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Chapter 1

Introduction

This report is intended to serve as a brief introduction to and survey of information
spreading in complex networks. It is not intended to be a complete survey of the
area, but is intended to provide enough information about the subject so that a
researcher who is not familiar with the subject can be able to quickly learn some
of the terminology and the most important models used. Since this is a very active
research area, it is necessary for FOI to continue to keep track of developments in
it.

Networks are gaining more and more attention both in the scientific and mil-
itary communities. The number of papers published on the subject has risen dra-
matically, as is evidenced by the data shown in figure 1.1. Several good books and
collections on complex networks have also recently been published [1, 2, 3, 4]

From a practical point of view, knowledge of complex networks is needed for
the military for several reasons [5]. When designing the communication and com-
mand networks of future network-centric systems, we must ensure that they are
robust against enemy attacks and component failures. The networks must also
be designed so that information, orders, and service-requests are spread as fast as
possible. Lastly, complex network knowledge is necessary in order to analyse the
social networks [6, 7] of the opponents facing us in military operations other than
war situations [8]. Figure 1.2 shows the social network of dating among students
in an american high-school [9].1 By analyzing the social network in various ways,
many important properties of the subjects can be inferred [6, 7].

Future command and control systems will also need to be designed to facil-
itate the use of distributed fusion. There will be several local fusion nodes that
gather and fuse data collected at different places in the network of platforms. This
means that in addition to the robustness and communication requirements men-

1See also http://researchnews.osu.edu/archive/chainspix.htm
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Figure 1.1: In recent years, the number of papers published on networks has grown
tremendously. This figure shows the number of papers with “network” in the title
appearing in the cond-mat section of arxiv (http://www.arxiv.org).

tioned above, the specific fusion algorithms chosen might also impose constraints
on the network used.

In the report, we will distinguish between the physical and the logical commu-
nication networks. The physical network consists of the actual hardware that trans-
mits information and will not be much discussed here. The logical communication
network uses the physical to transmit information between sender and recipient.

The report is outlined in the following way. Chapter 2 gives a brief overview of
various types of network models, while chapter 3 discusses some dynamic proper-
ties of networks, including search and information spreading on networks. Finally,
section 4 contains some conclusions and a list of possible future work in this area.
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Figure 1.2: An example of a social network. The nodes correspond to students
in a high-school. Two students are linked if they have been romantically involved
with each other. Boys and girls are coloured differently. Can you determine which
colour corresponds to which gender by analyzing the network?

3
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Chapter 2

Network models

Parts of this chapter are based on chapter 5 of [10].

2.1 Simple networks

In order to properly describe a general network or graph, two things are needed.
First, we need a list of the nodes of the graph. The nodes can be named and have
various properties associated to them, but for describing the graph it is enough that
they can be enumerated from 0 to N − 1. Second, we must know which nodes are
connected to which. This is most easily thought of as a list of edges (i, j) that are
connected. Each edge can have various properties associated to it (e.g., a weight
wij). It is sometimes convenient to consider the graph as a function φ(i) that gives
a list of the neighbours of node i.

Edges can be either directed (meaning, for example, that an edge (i, j) can
only transmit information from i to j) or undirected. A graph is connected if there
is a chain of edges connecting any pair of nodes in it. A natural generalisation of
graphs is to replace the edges by triples i, j, k or even n-tuples. Such structures are
called hypergraphs.

The simplest kinds of networks are regular, like the ones shown in figures 2.1
and 2.2.

All regular lattices have some features in common. By looking at the graphs in
figure 2.1 it is for instance apparent that these graphs are clustered, in the sense that
if we remove one node, its neighbours will still have a short path between them.
Another interesting characteristic of regular lattices is that the average distance
between nodes is quite large. For a lattice with N sites in D dimensions1 , it grows

1The simplest example to think of is Z
D
l , where nodes are placed at integer coordinates and edges

link nodes that whose coordinates differ by ±1 in exactly one dimension. Choose l = N
1/D to get

4



FOI-R–1766–SE

Figure 2.1: A square lattice.

Figure 2.2: A triangular lattice

as N1/D .

A natural extension of the regular lattice is to consider other graphs where all
nodes are equivalent (i.e., have the same neighbourhood). The simplest example
of such a graph is the complete graph with N nodes, KN . This consists of N

nodes where each node is connected to each of the other (so the graph has

(

N
2

)

edges).

2.2 Classical random graphs

Traditionally, two different models of random graph processes have been used [11].
In the first model, G(N, p), each possible edge (i, j) is considered and included in
the graph with a probability p. The other model, G(N,M), instead selects without

replacement M of the

(

N
2

)

possible edges. Note that these models are not

completely equivalent. For the latter model, the graph is guaranteed to have exactly
M edges, while the number of edges is a stochastic variable for the former. In the

N nodes.
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thermodynamic limit, choosing

M = p

(

N
2

)

gives graphs that should share all relevant properties. An important quantity char-
acterizing different random graphs is their connectivity or average degree γ, which
measures the average number of neighbours that the nodes have. For random
graphs with N nodes and M edges, this is given by γ = 2 M

N = p(N − 1) for
the two ensembles.

Graph theory is a fascinating mathematical subject with many deep results; see
for instance [11, 12]. One of the most interesting results is that there is a phase
transition as the connectivity γ of a random graph grows. For small γ, the random
graph consists of many isolated trees2 of nodes. At γ = 1 this suddenly changes
and a giant component emerges. The size of the giant component scales linearly
with the number of nodes, N . This percolating transition is somewhat surprising
— note that the graph can not be connected until it has a connectivity of at least
2(N −1)/N . Another important result is that the average path-length between two
nodes scales as log N for large N .

The random graph model, however, is not sufficient to describe many natu-
rally occurring networks. Examples of networks that require more detailed models
include the Internet, telephone networks, airline timetables, electric power grids,
neural networks, interactions between monomers in a folded protein, metabolic
pathways of biological organisms, electrical circuits, networks of sexual contacts
and collaboration graphs of film actors, business people, and scientists (see [13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and references therein).

2.3 Small world graphs

There are many different kinds of networks in Nature. Perhaps the first that comes
to mind is the social network of a society. Here each node represents a person,
while there is an edge between two persons if they know each other. What does
this graph look like? It is very unlikely that it would be a regular lattice — our
acquaintances are not ordered in such a simple way. The social network however
shares an important feature with regular lattices: they are clustered. Clustering
means that there is a high probability that two neighbours of a given node also are
direct neighbours themselves. An alternative way to think about it is to consider
the average path length between two neighbours of a node i. Since both nodes

2A tree is a connected graph without loops.
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are neighbours of i, this is obviously smaller than 2. If node i is now removed
from the graph, we have to find a new shortest path between the nodes. If this new
path length is still small, the graph is clustered. All regular lattices are obviously
clustered, and social networks are clustered too: if person A knows persons B and
C, there is a high probability that B and C will also know each other.

(Real social networks are clustered in several ways: everybody’s acquaintances
can be divided into several distinct clusters, i.e., the people one knows from work
all know each other, while the overlap between this group and one’s neighbours
often is zero. This can be modelled by allowing the network to have edges of dif-
ferent kinds, or by superimposing several different networks on top of each other.)

Mathematically, we can measure the degree of clustering in a graph by the clus-
tering coefficient, C , defined as the average over all nodes of the local clustering
coefficient Ci. For a given node i, consider its immediate neighbourhood, i.e., the
set of nodes to which it is linked. The local clustering coefficient is now given by
the fraction of all possible edges between nodes in the neighbourhood that actually
appear in the graph. Figure 2.3 shows an example that should make the definition
clear.

Another important feature of social networks is the so called small world effect:
When two strangers meet, it sometimes happens that the two people turn out to have
mutual acquaintances.

The idea behind small world networks was first introduced by Milgram [24] in
1967. Milgram’s experiment consisted of studying the path of letters addressed to a
stockbroker in Pittsburgh. The letters were given to people in rural Nebraska with
the rule that the current holder of the letter must hand it over to somebody with
whom they were on a first-name basis. The average number of links in the chain
of people between Nebraska and Pittsburgh was six, hence the term “Six degrees
of separation”. The number is of course not exact (a severe shortcoming of the
experiment was that only one third of the letters were actually delivered!), but the
phenomenon that people are linked via a small number of nodes has been verified
by later, more careful experiments (e.g, [25]).

The small world effect has later been popularised by occurring in media, such
as the movie “Six Degrees of Separation”. There are also various amusing games
using the same concept, such as the web site
http://www.cs.virginia.edu/oracle/ where a user can find the distance
between an arbitrary actor and Kevin Bacon. Actors here represent the nodes of
the graph, and two actors are linked if they have participated in the same movie.
It should be noted that the actors represented in the database are American and
European ones. The network of actors in Indian movies, for instance, probably has
few connections to this.

Another example are the Erdös numbers. Named after the famous mathemati-

7
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Figure 2.3: Examples of clustering coefficients. We wish to calculate the clustering
coefficient of the grey node on the left, which has three neigbours (indicated by
grey lines). The dark lines show the edges in the neighbourhood of the grey node
that actually appear in the graph, while the dotted lines show all three possible such
edges.
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cian Paul Erdös [26], these are defined recursively: Erdös has Erdös number 0; a
person has Erdös number n + 1 if they have co-authored a paper with somebody
who has Erdös number n (there are at least 507 persons with Erdös number 1; see
the web site
http://www.oakland.edu/˜grossman/erdoshp.html).

Regular lattices do get shorter and shorter distances between nodes as the di-
mensionality increase (the diameter scales as N 1/d for a d-dimensional lattice with
N nodes, so it decreases if we increase d and keep N constant), but this is still too
large to explain the small world effect. Instead, new graph models are needed.

A small world graph is intermediate between a regular lattice and a random
graph — it has both clustering (like a regular lattice) and short maximum distances
(like the random graph). It is constructed by considering in turn all the bonds (i, j)
of a start graph (most often a regular lattice) and with some probability p replac-
ing them with (i, k), where k is a new, randomly chosen, node. So by changing
the rewiring probability p we can interpolate between the regular lattice and a ran-
dom graph. An example of a small world obtained by rewiring the square lattice
is shown in figure 2.4. Note that the small world for p = 1 differs slightly from
a random graph, since all nodes are guaranteed to have a local connectivity of at
least γ/2 where γ is the connectivity of the regular lattice. The distribution of con-
nectivities is more broad for the small world with p = 1 than for the corresponding
random graph.

The advance of the Internet and other communications networks has high-
lighted the need to be able to not only describe but also design networks that com-
municate efficiently. Efficiently here has two distinct meanings — the obvious one
that a message from A to B should be transmitted along the shortest possible path,
and also an equally important one that the network should be fail-safe. If a node
suddenly disappears, it should be possible to quickly find alternate paths between
the rest of the nodes that don’t involve the dead node. A very clear definition of
small world behaviour in terms of efficiency has been given by Latora and Mar-
chiori [27]. They measure the local efficiency as the time needed to communicate
in the network, assuming unit velocity of signal propagation. The efficiency be-
tween two nodes is thus

εij =
1

dij
(2.1)

where dij is the shortest distance between nodes i and j and dij = ∞ if there is no
path between the nodes. The global efficiency is the average of this over all pairs
of nodes in the graph. A high global efficiency corresponds to a small diameter of
the graph. The local efficiency for a node i is calculated as an average of εik over
all neighbours k of i, and the total local efficiency of the graph is then the average
of this over all nodes. The local efficiency is a measure of the fault tolerance of the

9



FOI-R–1766–SE

Figure 2.4: This figure shows the construction of a small world starting from a 2D
square lattice (left). In the right figure, two edges have been rewired and are shown
as dashed lines.

network.
In addition to efficiency and clustering, there are a large number of measures

that can be used to characterize a graph’s properties. Many of these measures come
from sociology, and have been used to determine, e.g., the influence and power of
individuals in different social networks. Others come from computer science, or
have been suggested by physicists. A very good survey of such measures is [28].

A small world graph still has the same poissonian distribution of node-connectivities
as random graphs, whereas many graphs in Nature instead have a power-law dis-
tribution. Such graphs are called scale free and have attracted a lot of interest, see,
e.g., [29, 14, 30, 31], and below.

Much of the analytical work on small world networks has used a variation of
the standard rewiring model [32]. In this model edges are never deleted from the
graph, only added. This means that the mean connectivity of the graph will not be
preserved.

The eigenvalues of the adjacency matrix Jij (this is the symmetric graph whose
entries at position i, j is non-zero and 1 iff i and j are neighbours) of both scale-
free and small world graphs have been calculated by Farkas et al [33]. For random
matrices, the spectral density of eigenvalues is known to converge to a semi-circle
function, but they find completely different behaviour for realistic graphs. In par-
ticular, small-world networks turn out to have spectra that can not easily be de-

10
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scribed by any function. This is yet another indication that it is not enough to put
models of interacting agents on random graphs. A similar study has been made
by Monasson [34]. It would be interesting future work to do the same for small
worlds starting from d-dimensional regular lattices.

Exact calculations of many properties of these models are still missing; the
analogue between the occurrence of the small world phenomenon for any rewiring
probability p > 0 and a first order phase transition [35, 32] can perhaps lead to
better result in the future.

Another alternative model has been introduced by Holme and Kim [36]. Here,
instead of adding single nodes, triangles are added. This leads to a model that
is both scale-free (i.e., has power-law distribution of connectivities) and shows
clustering. The most important advantage of this model is that it provides for an
easy way to control the amount of clustering in the graph.

2.4 Scale free and growing graphs

A network is called scale free if there is no characteristic length scale in it. In
contrast to lattices, whose characteristic length scale is the lattice spacing, a scale
free graph divides its edges unequally among its nodes: the degree distribution
follows a power-law. This means that there are a few nodes (called hubs) that
have very many edges, whereas most of the nodes have very few. An important
characteristic of scale free networks is that while they are robust against accidental
failures, they are very vulnerable to deliberate attacks against hubs.

A deterministic model for generating scale free graphs has been introduced by
Barabási and Ravasz [30]; this model generates the graph by iteratively replacing
nodes with small graphs, in a manner similar to the construction of self-similar
fractals.

There are many models of growing networks. In these models, one starts with
a single node at time t = 0. In each new time-step a new node is added to the
graph and a new edge is created that connects this node to one of the older ones
with a probability that depends on the connectivity of that node. If this probability
is simply proportional to the node’s connectivity (k), the model is reduced to the
scale-free graph model of Barabasi and Albert [37]; see also [29]. It has been
shown that the case where the probability is proportional to the connectivity is the
only case which also leads to a power-law for the distribution of connecitivities in
the entire graph [38]. If the probability is proportional to kγ for any γ 6= 1, we get
stretched exponential (if γ < 1) distributions or graphs where the majority of the
edges share a common central node (for γ > 1).

The best example of a growing network is the Internet — each node that is

11
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Figure 2.5: This figure shows the difference between a random network and a scale
free network. Note the presence of hubs (nodes with many neighbours) in the right
network.

added could be interpreted either as a new computer that is connected to it or a new
web-site that is created. The edges created between this node and the older ones
are then the hyperlinks that the addition of a new site entails. [21] is a good easy
introduction. It turns out, however, that a more complicated model is needed to
model the Internet, see below.

So-called acquaintance networks, such as the Erdös graph, have been studied,
among others, by Newman [31]. Such network have the characteristic that a small
number of nodes have many edges. These nodes cannot be ignored when studying
communication on such networks. Figure 2.6 shows an example of an acquain-
tance network: a collaboration network, where nodes are scientists and edges link
scientists that have co-authored a paper.

The crucial point of Newman’s new model is that the probability distribution
of the number of neighbours, that the neighbours of a specified node has, is not
independent of that node. In social networks, a node with very few neighbours is
likely to be linked to other nodes that also have few neighbours; while a node with
many neighbours have similar nodes among its neighbours.Clustering is important
for this calculation. If we know both the degree distribution3 and the clustering
coefficient of a network, it is possible to calculate the number of neighbours at dis-
tance two from a given node. This is important to know when conducting research
on social networks.

A very interesting approach to the problem of analysing growing networks

3i.e., the probability that a node has a certain number of neighbours

12
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Figure 2.6: This figure shows the largest component of the network of collabo-
ration among physicists who work in areas related to complex networks. (Figure
from [39].)

13
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has recently been introduced by Kleinberg and co-authors [40]. Perhaps the most
prominent example of a growing network today is the Internet. The paper examines
data representing routers on the Internet for a tvo year period, and finds that the
link-density of the network increases with time, i.e., that the number of edges e(t)
is related to the number of nodes n(t) by a power-law

e(t) ∝ n(t)a, (2.2)

with a = 1.18.
Having such a relation between e(t) and n(t) means that the connectivity γ =

e
n is time-dependent, in sharp contrast to most models of graphs and networks. The
authors find a similar relation (but with different a’s) also for three different kinds
of citation networks. In addition to the super-linear scaling of edges with nodes,
they also find that the average distance (also, somewhat non-standard, referred to
as the effective diameter) between nodes decreases as a function of time. Recall
that the average distance for a random graph grows as the logarithm of the number
of nodes. While the two observations at first glance seem to be related, the authors
note that it is possible to construct graphs that satisfy one of them but not the other.
For large graphs, it is not practical to compute the diameter exactly. Instead, various
approximate algorithms can be used. Since the shrinking diameter propery is very
surprising, the authors check that their result is robust by using several different
such approximations to calculate the diameter. They also check for errors due to
the presence of a giant component; the shrinking diameter is present also if the
calculation is restricted to just the giant component.

The paper presents several simple models that exhibit the densification prop-
erty, and also give one model, the Forest Fire model that possessess both it and also
displays shrinking effective diameters.

The Forest Fire starts from a graph with just one node and then adds one ad-
ditional node at each time-step. At time t, let Gt be the current graph and v the
added node. A node w ∈ Gt is now selected randomly, and an edge v → w is
formed. Most graph models would now continue by selecting another w and possi-
bly adding an edge to it. In contrast, the Forest Fire model select a random number
of the nodes in Gt that were linked to w, and adds edges from v to these nodes.
This process is then repeated recursively for each of those nodes. (The process
terminates if it reaches a node that has already been encountered. It is also possible
to distinguish between out- and in-links when selecting the neighbours of w; see
the paper [40] for details.) Intuitively, the graph is generated in a similar way as
friendships are formed: a newcomer finds one friend and with a certain probability
becomes friends also with the friend’s friends, and so on. The name Forest Fire
comes from a certain similarity to lattice cellular automata models used for study-

14



FOI-R–1766–SE

ing Forest Fires. A natural extension of the model is to select several starting points
w at each time-step.

15
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Chapter 3

Dynamical properties of networks

Dynamical properties are often more difficult to analyze than static. One of the first
dynamical models that was studied for small world graphs is the density classifica-
tion problem. Here a cellular automaton (CA) is given the problem of determining
whether the majority of its inputs is 1 or 0. This problem was shown to be easier for
CA placed on small worlds than on regular lattices [15, 41]. Neural networks [42]
have been found to both have fast responses and possess coherent oscillation on
small world graphs. No other network structure has been found that combines
these two properties.

Rumour propagation is another example where the network plays a vital role,
as is voter models of various kinds.

Disease spreading has been investigated in among others [43] and the position
of the percolation [44] point has been found analytically for small world networks
by Moore and Newman [45, 46]. It has been shown [47] that for a scale-free graph
an epidemic will spread for an arbitrary small transmission probability. Dezsö
and Albert have however shown that immunizing a sufficiently large number of
nodes with high connectivities can lead to a finite effective epidemiological thresh-
old [48].

Some work has been done on evolutionary models on small world graphs.
Kulkarni and co-workers [49] have found that the nodes with the highest connec-
tivities have the most evolutionary activity in the Bak-Sneppen model [50]. In
most models of evolution, only point-mutations that change one gene are allowed
(this corresponds to flipping one spin in a Monte Carlo simulation). Bagnoli and
Bezzi [51] have studied the effect of allowing a small fraction of larger mutations,
which has the effect of turning the hypercube of genotypes into a small world net-
work. They find that by allowing a small number of such short-cuts the same results
are obtained as when arbitrary mutations are allowed. This means that the fitness

16
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landscape will be explored very quickly, but unfortunately also that the model lacks
stability.

3.1 Network searchability

When analysing a network, an important feature to consider is its searchability,
i.e., how easy it is to search it for information. Depending on what information is
available in the nodes and the search task at hand, different topologies entail using
different search strategies.

For instance, if the network is stationary and known to you (through, e.g., a
map), finding the shortest path between two nodes is a standard procedure using an
algorithm like Dijkstra’s. On the other hand, for dynamically changing networks
where nodes enter and leave at will, such complete information is difficult to obtain
and maintain. In this case other methods have to be used in order to find the target
node quickly.

Section 3.1.1 surveys some of the recent approaches dealing with network
search based on local connectivity information. The success of the different meth-
ods relies heavily on network structure. The section also describes a method for
determining network topology based on random walks.

A special category of networks are those that emerge between people in every
day life. In these social networks nodes represent individuals and a link represents
some kind of relation between two individuals, e.g., business, family or sexual.
People are in general very good at performing local search in social networks,
which was illustrated in 1967 by Stanley Milgram in his famous small world ex-
periment (see section 2.3). Methods for searching social networks are discussed in
section 3.1.2.

3.1.1 Local search in model networks

Adamic et al. [52] show with theoretical calculations and simulations that efficient
local search can be performed on a random graph with power-law connectivity.
Local search in this case means that the only information available is the connec-
tivities of a node’s neighbours and its neighbours’ neighbours. By directing the
search to nodes with high degree neighbours it is possible to achieve a search scal-
ing better than O(N), where N is the number of network nodes. Although efficient
on a power-law network, this high degree strategy is not always appropriate. On a
graph where the connectivity follows a Poisson distribution (as is the case for the
standard Erds-Renyi random graph model) it performed comparatively worse.

Yang [53] investigates how efficient different random-walk strategies are for
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search on a number of different types of networks. The random-walk methods used
include normal random walk (RW), no-back walk (NB), no-triangle-loop (NTL)
walk, no-quadrangle-loop (NQL) walk, and self-avoiding (SA) walk. Networks
studied are a classical random-graph (the Gilbert model), a small-world graph (the
Watts-Strogartz model) and two scale-free networks (the Barabsi-Albert model and
the deactivation model by Klemm and Eguiluz). It concludes that if the topology of
the network is unknown the self-avoiding walk is the most efficient search strategy.

The search performance of the different walking strategies can be used to clas-
sify the topological features of a network. As is to be expected, on a clustered
network (i.e., one which has a lot of triangles and quadrangles) NTL and NQL will
be more efficient than RW and NB. To reveal small-world characteristics SA can
be used for probing as it performs sligthly better than NTL and NQL.

A different approach to network searchability is presented by Rosvall et al. [54].
The focus is shifted from finding the shortest path in the sense of the minimum
number of links to the target node, to finding the path that requires the least in-
formation. The information cost for a node is defined as the number of yes/no
questions necessary to determine which link is on the shortest path to the target
node. The total search information between two nodes s and t is given by

S(s → t) = − log2





∑

{p(s,t)}

1

ks

∏

j∈p(s,t)

1

kj − 1



 , (3.1)

where ks is the degree distribution of the startnode, kj the degree distribution of
node j on the current path and the sum is taken over the set {p(s, t)} of degen-
erate shortest paths between s and t. Typically a shortest path will avoid highly
connected nodes like hubs in a scale-free topology. To be able to characterize a
complete network in terms of searchability the search information S is averaged
over all shortest paths

S =
1

N(N − 1)

∑

s6=t

S(s → t), (3.2)

where N is the number of nodes in the network. The authors apply this measure
to a number of models and real world network topologies and conclude that nature
seems to “disfavour distant specific communication”.

Another interesting concept defined in [54] is the hide, defined as the average
search information needed to reach a target node from a random start node

Ht =
∑

s

S(s → t)/N. (3.3)
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Figure 3.1: Illustration of a greedy search algorithm on a planar network.

The hide describes how visible the node t is to the rest of the network. An “impor-
tant” node will have a small hide and the concept can be used to define a general-
ized hierarchy measure. It would be interesting to compare the hide to measures
from social network analysis [6, 7] that attempt to measure the same thing.

3.1.2 Search in social networks

As mentioned above, social network often have small world characteristics.
Kleinberg [55] shows that finding short paths between nodes is easier in some

small world networks than others. The model used is a simple square lattice, where
each node is connected to its closest neighbours and also has one additional short-
cut. The probability for the short-cut to lead to a randomly chosen node is pro-
portional to r−α, where r is the lattice distance (“Manhattan”) to the node. The
possibility for a local greedy search algorithm to find short paths depends heavily
on the value of α. Kleinberg reports that α = 2 is optimal and that values above
and below rapidly deteriorate the search.

A more realistic model for social interactions is presented by Watts et al. [56].
The network is a small world construct but based on the concept of cognitive hier-
archies instead of a lattice. People tend to break down the world into layers, where
the top layer represents the entire population and the bottom layer is a small closely
related group or even a single individual. In between these extremes are groups of
groups, hierarchically ordered. The distance between two nodes in such a network
is equal to the lowest hierarchical level of a group comprising both nodes1 . When

1In physics, this is referred to as an ultrametric distance.
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a person searches the network it is possible to zoom out and target a larger group
and then narrow it to pin point the desired node.

In their model, Watts et al. also utilize the fact that people in real life are not
limited to a single type of social distance. For instance, guiding a search based on
distance in physical location can be combined with distance in profession and/or
hobby. Each type of social distance gives rise to a separate hierarchy and the com-
bined distance between two nodes is set to equal the smallest of these. The authors
investigate how the number of parallel hierarchies influence searchability and con-
clude that more than one can be useful but too many will decrease performance,
similar to the confusion described by Rosvall et al. [54].

Interesting work has been done to compare the models of Kleinberg and Watts
with real world networks. Adamic and Adar [57] derived a social network by an-
alyzing email communication within their lab at HP. A social link was created for
each pair of individuals that had exchanged at least 6 emails in both directions dur-
ing a period of 3 months. Mass emails sent to more than 10 people were removed.
These restrictions were introduced to try to catch an as realistic as possible net-
work of aquaintances. Interestingly, these restrictions also transformed the degree
distribution of the network from a power-law to something looking more like a
Poisson form. As mentioned earlier, according to Adamic et al. [52] this would
imply that a high degree search, i.e., directing search to nodes that are the best con-
nected, would not work efficiently, which also was confirmed. Two other search
strategies were evaluated on the HP lab email network. The first is based on the ob-
servation that people closer in the organizational hierarchy email each other more
often. The relationship between separation in distance and probability of corre-
spondence matched Watts prediction of a searchable network (figure 3.1.2). The
last search strategy used the nodes’ physical location in the lab buildings to deter-
mine the social distance. The relationship between linking probability and distance
r was shown to be 1/r, different from the optimal 1/r2 calculated by Kleinberg.
The results of the simulations corresponded well to this finding as well. A simi-
lar approach to model search in real world networks was conducted on a network
constructed from an online networking site [57]. Unfortunately, the network was
incomplete in many respects and good results were therefore hard to achieve.

3.2 Synchronization

How we achieve synchronization of intent among own units and coalition partners
is an important and difficult question whose answer depends more on the organiza-
tion and methodology used than on technical innovations and systems. Neverthe-
less, it is interesting to study how various technological system could help facilitate
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Figure 3.2: HP Labs email communication (light grey lines) mapped onto the or-
ganizational hierarchy (black lines). Note that communication tends to ’cling’ to
the formal organizational chart [57].

such synchronization. For example, how should the communication networks be
constructed to improve the speed by which commander’s intent and situation pic-
tures are spread?

One way of answering this question is by studying simple models of fusion
and command nodes on various networks. By using a simple model that can be
simulated (or possibly even solved exactly) on different kinds of networks and
study the differences in behaviour that arise, we can determine at least qualitatively
what the differences between the networks are.

In order to use the results from such experiments for designing the military
networks, it is of course necessary that the model is sufficiently similar to real
fusion system.

One possible model that could be used for such experiments is the so-called
voter model version of the Ising model.

The voter model consists of a number of agents that vote either “yes” or “no”.
How they chose to vote depends on how their neighbours vote. In the most simple
version of the model, each agent selects one of its neighbours randomly and adjusts
its vote to be the same. There are also versions with more interesting interactions.
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Chapter 4

Conclusions and future work

Most suggestions for network-based defence system rely on a service-based archi-
tecture. In such systems, it is necessary to match the commander or analyst that is
requesting a service with the platform or fusion node that can provide it. In order
to do this as efficiently as possible, it is necessary to design the logical communi-
cation networks so that this type of communication is facilitated.

As shown in the chapters on information spreading and network search, dif-
ferent network topologies can have significantly different impact on the ease with
which information is found in a network.

As stated in the introduction, it is important to know how to model networks
for several different reasons [5]. We must be able to analyze the enemy’s social
and organizational structures as well as their communication networks. We must
also be able to model the interaction network that will emerge when our comman-
ders and operators communicate with each other. Not all of this communication
will emanate from the hierarchical structure of the task-force: if two people know
each other, they will most likely communicate (by phone, email, or instant mes-
saging) even if they are not supposed to. Instead of banning such communication,
the network-based defence system needs to exploit it and use it in order to achieve
synchronization and fast information spreading. In order to do this as well as pos-
sible, it is necessary to model and simulate the emerging networks, using, e.g., the
models for search in social networks described in chapter 3

This report presented a brief survey of the field of complex networks and infor-
mation spreading. As stated in the introduction, it is far from complete. We hope
that it can serve as a starting point for researchers interested in further explorations
of the area.
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