
and the only experience is that more particles give a more extensive search but is computationally more costly.
Kennedy has done a study to clarify the importance of the different neighborhood topologies (Kennedy, 1999).
He proves that expanding a local neighborhood with a few randomly chosen connections, short-cuts (cf. Small-
World?! ), can lead to a faster and better search. The ideal number of short-cuts to add seems to be dependent on
the objective function.

3.1.2 Similaritiesto Evolutionary Computing

Particle Swarm Optimization is sometimes referred to as an evolutionary algorithm. Obviously the social context
in which the idea took off deeply resembles the darwinistic concept of “survival of the fittest”. Each particle
in the swarm strives for an optimal fitness score to attract fellow particles who have been less successful in
their search. However, there is no actual selection or reproduction process in the Particle Swarm. In contrast to
traditional Evolutionary Computing methods, such as Genetic Algorithms (GA) (Mitchell, 1996) and Evolutionary
Programming (Koza, 1992), all individuals of the population survive and continue to take part in the ongoing
search. Nevertheless, the sharing of information through social learning does imitate the effects of reproduction.
In GA cross-over is a common strategy for reproduction. Two individuals mix their states to produce new hybrid
offspring. This is very similar to a particle being attracted to its superior neighbor.

A second key concept of evolution is mutation. Mutation allows an individual to move to any nearby location
with some probability. Although not explicitly present in the Particle Swarm the stochastic terms in equation (3.2)
work in a similar manner. The particle moves around in search space with a certain amount of randomness.
However, unlike mutation the update equations of the PSO may sometime put restrictions on the direction of a
change. If all terms in (3.2) pull in a similar direction, exploration in the opposite direction is impossible.

Some authors argue that these sometimes halting similarities are not enough to make the PSO a full member of
the Evolutionary Computing paradigm (Nunes de Castro, 2002). Kennedy and Eberhart (2001) on the other hand
claim that they are enough. They also note that the Particle Swarm possesses other features even more crucial to
evolution, such as self-organization and emergent behavior.

3.2 Extensions and performance

The relatively large number of scientific papers dealing with Particle Swarm Optimization reveals the fact that it
has left at least its most immediate infancy. Much activity is still focused on quite basic aspects of the method,
but the diversity of applications to which it has been applied confirms the wide-spread popularity of the PSO.
The performance reported is almost everywhere very pleasing, except for some early papers when the method
still suffered of growing pains. Due to the inherent simplicity, the algorithm is also very rewarding to extend and
adapt to cope with new problem categories. A binary version was introduced early and a huge number of smaller
modifications are suggested throughout the literature (Kennedy et al., 2001).

1Small world networks (Watts, 1999) are graphs that have both short diameters and high degrees of clustering. They have been studied
extensively the last years as models of various social networks (Newman et al., 2001); together with so called scale free graphs they rep-
resent important extensions of classical random graph theory (Bollobas, 1985). Graphs such as these have been studied in the FOI project
Metanet (Carling and Carlsen, 2002; Carling et al., 2003).
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3.2.1 Benchmarking

Since it is probabilistic and heuristic, the PSO has many advantages compared to traditional deterministic opti-
mization techniques. It is in no need for differentiable (or even continuous) objective functions and it possesses
great capabilities for escaping local minima, features shared with many other heuristics. Benchmarking of the
PSO is based on comparing the PSO with these heuristics, mainly Evolutionary Algorithms, but in some cases
also with deterministic annealing (DA) and simulated annealing (SA) 2.

In an influential paper, Angeline (1998a) compared the performance of the early PSO with a Genetic Algorithm
(GA) on four non-linear functions. The PSO was the fastest to find a near optimum solution, but in the long run
it did not find as accurate solutions as the GA (this was before the introduction of the inertia weight). The result
inspired a lot of work on improving the convergence, some of which are briefly mentioned in section 3.2.2. Similar
convergence behavior has been detected on other testbeds (Boeringer and Werner, 2003).

The binary PSO has also been compared with a set of different GA. Using a multimodal problem generator
the PSO was shown to outperform its competitors on almost all problems. It was also least sensitive to increasing
problem dimensionality and modality (number of local optima) (Kennedy and Spears, 1998).

In (Tillett et al., 2003) the PSO and simulated annealing are compared on a clustering problem. The PSO is
reported to be both faster and more accurate. The same relationship is claimed when comparing the PSO to GA
on a number of Task Assignment problems (Salman et al., 2001; Salman et al., 2002). On the same testbed DA
and SA were the fastest but didn’t find at all as good solutions as the PSO and GA.

In conclusion the overall performance of the PSO seems very satisfactory. Although more comparative studies
are needed, the algorithm so far proves to be very competitive. For many problem instances it outperforms other
more well-known heuristics.

3.2.2 Improving conver gence

Numerous attempts to improve the overall convergence properties of the PSO can be found in the literature.
Many of them are influenced by the field of evolutionary computing. Angeline (1998b) introduces selection as
a new feature in a hybrid PSO variant. The resulting algorithm shows improved performance on some functions
but not on all. In a paper by Xie et al. (2002b) mass extinction of particles in certain time intervals is used
to prevent premature convergence. This is also accomplished on three benchmark functions, but at the expense
of introducing a new parameter. A third algorithm inspired by evolution is a hybrid of PSO and Predator Prey
Optimization (Silva, Neves and Costa, 2002). An additional population, the predators, is added to the original
swarm, the prey. The predator particles are attracted by the best particle in the prey swarm. The prey particles
on the other hand are repelled by the presence of predators, giving rise to interesting dynamics. By controlling
the strength of the attraction/repulsion the swarm can be kept from converging too soon and hopefully avoiding
sub-optimal local minima.

When a particle comes close to the currently best global position there is a risk that it stagnates and stops
contributing to the search. A method to avoid this is proposed in (Xie et al., 2002a). By identifying the inactive
particles and re-initializing them the social diversity of the swarm is maintained, leading to improved average
performance. Another risk with stagnation is that the local exploration around the global best is slowed down.
This can be solved by restarting the best particle at the global best in each iteration and give it a small kick in a
random direction (van den Bergh and Engelbrecht, 2002). The method is guaranteed to always find at least a local
optimum.

An approach similar to that of a gradually decreasing inertia weight is proposed in (Fan, 2002). An adaptive
scaling factor is introduced that restricts the maximum velocity v,,,, more and more in order to gradually move
from global to local search. The algorithm is reported to statistically outperform the original one.

Inspired by the social-psychological concept of stereotyping Kennedy looks into the effect of clustering in the
particle swarm (2000). The swarm seems to improve performance when the individual best, p;, is replaced by a
clustered group’s central position, the stereotype of the group.

A very elaborate hybrid algorithm is presented by Krink and Levberg (2002). Depending on where in the
search space a particle is they let it change identity between a PSO particle, a GA individual and a simple
hillclimber. The method performs very well on common benchmark functions and the authors point out many
directions for further research on this type of hybrids.

2For descriptions of DA and SA, see (Peterson and Soderberg, 1989) and (Kirkpatrick et al., 1983) respectively

24



FOI-R-1180-SE

3.2.3 Discrete and constrained optimization

To find an algorithm for a specific category of problem one wants to solve, some adjustments and customizations
usually have to be made. In real-world applications, e.g., the search space of feasible solutions is often limited by
some (m) constraints

gi(Z) <0 1=1,2,...m (3.6)

For the PSO, different techniques to ensure convergence in a valid area have been proposed. In (Venter and
Sobieszczanski-Sobieski, 2003) a Lagrangian penalty term is suggested,

f@) = 1@ +a+8)_ maz(0, g:(7)] 37

=1

where o and 3 are the positive Lagrangian multipliers 3. In addition, for particles lost in an infeasible region, a
slight modification of equation (3.2) is used. The first term is omitted so that the particle only will be influenced
by previous optima, all of which are feasible points.

When the division of the problem space into feasible regions is more complicated, the penalty approach is not
always automatically applicable. A more brute method for keeping restive particles inside legal zones is to simply
move them back to either the border of the feasibility zone (Abido, 2002) or their previous best positions (El-
Gallad et al., 2002). Another approach to this is presented in (Hu et al., 2003a).

Another modification attempt is to use the PSO for discrete optimization. Inherently the PSO is a method
for solving continuous problems, but in (Venter and Sobieszczanski-Sobieski, 2003) a relaxation approach for
adaptation to a discrete problem is suggested. By simply rounding off variable values in a continuous space to the
closest in the discrete counterpart, the algorithm seems to work well. For a discussion on relaxation techniques,
see (Gustafsson, 1994).

3.2.4 Multi-objective optimization

An interesting type of problem with many important applications, is multi-objective optimization. This is a partic-
ularly difficult problem because competing objective functions have to be optimized simultaneously. The optimal
solution is generally not clearly defined and often there might be a whole set of interesting solutions. Three papers
suggest different modifications of the PSO for using it as a multi-objective optimizer. In (Hu and Eberhart, 2002b)
and (Parsopoulos and Vrahatis, 2002) a single optimum is sought, while in (Brits et al., 2002) the swarm is con-
figured to converge to a many-point solution. (Mostaghim and Teich, 2003) look at the problem of determining
which particle position to use as the global best for multi-objective optimization. (Hu et al., 2003b) introduce an
algorithm that stores several good positions for the objective-functions.

3.2.5 Adapting to changing environments

All variants of the PSO discussed so far have been for static objective functions. What if we not only would
update the position and speed of the swarm but simultaneously also would alter the environment? Carlisle and
Dozier reported (2000) that the original swarm formulation failed on solving problems with continuously changing
objective functions. As the optimum moved away the swarm tended to get stuck around their individual and global
memories, p; and p,. To cure this Carlisle and Dozier suggested a new algorithm, called Adaptive PSO (APSO).
By clearing the memory of the swarm, either at constant time intervals or when the environment has changed more
than some allowed amount, the swarm can more easily adapt to a new optimum. A different approach was used
in (Hu and Eberhart, 2002a). Instead of clearing the memory of the whole swarm a portion of the population was
re-randomized. Best results were obtained with a medium portion of the particles being re-randomized, but no
comparison between the suggested methods was done.
Methods like these must be used for a dynamically changing optimization problem.

3.3 Applications

In the last couple of years the Particle Swarm Optimizer has reached the level of maturity necessary to be inter-
esting from an engineering point of view. It is a potent alternative optimizer for complex problems and possesses
many attractive features such as:

3For an introduction to Lagrangian relaxation, see (Gustafsson, 1994)
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e Ease of implementation. The PSO is implemented with just a few lines of code, using only basic mathemat-
ical operations.

o Flexibility. Often no major adjustments have to be made when adapting the PSO to a new problem.

e Robustness. The solutions of the PSO are almost independent of the initialization of the swarm. Addition-
ally, very few parameters have to be tuned to obtain quality solutions.

e Possibility to combine discrete and continuous variables. Although some authors present this as a special
feature of the PSO (Sensarma et al., 2002), others point out that there are potential dangers associated
with the relaxation process necessary for handling the discrete variables (Abido, 2002). Simple round-off
calculations may lead to significant errors.

o Possibility to easily tune the balance between local and global exploration.

e Parallelism. The PSO is inherently well suited for parallel computing. The swarm population can be divided
between many processors to reduce computation time.

Below we take a look at some of the applications where the PSO has been used. The first section is devoted to
different types of optimization in power systems. These problems are actually similar to those of logistics. After
that we briefly overview some other applications found in the literature.

3.3.1 Power system control

An interesting application for which PSO has been successfully implemented is the problem of Optimal Power
Flow (OPF) (Abido, 2002). The solution of the OPF aims to minimize some objective function in a power system,
e.g., the total energy cost, by adjusting the system control variables. Simultaneously the different power sources
and the power grid have to satisfy various equality and inequality constraints. This could for instance be load flow
equations (equality constraints) and upper and lower limits on generator voltages (inequality constraints). In his
paper, Abido examines the performance of the PSO on a standard OPF test system (the IEEE 30-bus system) and
compares his results with previous results obtained with evolutionary programming. The PSO was found to deliver
the lowest costs. Other works treating similar problems are (El-Gallad et al., 2001; El-Gallad et al., 2002; Tsukada
et al., 2003; Koay and Srinivisan, 2003).

A related problem but with a wider scope is that of Optimal Expansion Planning. Here the optimization is not
limited to a power network with a fixed topological structure. Instead, all aspects of constructing a new power
network are evaluated to give a complete optimization of the economic consequences. In (Sensarma et al., 2002) a
formulation of the Optimal Expansion Planning problem is approached using the PSO. The objective function used
is a weighted sum of subobjectives, originating from the large number of economic aspects considered. Although
being a very complex problem the PSO is reported to perform well. Given different initial conditions the results
seem to be consistent.

3.3.2 Other applications

Neural network methods are popular for solving different kinds of pattern recognition problems, such as classifi-
cation and machine learning (for an introduction, see (Bishop, 1995)). Lately, the PSO has been used to replace
or complement other traditional neural network training algorithms, such as the back-propagation and radial basis
function (Kennedy et al., 2001; Salerno, 1997; Al-Kazemi and Mohan, 2002). In (Zhenya et al., 1998) the PSO
is used for tuning the parameters of a fuzzy classification network and (Braendler and Hendtlass, 2002) discusses
the advantages of using it for hardware neural networks. Peng et al. (1999) successfully train a network with PSO
for the use as a battery pack state of charge estimator.

Automatically discovering traffic accidents and other incidents on highways using a combination of PSO and
neural networks is studied in (Srinivasan et al., 2003).

Another neural network application which relates to power systems is described in (Kassabalidis et al., 2002).
In order to operate close to the system’s security border one needs to identify its position as closely as possible.
A neural network is trained to answer how close to the security border a certain point is. The PSO is then used in
combination with the network to find where the actual border points are situated.

Salman et al. (2001; 2002) suggest the use of PSO for the Task Assignment Problem. The approach taken is
straight-forward and good results are reported.
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The PSO has also been used to cluster wireless sensors in a sensor network (Tillett et al., 2003). The purpose
is to maximize the energy efficiency by minimizing long-range communication. This can be accomplished by
grouping sensors in communication clusters and only let one central node communicate with the other clusters.

Finding the period of a function is tackled using particle swarm optimization in (Parsopoulos and Vrahatis,
2003). The authors apply their method to the standard map as well as the Hénon map, and point out that their
method works for non-differentiable mappings, in contrast to standard methods.

(Hu et al., 2003c) is one of the few papers on PSO that attempts to solve a permutation problem.
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Chapter 4

Conclusions and recommendations

Ants and other social insects solve very complicated logistical problems when they forage for food or build nests.
The insects must respond and adapt quickly to changes in the environment in order to survive. In a similar way,
the future network based defence must be able to quickly adapt to new conditions. The environment for network-
based defense consists of the requirements for resources at different sites. In order to solve the missions facing
the armed forces in the future, we must have an agile logistics component. Adapting a swarming-mind-set could
play an important part in acquiring this. The main motivation for using swarming based methods for spare parts
optimization and supply-chain management is their robustness, flexibility, and success for a wide variety of hard
optimization problems.

We see three major uses of swarm-inspired methods for logistics problem. The first two of these solve opti-
mization problem using either ant colony optimization or particle swarm optimization based methods. The third
uses swarming as a command and control concept, to optimize the handling of the supply chain.

The natural focus for a follow-up study is the first two uses of swarm-inspired methods, but we believe that
using swarming and simple rules for the individual entities will be essential for logistics and also general command
and control in a future network based defense.

As seen in section 2.9.1, ant colony optimization has been successfully applied to a number of problems related
to logistics. We find it especially interesting to note that variants of the method have been proven to converge to
the best solution in a number of cases, see section 2.8. The method has been applied to a number of dynamical
optimization problems (Guntsch and Middendorf, 2002; Eyckelhof and Snoek, 2002; Angus and Hendtlass, 2002).
The problem solved by (Bullnheimer et al., 1997b) and the paper by Silva (Silva, Runkler and Sousa, 2002) present
applications that are very similar to supply chain management in network-based defense. This makes us confident
that we can apply swarm intelligence-based methods also for dynamically changing supply chain management.

Also particle swarm optimization has been applied successfully to problems related to military logistics,
e.g., (Abido, 2002).

We believe that a follow-up study should explore ant colony optimization for a specific logistical problem as a
first priority. Particle swarm optimization should, however, not be completely overlooked. Since there is publically
available code (Birge, 2003) for it, it should prove comparatively easy to test it for the same optimization problem.
Special care should be taken when deciding what kind of ant colony optimization method to use — as we have
seen in chapter 2, some combination of methods must often be used.

The development of new techniques and methodologies inspired by swarming and biology in general proceeds
very rapidly. For instance, during the writing of this report, the conference Bio-ADIT 2004* was arranged. Brows-
ing the program reveals several papers that might be of peripheral interest for logistics, and at least two that seem
to be very interesting: “An Ant Inspired Technique for Storage Area Network Design” and “Media Streaming
on P2P Networks with Bio-inspired Cache Replacement Algorithm”, which both solve problems that are relevant
for supply chain management in a network-based defense. Several of the other papers at the conference present
material that might be relevant for other parts of the future network-based defense. This presents strong reasons
for why FOI and FMV should continue to watch this area closely.

Lhitp://Islwww.epfl.ch/bio-adit2004/
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Appendix A

NP-Completeness

Computer? scientists classify problems according to the maximal amount of resources needed for their solution.
The most important resource is time, but it is also possible to distinguish between problems that require quali-
tatively different amounts of memory. For example, a list of N elements can always be sorted in time less than
kN log N, where k is some constant (Knuth, 1998). The problems whose running time on a universal Turing
machine is bounded by a polynomial in their size are said to be in the class P. The important class NP (for
non-deterministic polynomial) consists of those problems where it can be checked in polynomial time whether
a proposed solution actually solves the problem. (A non-deterministic Turing machine would be able to solve
NP problems in polynomial time.) It is obvious that P C N P, but there is no proof that P # N P. However,
most people believe that there are NP problems whose worst-case instances take exponential time to solve on a
universal Turing machine.

The class NP-complete (or NPC) are the most important problems in NPs. A problem of size N is in NPC if
all other NP problems can be transformed into it in time at most polynomial in V. A method to solve an NPC
problem efficiently can thus be used to solve any NP problem efficiently. It is known that if P £ N P then there
are problems in NP that are in neither P nor NPC. A problem is called NP-hard if it is at least as difficult as
the most difficult NP problems; NPC is the intersection of NP and NP-hard. A modern reference on complexity
theory and NP problems is (Papadimitriou, 1994), while (Garey and Johnson, 1979) has an extensive list of NPC
problems.

Two important problems in NPC are graph coloring and satisfiability testing (SAT). Graph coloring is the
problem of coloring a graph with IV vertices and M edges using K colors so that no two adjacent vertices have
the same color.

The most natural application of graph coloring is in scheduling problems. For example, a school where each
teacher and student can be involved in several different classes must schedule the classes so that no collisions
occur. If there are K different time slots available, this is K-COL

Satisfiability was the first problem shown to be in NPC. It is the problem of finding an assignment of true or
false to IV variables so that a boolean formula in them is satisfied. In K-SAT, this formula is written in conjunctive
normal form (CNF), that is, it consists of the logical AND of M clauses, each clause being the OR of K (possibly
negated) variables, where the same clause may appear more than once in a formula. For example, (zVy)A(yV—z)
is an instance of 2-SAT with two clauses and three variables. Applications of K-SAT include theorem proving,
VLSI design, and learning.

In K-SAT, each clause forbids one of the 2% possible assignments for its variables. In the same way, an edge
in a graph forbids K of the K2 different colorings of its vertices. For both problems, there are M constraints on
the solutions. More general problems can be formulated by having N variables and a set of M constraints that
are of different nature than those in K-SAT or K-COL. Note, though, that the NP-completeness of both problems
means that a method to solve either one quickly would work on any NP-problem. Both K-SAT and K-COL are in
P for K = 2 and in NPC for K > 3 (Garey and Johnson, 1979). The related problem (MAX-K-SAT) of trying to
minimize the number of unsatisfied clauses in k-SAT is in NPC even for K = 2.

1This appendix is based on section Il of Svenson, Nordahl, “Relaxation in graph coloring and satisfiability problems”, Phys Rev E59 3983.
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Appendix B

Web resources

Here we provide a list of web resources that are related to swarming, ant colony optimization and particle swarm
optimization.

o Several swarm-related conferences will be arranged in the near future:

Bio-ADIT 2004 http://Islwww.epfl.ch/bio-adit2004/

GECCO 04 http://gal4.ge.uiuc.edu:8080/GECCO-2004/index.html
ANTS 2004 http://iridia.ulb.ac.be/~ants/ants2004/index.html
PPSN VIII http://events.cs.bham.ac.uk/ppsn04/

CEC 04 http://www.cs.unr.edu/~sushil/cec/#SI

SIP 04 http://alfa.ist.utl.pt/~cvrm/staff/vramos/SIP.html

ICCRTS 2004
http://www.dodccrp.org/Activities/Symposia/9thICCRTS/9thICCRT SCallforPapers.pdf

FOI should track the proceedings from all these conferences/special sessions to find relevant material.

e There are a number of companies specializing in applying swarm-based methods to problems:

— Icosystems http://www.icosystems.com/
— NuTechSolutions http://www.nutechsolutions.com/
— AntOptima (http://www.antoptima.com) has a tool for logistical optimization http://www.antoptima.com/antplan.html

e A conference on swarming for military purposes, arranged by the US Department of Defense
http://www.dodccrp.org/Publications/pdf/Swarming Conf_Pro.pdf

e Wired recently ran a short article on swarming http://www.wired.com/wired/archive/12.02/machines.html?pg=6
e Asite that collects a lof ot introductory articles on swarming http://dsp.jpl.nasa.gov/members/payman/swarm/

e Central site for PSO http://www.particleswarm.net/

e Website of the inventor of particle swarm optimization http://www.particleswarm.net/JK/

o \Web site for the book (Kennedy et al., 2001) http://www.engr.iupui.edu/~eberhart/web/PSObook.html

o Site with PSO examples http://clerc.maurice.free.fr/pso/index.htm

o \Website for ant colony optimization is maintained by Dorigo and contains links to many papers and confer-
ences on ACO: http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html

o Article in the Santa Fe Institute Bulletin on swarming and its use in experimental archaeology
http://www.santafe.edu/sfi/publications/Bulletins/bulletin-winter98/swarm.html

e Website of a robotics project http://www.swarm-bots.org/

e Swarm is a software package for agent-based simulation http://www.swarm.org/
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Swarm intelligence

Vissa typer av myror kommunicerar information om
matstallen genom att lagga ut doftspar mellan
matfynd och myrstack. Doften avdunstar med tiden
vilket gor att korta stigar i medeltal kommer ha
starkare doftspar an langa. Andra myror attraheras
av doften och ju starkare doft desto stérre ar
sannolikheten att ett spar foljs. S& smaningom
kommer myrstigar som utgoér kortaste vagar mellan
féda och stack att bildas och myrkolonin har st ett
optimeringsproblem utan att vara medvetna om
det.

Detta ar inte det enda exemplet pa hur insekter
och &ven fiskar och faglar organiserar sig med
hjalp av mycket enkla individuella regler. Pa sa satt
bildar fiskar stim, faglar flockar och termiter och
getingar bygger bon med komplexa strukturer.
Fenomenet kallas swarm intelligence och har gett
inspiration till en rad olika datalogiska )
optimeringsmetoder. Principen &r att manga enkla  Ostersund
agenters enskilda (lokala) anstrangningar i

samverkan kan ge en i det narmaste explosiv

(global) synergieffekt, sa kallat emergent

Arvidsjaur

N Y Strangnds
upptraddande. Metoderna ar valdigt robusta - det Karlskoga DI
gor inget om en eller ett par myror misslyckas - Arboga
och har dessutom ofta formagan att anpassa sin
I6sning om problemvillkoren plétsligt skulle
férandras - en matkalla som tar slut eller flyttas Kongo

leder till att doftsparet dit snart dunstar bort och
nya myrstigar bildas.

Dagens datorer mgjliggor anvéandandet av swarm intelligence-metoder for att I6sa
komplexa optimeringsproblem. Ett typiskt sadant &r hanteringen av forsvarets logistik.
Det nya forsvaret kraver forméga att snabbt kunna gora insatser pa olika hall, antingen
det rér sig om internationella operationer, katastrofhjalp eller traditionellt férsvar av
Sverige. Det ar med andra ord viktigt att snabbt kunna planera logistikfloden som tar
hansyn till behov i ett stort antal insatsomraden. Behoven kan dessutom andras
shabbt, vilket kraver omplanering. Swarm intelligence-baserade metoder klarar
sadana krav.



Rapportinnehall

Den har rapporten &r resultatet av en litteraturstudie om swarm intelligence. Studien har framst
inriktats pa logistiknara tillampningar med anvandning inom det natverksbaserade forsvaret. Vi
beskriver 6verskadligt bakgrunden till swarming och hur det anvants inom biologi och sociologi.
Tva huvudvarianter av swarm-metoder for optimering beskrivs i detalj. Den forsta, ant colony
optimization, baseras pa hur myror letar efter mat, medan den andra, particle swarm optimization,
baseras pa hur individer i folkmassor later sitt beteende paverkas av sin omgivning. Vi beskriver
originalversionerna samt nagra intressanta tillampningar och utvidgningar for respektive metod.

Vi namner ocksa tidigare framforda idéer om militara tillampningar av swarming (t ex
sensorstyrning och hotanalys), och ger en kort introduktion till vissa logistikproblem som &ar
relevanta for det framtida natverksbaserade forsvaret.

Studiens huvudresultat &r bibliografin. Har har vi samlat en stor mangd artiklar som tillampar
swarm intelligence pa olika problem, framst logistikrelaterade sadana.
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