
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are
research, method and technology development, as well as studies conducted in the interests of Swedish defence and the safety and
security of society. The organisation employs approximately 1000 personnel of whom about 800 are scientists. This makes FOI Sweden’s
largest research institute. FOI gives its customers access to leading-edge expertise in a large number of fields such as security policy
studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Refinement and realization of
security assessment methods

Jonas Hallberg, Johan Bengtsson, Richard Andersson

FOI-R--2387--SE Scientific report	 Command and Control Systems	

ISSN 1650-1942 December 2007

FOI
Swedish Defence Research Agency	 Phone: +46 13 37 80 00	 www.foi.se	
Command and Control Systems	 Fax: +46 13 37 81 00
P.O. Box 1165
SE-581 11 Linköping

Jonas Hallberg, Johan Bengtsson,
Richard Andersson

Refinement and realization of
security assessment methods

FOI-R--2387--SE

Titel Förfining och förverkligande av metod och process-
modell för IT-säkerhetsvärdering

Title Refinement and realization of security assessment
method and process model

Rapportnr/Report no FOI-R--2387--SE

Rapporttyp
Report Type

Vetenskaplig rapport
Scientific report

Utgivningsår/Year 2007

Antal sidor/Pages 96 p

ISSN ISSN 1650-1942

Kund/Customer Försvarsmakten

Forskningsområde
Programme area

7. Ledning med MSI
7. C4I

Delområde
Subcategory

71 Ledning
71 Command, Control, Communications, Computers,
Intelligence

Projektnr/Project no E7046

Godkänd av/Approved by Martin Rantzer

Totalförsvarets Forskningsinstitut FOI

Avdelningen för Ledningssystem

Box 1165

581 11 Linköping

 FOI-R--2387--SE

 3

Abstract
There are risks associated with information technology, IT, that may substan-
tially decrease the potential benefits. Thus, to maximize the utility of IT, possible
security issues of information systems should be carefully considered and miti-
gated. To be able to keep security under control, its assessment is important.
However, since security is an abstract, subjective, non-tangible property, prop-
erly assessing the security of non-trivial systems is hard and, currently, there are
no methods for efficient, reliable, and valid security assessments. Thus, it is im-
portant to extend previous efforts in order to enable the design of efficacious
methods.

The results presented in this report include:

• improvements and extensions of an existing method,
• a software environment for the implementation of methods,
• the implementation of a software tool for an existing method, and
• a novel method implementing a process model for security assessment.

Keywords: Networked information systems, IT security, security assessment,

security metrics

FOI-R--2387--SE

 4

Sammanfattning
Användning av informationsteknik, IT, medför risker som kan medföra att stora delar av dess
fördelar elimineras. Därmed kräver en maximering av nyttan att eventuella säkerhetsproblem
beaktas och hanteras. För att ha kontroll på IT-säkerheten är det av vikt att kunna värdera
säkerhetsnivåer i system. Då säkerhet är en abstrakt, subjektiv, ogripbar egenskap är det svårt
att värdera denna och för närvarande finns det inga effektiva metoder som ger pålitliga resul-
tat. Därmed är det viktigt att bygga vidare på redan presenterade resultat för att möjliggöra
utveckling av effektiva metoder.

Resultaten som presenteras i denna rapport inkluderar:

• förbättringar och utvidgningar av befintlig metod,
• en mjukvarumiljö för realisering av metoder,
• en realisering av en befintlig metod samt
• en ny metod som realiserar en processmodell för säkerhetsvärdering.

Nyckelord: Informationssystem, IT-säkerhet, säkerhetsvärdering, säkerhetsmetriker

FOI-R--2387--SE

Contents
1 Introduction 7
1.1 Motivation ..7
1.2 Problem Formulation ...7
1.3 Contributions ...8
1.4 Report Layout..8

2 Background 9
2.1 IT Security ...9
2.2 IT Security Assessment...9
2.3 The eXtended Method for Assessment of System Security............14
2.4 Bayesian networks ..21

3 Development of the XMASS 22
3.1 Relation Profiles ..22
3.2 Network of Entities ..23
3.3 Improvements of Calculations...24

4 Creating Profile Templates 27
4.1 Creating a Security Profile Template ..27
4.2 Creating a Filter Profile Template ...32
4.3 Reflections on Results...34

5 Development of Assessment Tool Environment and
Assessment Tool 36

5.1 Design ...36
5.2 Structure Overview..39
5.3 Plugin Handling ...41
5.4 Common Library..44
5.5 Project Handling ..44
5.6 Requirements Handling...46

5

FOI-R--2387--SE

 6

5.7 DbSQLite... 48
5.8 The XMASS Tool Plugin ... 52

6 Implementation of the Process Model for Security
Assessment 56

6.1 Security Assessment Method ... 56
6.2 Example .. 62

7 Conclusions 72

Bibliography 74

Appendix A – The KSF 77

Appendix B – Security Profile Template Data 88

Appendix C – Filter Profile Template Data 94

 FOI-R--2387--SE

7

1 Introduction
The use of information technology (IT) has the potential to increase the effi-
ciency of individuals as well as organizations. However, there are risks associ-
ated with IT which may alleviate the benefits and even cause substantial damage.
Thus, it is essential to be in control of all the security issues potentially originat-
ing from the use of information systems. This is a growing challenge because of
the ever increasing complexity of information systems. The goal for individuals
and organizations alike is adequate information security, but as the importance of
IT in business increases, IT security becomes more important. This report aims at
improving the ability to assess the IT security of information systems.

1.1 Motivation
Unfortunately, there are currently no methods for efficient, reliable, and valid
security assessments (ACSAC, 2002; Vaughn et al, 2003; Seddigh et al, 2004;
Geer, 2006; Hallberg et al, 2006). To a large extent this stems from the fact that
security is an abstract, subjective, non-tangible property. This results in:

• difficulties to decide what is actually meant with security,
• the belief in secure as an achievable, ever-lasting property of informa-

tion systems,
• security not being possible to measure, instead other system properties

and effects have to be measured in order to enable estimations of secu-
rity levels, and

• difficulties to interpret the meaning of measured security-relevant sys-
tem properties and effects.

Consequently, security is difficult to assess. However, the dependence in infor-
mation systems makes it important. Thus, the alleviation of these problems is the
motivation for the work presented in this report.

1.2 Problem Formulation
To perform efficacious security assessments answering the needs of the system
users, administrators, managers, and owners is difficult. Thus, it is important to:

• extend previous efforts regarding security assessment, in order to make
academic results more concrete, and enable the design of efficacious
methods and tools,

• implement proposed methods as software tools to enable their evalua-
tion,

FOI-R--2387--SE

 8

• provide environments for the evaluation and comparison of security as-
sessment tools and examples illustrating how proposed methods can be
used, and

• design novel methods addressing the needs of security assessment.

1.3 Contributions
The results presented in this report contribute to the area of security assessment
through:

• improvements of the eXtended Method for Assessment of System Secu-
rity, XMASS,

• the introduction of security and filter profiles based on the requirements
on security functions (sw. Krav på säkerhetsfunktioner, KSF) formulated
by the Swedish Armed Forces (2004),

• the introduction of an environment for the implementation of security
assessment methods,

• the implementation of a software tool realizing the XMASS, and
• the use of Bayesian networks to illustrate the use of a process model for

security assessment.

1.4 Report Layout
In chapter 2, the areas of IT security and security assessment are presented to-
gether with the process model for security assessment, the eXtended Method for
Assessment of System Security (XMASS), and, finally, the concept of Bayesian
networks. In chapter 3, improvements of XMASS are introduced. In chapter 4,
security and filter profiles designed according to XMASS are introduced. In
chapter 5, a software environment for security assessment tools and a tool im-
plementing the XMASS are presented. In chapter 6, a security assessment
method based on the process model for security assessment is introduced. In
chapter 7, finally, the presented results are discussed.

 FOI-R--2387--SE

9

2 Background
In this chapter, the use of the term IT security in this report is stated. Further, the
area of IT security assessment is discussed. Thereafter, the process model for
security assessment and the concept of Bayesian networks are presented.

2.1 IT Security
There are many excellent resources describing various aspects of IT security, for
instance, (Anderson, 2001; Bishop, 2003; Gollmann, 2006). The term IT secu-
rity, also referred to as computer security, is defined in many different ways de-
pending on the context it appears in. It is therefore hard to give an explicit defini-
tion, which is suitable for all contexts. Referring to computer security, Gollmann
(2006) states that there are several possible definitions, such as, “deals with the
prevention and detection of unauthorized actions by users of a computer system.“

In this report, the term security is used in the meaning of IT security, which con-
sists of upholding the characteristics of confidentiality, integrity, and availability
of IT systems and the data processed, transmitted, and stored in these systems.

2.2 IT Security Assessment
Security assessments are performed in order to establish how well systems meet
specified security criteria. The aim of security assessments is to produce knowl-
edge. This knowledge can be used to improve the security levels of the assessed
systems. Perfect security is always the ultimate goal for a system, but it cannot be
achieved. Security assessments can provide insight into the security posture of
systems. However, it cannot guarantee any level of security, though it can pro-
vide a basis for confidence in the assessed system (Bishop, 2003).

Although IT security deals with technical elements, comprehensive security as-
sessments need to consider other aspects of the assessed systems. Three such
aspects are the organizational, human, and contextual aspects of systems. It is
essential to point out that the inclusion of these aspects highlights the need to
consider their influence on the IT security levels of systems. However, IT secu-
rity assessment does not include the assessment of the security of organizations,
persons, and contexts themselves.

Hallberg et al (2005) divide the task of performing a security assessment into the
two subtasks securability assessment and security level assessment. Securability

FOI-R--2387--SE

is described as “a characteristic of the design of an information system, including
technical, organizational, and individual aspects, aiming at an estimate of the
level to which systems can be secured during operation. Thus, the securability is
constant as long as the design is not changed.” On the contrary, the consideration
of operational aspects of the system is required for deciding the security level.
Thereby, “security levels change with the design, configuration, and state of
systems and system entities.” Hallberg et al (2005) suggests security value as the
comprehensive term including both securability and security level.

Gacic (2006) presents a structure of two main categories and five basic ap-
proaches to security assessment, illustrated in Figure 1. This structure is a devel-
opment of the four classes of approaches to security assessment presented by
Hallberg et al (2004). The first of the two main categories, consequences, con-
sists of the two approaches observation and test. For these approaches, the sys-
tem is viewed as a black box, with or without stimulation, when drawing conclu-
sions based on the behavior of the system. The second main category, character-
istics, consists of the three approaches component, system-wide, and structural
characteristics. For these approaches it is assumed that knowledge of the security
of systems can be gained by the knowledge of the internals of systems.

Figure 1: Basic approaches to security assessment.

2.2.1 Security Metrics
Security metrics is a central concept of security assessment. There is a multitude
of different interpretations of the term security metrics. In this report, the defini-
tion by Hallberg et al (2004) is adopted:

 10

 FOI-R--2387--SE

11

A security metric contains three main parts: a magnitude, a scale and an
interpretation. The security values of systems are measured according to a
specified magnitude and related to a scale. The interpretation prescribes
the meaning of obtained security values.

The presence of magnitude and scale means there should be values that can be
measured or computed. Moreover, if these values correspond to proper security
metrics, they must be possible to interpret. However, the combination of measur-
ability and computability on one hand and interpretability on the other hand is
difficult task and a central issue to be solved for enabling efficacious security
assessments.

2.2.2 Process Model for Security Assessment
Security is frequently assessed. For example, when a password is selected and,
explicitly or implicitly, judged to provide adequate security, a security assess-
ment has taken place. More extensive examples include assessments required to
support the procurement and commissioning of IT systems or components, such
as enterprise resource planning systems and firewalls.

Although frequently performed, most security assessment processes are per-
formed without much regard to which steps are necessary and which steps are
actually performed. Consequently, several of the steps are disregarded or per-
formed implicitly and not documented. To address this problem Hallberg et al
(2007) present a model for security assessment processes. The process model
includes the six activities (Figure 2):

1. analyze needs regarding security assessment,
2. establish relevant security characteristics,
3. connect measurable security characteristics and effects to the relevant

security characteristics,
4. measure selected security characteristics and effects,
5. compute security values, and
6. interpret security values.

FOI-R--2387--SE

User needs

Relevant IT security
characteristics

System characteristics
and effects

1

2

34

5

6

Computed security
values

Measured security
values

1. Analyze needs

2. Establish relevant
characteristics

3. Connect to system
characteristics and
effects

4. Measure

5. Compute

6. Interpret

Figure 2: The process model for security assessment.

2.2.2.1 Analyze Needs Regarding Security Assessment
To be able to produce viable assessment results, the needs of the end users have
to be established. To produce assessment results without a clear understanding of
the connection to the end user needs is inefficient and often counterproductive.
Thus, the needs motivating an assessment have to be identified, documented, and
agreed on.

2.2.2.2 Establish Relevant Security Characteristics
In order to fulfill the identified needs, the characteristics of the system, whose
assessment will support the end user, have to be defined. These characteristics
are referred to as the relevant security characteristics, stressing their importance

 12

 FOI-R--2387--SE

13

for the end users. The definition of the relevant security characteristics results in
a context-aware definition of IT security, since the characteristics specify what,
considering the current system and specific situation of the end user, is important
regarding security. Thus, the problems associated with the lack of common and,
considering security assessment, useful definitions of IT security are alleviated.

The activity includes:

1. the evaluation of provided assessment needs, in order to assure their use-
fulness as a base for security assessments,

2. the specification of relevant security characteristics,
3. the specification of system scope, and
4. the specification of the relations between the security characteristics and

the assessment needs.

2.2.2.3 Connect Measurable Security Characteristics and Effects to
the Relevant Security Characteristics

To enable the actual assessment, the relevant IT security characteristics have to
be measurable or broken down into measurable system characteristics and ef-
fects. When a relevant characteristic is not measurable, the definition of a com-
putational model is required. The computational model describes how the meas-
urable values can be aggregated into high-level security values corresponding to
the relevant IT security characteristic. This will result in a set of security metrics
corresponding to the relevant security characteristics.

This activity includes:

1. system modeling regarding system entities,
2. identification of system characteristics and effects,
3. system modeling regarding measurable system characteristics and ef-

fects, and
4. specification of the computations model.

2.2.2.4 Measure Selected Security Characteristics and Effects
When the set of measurable system characteristics and effects have been estab-
lished, they have to be measured. This activity includes:

1. scrutinizing the system model in order to assure the presence of the in-
formation required for performing the measurement,

2. association of values to the measurable security characteristics and ef-
fects, and

3. validation of the accuracy of the measured values.

FOI-R--2387--SE

 14

If the precision is insufficient, the measurement process has to be improved or
the computations model has to be revised.

2.2.2.5 Compute Security Values
The high-level security values corresponding to the relevant security characteris-
tics are computed from the measured security values using the computational
model. This activity includes:

1. the implementation of the computations model and
2. the actual computation of the security values corresponding to the rele-

vant security characteristics.

2.2.2.6 Interpret Security Values
For the end users to gain any information from the security assessments, the
computed high-level security values, corresponding to the relevant security char-
acteristics, have to be interpreted. The success of this activity depends on well
specified relations between the security values and the relevant security charac-
teristics. This activity includes:

1. selection of schema for the interpretation of security values, depending
on the correspondence between the security metrics and the needs of the
end users and

2. the establishment of the interpretations of security values.

2.3 The eXtended Method for Assessment of
System Security

The eXtended Method for Assessment of System Security, XMASS, was intro-
duced by Hallberg et al (2006). The aim of XMASS is to support security as-
sessments for networked information systems. The assessments are based on
available knowledge of the security characteristics of the system entities and
their relations. The system entities are divided into traffic generators and traffic
mediators. Traffic generators can for example represent computers, while traffic
mediators can represent hubs and firewalls. The important security aspects of
system entities are described by security profiles. A security profile is vector
with security values corresponding to security features of the system entities.
Filter profiles are associated to the traffic mediators in order to capture their fil-
tering capabilities. The main result of the method is a set of system-dependent
security profiles (SSP:s), one for each traffic generator in the system.

 FOI-R--2387--SE

The system modeling is supported by the possibility to create profiles for stan-
dardized system entities and their relations. There are no explicit limitations in
the method disabling the inclusions of different system aspects. The computation
of higher-level security values is controlled by the computations model, which
can be specified by the user, but is tied to the structure of the system. Thus, the
computation of aggregated security values, not just the input, depends on the
system models. The assessment results are presented at various levels, for indi-
vidual entities, for entities in a system context, and for the system as a whole. In
the following subsections, the parts of the XMASS relevant for this report are
presented. For a more detailed description of the XMASS, see (Hallberg et al,
2006). The central concepts of XMASS are illustrated in Figure 3.

Input XMASS Output

System-
level

security
values

System-
dependent

security
profiles
(SSP:s)

Filter
profile

templates

Computation
models for
relations

Entity
security
profiles

 Requirement
fulfillment values

Security requirements

Relative importance of
security requirements

Security features

Filter capabilty values

Filter functional
requirements (FFR)
Relative importance

of FFR:s

Requirements on
inter-entity relations

Security features
Security
profile

templates

Traffic
mediator

filter profiles

Logical
relations

Physical
relations

Figure 3: The central concepts of XMASS and their relations.

Table 1 includes the central terms used in the specification of the computations
model of XMASS (Hallberg et al, 2006).

Table 1: Notation used for the presentation of security values computation.

Term Description
SPe The security profile of entity e
N The number of security features represented by the security profiles
SSPe The system-dependent security profile of entity e

15

FOI-R--2387--SE

 16

Term Description
NSPe,nb The neighbor-dependent security profile of entity e considering

neighbor nb
f The function used to calculate the effects on entities caused by

neighbors
FPtm The filter profile of traffic mediator tm
EFPtm The effective filter profile of traffic mediator tm
ESPnb The equivalent security profile of neighbor nb considering the security

profile, SPnb, of nb and the effective filter profiles, EFPs, of intermediate
traffic mediators

RSPnb The resulting security profile of the neighbor nb combining the effects
of several equivalent security profiles, ESPs, resulting from alternative
paths

LSPe,lre The logical security profile describing the effects of the logically related
entity lre on the system-dependent security profile of entity e

ge,lre The function used to calculate the effects of a logical relation between
the entities e and lre

h The system function used to calculate the system-dependent security
profile of entities based on the corresponding security profile, SP, the
neighbor-dependent security profiles, NSPs, and logical security pro-
files, LSPs

2.3.1 Entity Security Profiles
While being an important intermediate result in the XMASS, the entity security
profiles constitute a base for computation of the system dependent security pro-
files (SSP:s). The entity security profiles were taken as input in the MASS
(Andersson & Hallberg, 2006), but in the XMASS they are computed through the
following steps:

1. decide on a set of security features to be represented by the security pro-
file,

2. for each security feature, decide on a set of entity security requirements,
which describe what needs to be fulfilled in order to fulfill the security
feature,

3. divide the entity security requirements, for each security feature, into the
sets of fundamental and important security requirements,

4. prioritize the security requirements pair-wise in the sets of important se-
curity requirements based on their relative importance,

 FOI-R--2387--SE

5. calculate the security profile template based on the data produced in step
1 to 4, and

6. calculate the entity security profiles by using the entity security profile
template and the data on fulfillment of the entity security requirements.

As a result, the XMASS have to be provided with the following input:

1. a set of security features,
2. sets of fundamental and important entity security requirements for each

security feature,
3. the relative importance among each pair of requirements in each of the

sets of important security requirements, and
4. a parameter specifying the maximum influence of the important security

requirements on the security values included in the security profiles.

The modification of the security profile template formulas presented in section
3.3.1 eliminates the need for the user to provide the parameter deciding the
maximum influence of the important security requirements. The content of the
input is not dictated by the XMASS, but it is vital for the reliability and validity
of the assessment results.

2.3.1.1 Security Profile Templates
In the XMASS, a security profile template is to be seen as a set of formulas used
to compute the security values in the security profiles. The template thereby con-
sists of one formula per element in the security profile. The XMASS use the
method for criteria weighting from the Analytic Hierarchy Process, AHP (Saaty,
1994), in order to decide the relative importance among the important security
requirements. Entities having unfulfilled fundamental requirements should not be
awarded a security value larger than zero, which is the reason for excluding the
fundamental security requirements from the prioritization. To signify the weight
of fundamental requirements, their fulfillment values are instead multiplied with
the result of the prioritization of the important security requirements.

For each security feature, k, the set of security requirements is divided into one
set of fundamental and one set of important security requirements, RFk and RIk
respectively. For each security feature the relative importance between each pair
in the set of important requirements, rii, rij∈ RIk, is decided according to Table 2
by assigning weights, aij. The weights result in matrices, Ak = {aij}, which de-
scribes the relative importance of the pairs of important security requirements,
RIk of the security feature k.

17

FOI-R--2387--SE

A requirement, rii, considered more important than another requirement, rij, re-
sults in a corresponding weight, aij, with a value larger than 1. Similarly a weight
with a value less than 1 express less importance of the former requirement com-
pared to the latter, while a value of exactly 1 expresses equal importance between
the pair of requirements. Values less than 1 are constructed by reversing the com-
parison, that is, comparing the latter with the former requirement, and using the
reciprocal value, aij = 1/ aji.

The prioritization of the important requirements, RIk, of security feature k, is
based on the specified weights and decided by calculating and scaling the eigen-
vector, ek = {eki}, which corresponds to the largest eigenvalue, λmax, of the matrix
Ak. The eigenvector is scaled so that ∑i eki = 1. For matrices with properties like
those that Ak has, it can be shown that λmax will be slightly larger than the dimen-
sion of the matrix and the rest of the eigenvalues will be close to zero (Forman &
Selly, 2002).

The values of the security profiles intend to reflect the qualities of the entities
regarding the corresponding security feature. The fundamental requirements of
each security feature should be decisive for the respective security value, which
is why the degree of fulfillment for each of these requirements are included as a
factor (as in multiplication) in the security profile template. Fulfillment degrees
for the important requirements are included as a weighted sum. A lowest possible
value for the factor representing the important requirements is included in the
template to avoid cases where no fulfilled important requirements result in a
security value of 0. As a consequence, the weighted sum, which represents the
important requirements, is scaled to limit the factor to a maximum value of 1.
The template for the scalar security value, SPk, corresponding to security feature,
k, is presented as Eq. 2.1.1 in (Hallberg et al, 2006), that is,

() () () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⋅⋅−+⋅⎥⎦

⎤
⎢⎣
⎡∏= ∑

==

n

i
kiij

m

j
k erirfvvvrfrfvSP

11
1

where rfv(x) returns the fulfillment value, [0, 1], of requirement x, and v, 0 < v ≤
1, is a parameter deciding the influence of the important security requirements.

 18

 FOI-R--2387--SE

19

Table 2: The weights used when deciding the relative importance of requirements adapted from
Saaty (1994)

Requirement weight Meaning
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance

2.3.1.2 Calculation of Security Profile Values
After specifying the security profile template, the entity security profiles are
calculated by inserting the fulfillment values for each included security require-
ment. The fulfillment values state how well each security requirement is met by
the considered entity. A fulfillment value of 1 represents complete fulfillment of
the corresponding requirement, whereas a value of 0 denotes non-compliance.
Partial fulfillment is expressed by a fulfillment value between 0 and 1.

2.3.2 Traffic Mediator Filter Profiles
Filter profiles are needed during the computation of the system dependent secu-
rity profiles (SSP:s) to assess how the filtering capabilities of the traffic media-
tors affect the security. In the XMASS, the filter profiles are computed using the
following steps (Hallberg et al, 2006):

1. decide a set of requirements reflecting the needed filtering functionality,
2. for each security feature, prioritize each pair of filter functional require-

ments regarding their relative importance,
3. a filter profile template is calculated based on the data produced in step 1

and 2, and
4. calculate the filter profiles using the filter profile template and data on

the fulfillment of filter functional requirements.

2.3.2.1 Filter Profile Templates
Filter profile templates are used to map the filtering capabilities of traffic media-
tors to the filtering profiles. The filtering profiles are used to compute the influ-
ence of traffic mediators during the computations of the system-dependent secu-
rity profiles (SSP:s). To decide the filtering profile template, the filtering func-
tionality of the network entities is characterized. Thereafter, the different catego-

FOI-R--2387--SE

ries of filtering functionality are prioritized regarding their relative importance by
using the process for criteria weighting in the AHP (Saaty, 1994).

Traffic mediators are unfortunately unable to filter all malicious traffic. This
inability is modeled by including an influence factor, Sk ∈ [0, 1], in the filter
profile template. Thereby the maximum value of each element, k, in the filter
profile is Sk. The traffic mediators are characterized in order to assess their influ-
ence between traffic generators in a system. Basically this is done by creating a
set of requirements on filtering functionality. The set of filter functional require-
ments, FFR, is used to assess the filtering capability of all traffic mediators.

The assessment of filter functionality can be based on traffic mediator types,
specific traffic mediators, or specific traffic mediator configurations reflecting
the amount of system data available. The result of the assessment is a vector with
elements in [0, 1], which corresponds to each filter functional requirement,
ffri∈FFR. The elements in this vector are referred to as the filtering capability
values, fcvi∈[0, 1].

The weights of the filter functional values in the filter profile template is decided
using the process of criteria weighting from AHP in the same way as the security
profile template, but with the exception that filter functional requirements are
prioritized instead of security requirements. Moreover, the same set of filter
functional requirements is used for all the filter profile values. Hence, for each
filter profile value, FPk, the filter functional requirements, ffri, ffrj ∈ FFR, are
pair-wise prioritized according to their relative importance, resulting in weights,
bij. The weights result in matrices, Bk = {bij}. Subsequently, the prioritization is
decided by calculating and scaling the eigenvector, ek = {eki}, which corresponds
to the largest eigenvalue, λmax, of Bk. The scaling of the eigenvector is done so
that ∑i eki = 1.

Filter profiles are vectors [0, 1]N, where the values are calculated as

()i∑
=

⋅⋅=
N

i
kikk fcveSFP

1

where Sk is the filtering influence factor, ek is a vector containing the weights of
the filter functional requirements for the filter profile value k, and fcvi are the
filtering capability values of the traffic mediator.

 20

 FOI-R--2387--SE

2.3.2.2 Calculation of Filter Profile Values
The first step in calculating the filter profile values is to decide the filtering capa-
bility values, fcvi ∈ [0, 1] corresponding to each filter profile value. If there are
N filter profile values and M filter functional requirements, there are N · M filter-
ing capability values. The filtering capability values depend on the configuration
as well as the functionality and operation of the assessed traffic mediator. How-
ever, in practice it may be challenging to acquire this data. Thus, the capability
values of the traffic mediators have to be modeled. The second, and final, step of
the filter profile computation is performed by inserting the filtering capability
values into the filter profile template.

2.4 Bayesian networks
Bayesian networks, or belief networks, are used to represent knowledge in areas
where uncertainty is present. Bayesian networks consist of directed acyclic
graphs, DAGs, and can be described as probability models representing a set of
variables and their causal influences. All nodes in the DAGs are affected by their
parents only, that is, the nodes which are connected to the current node with a
forward edge. When discrete random variables are used, tables can be used to
specify the distribution of the values of a node for all combinations of the values
of the parents of the node. The structuring of the DAGs is often an efficient
mechanism to capture human knowledge, while measurement data is included in
the specification of the parameters. (Ben-Gal, 2007)

Bayesian networks support the aggregation of all available knowledge and data
related to a problem under study, even if parts of it are uncertain or a combina-
tion of objectively and subjectively measured probabilities. The models can
straightforwardly be altered according to current observations. The possibility to
include uncertain data and the transparency of the computations qualify Bayesian
networks as a viable approach to security assessments, especially when starting
from relevant security characteristics of systems, as will be explored in chapter 6.

21

FOI-R--2387--SE

 22

3 Development of the XMASS
During 2007, the development of the XMASS has resulted in the addition of
relation profiles and the entity quantity parameter (Bengtsson & Brinck, 2007) as
well as improvements of the computations model.

3.1 Relation Profiles
The XMASS uses profiles to model both security values and filtering values of
entities. A profile is a grouping of related values, which can be used by one or
more entities. Thereby, an alteration of values in a profile affects all entities de-
scribed with the specific profile. A structure like this facilitates the task of
switching between different sets of values.

To enhance the consistency of the XMASS, two additional kinds of profiles are
introduced: the physical relation profile and the logical relation profile
(Bengtsson & Brinck, 2007). The introduction of these two kinds of profiles does
not alter the method itself, but it results in a grouping of related values, which in
turn results in a practical way to switch relation related values. This is illustrated
in the software implementation of the XMASS, called SANTA, where the intro-
duction of these profiles results in better possibilities to evaluate the method (see
section 5.8).

Hallberg et al (2006) implicitly describes both physical and logical relation pro-
files, but never refer to them as profiles. The software implementation of the
MASS, the predecessor of the XMASS, called ROME2 contains similar group-
ings for logical relations, but neither these are referred to as profiles.

A relation profile, whether physical or logical, consists of a matrix of weights
and a matrix of functions. Both matrices are used in order to model the relation
between entities and thereby capture how the relation affects the security values
of the corresponding entities.

The physical relation profile is selected as a system-wide setting and, thereby,
affects all physical relations in a system. The logical relation profile, on the other
hand, is selected per relation, which means every logical relation in a system can
use different profiles. Thereby, it is possible to model different kinds of logical
relations, such as those resulting from Virtual Private Networks or the relation
between a workstation and a central server managing the anti-virus software.

 FOI-R--2387--SE

23

3.2 Network of Entities
Hallberg et al (2006) describes a traffic generator as an entity producing traffic,
for example, a computer, a server, or a connected network. To facilitate the mod-
eling of connected networks, Bengtsson & Brinck (2007) extended the represen-
tation of the traffic generators with a quantity value, which specifies how many
equivalent entities the traffic generator represents. In this way, several equivalent
entities can be represented by one traffic generator having the number of entities
as quantity and the same security profile as if it would have been a single entity.
Thereby, it is not necessary to add separate entities in the modeling phase to
model a stack of equivalent entities or a public network.

There is a difference between subnets of the modeled systems and public net-
works connected to the modeled systems in that the former are included in the
assessed system, while the latter are external and only their influence on the as-
sessed system should be accounted for. To handle this difference, the possibility
to set the weight of the traffic generators is used. That is, since the system-
dependent security profiles, SSP:s, of subnets should be included in the computa-
tion of system-wide security values, the weight is set to a value larger than zero.
On the other hand, when public networks are modeled, the weight of the entity
should be set to zero. As a result of introducing a quantity value, all traffic gen-
erators having a quantity larger than one are considered to be a network of enti-
ties.

Besides changing the representation of a traffic generator, the extension results in
changes in the calculations. When calculating the SSP, it has to be taken into
consideration that a network of entities, having a quantity of n, represents n
equivalent traffic generators. Thereby the network of entities should result in n
equivalent neighbor-dependent security profiles (NSPs), which specifies the
influence of neighbor entities, in the calculation of the SSP for a neighboring
entity.

While calculating the SSP for a network of entities itself, internal effects have to
be considered. A network of entities, having a quantity of n, is seen as n traffic
generators connected through a hub, which have no filtering capabilities. Conse-
quently, the security profile of the network of entities is added n-1 times into the
calculation of the SSP of the network of entities in order to take internal effects
into account. Thus, the SSP will be equivalent to the SSP:s of the traffic genera-
tors if the network is expanded into n traffic generators connected through a hub.

FOI-R--2387--SE

3.3 Improvements of Calculations
In this section, the computations model included in the XMASS is improved
regarding the calculation of security profile templates and the combination of
multiple paths between traffic generators.

3.3.1 Calculation of Security Profile Templates
The calculation of security values, that is, the structure of the security profile
templates, has been updated with regard to the weight of the important security
requirements. Previously, the formula for the calculation of the security values
was defined as

() () () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⋅⋅−+⋅⎥⎦

⎤
⎢⎣
⎡∏= ∑

==

n

i
kiij

m

j
k erirfvvvrfrfvSP

11
1

where the weight was specified as v, 0 < v ≤ 1, (Hallberg et al, 2006). v is in-
cluded in the formula since no fulfilled important security requirements should
not yield the result zero. However, there is a drawback of introducing this
scheme. If there are no important security requirements, the maximum value of
SPk will be v, not 1. Moreover, v is global for the whole security profile template.
Thus, it is not possible to specify different values of v for the specific security
values, SPk, of the security profiles.

To address these two issues, the influence of the important security requirements
should depend on the relation between the number of fundamental and important
security requirements. Consequently, the weight of the important security re-
quirements (1 – v), corresponding to a specific security feature, is defined as

nm
n
+

v =−1

where n is the number of important requirements and m is the number of funda-
mental requirements. Consequently, v becomes

n+m
m

nm
nv =
+

−=1

 24

 FOI-R--2387--SE

Hence, if there are no important requirements, n = 0, their weight will become
zero, since

0,01 >=
+

=− m
nm

nv

On the other hand, if there are no fundamental requirements, m = 0, the important
requirements get a weight of 1 in the calculations, since

0,11 >=
+

=− n
nm

nv

Thus, the formulas for the calculation of the security values to be included in the
security profiles, that is, the security profile template, becomes

() () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

+
+

+
⋅⎥

⎦

⎤
⎢
⎣

⎡
= ∑∏

==

kk n

i
kiki

kk

k

kk

k
kj

m

j
k erirfv

nm
n

nm
mrfrfvSP

11

 (Eq. 1)1

where nk is the number of important requirements and mk is the number of fun-
damental requirements for security feature k. Furthermore, the formula has been
updated to clarify that the sets of important and fundamental security require-
ments are specified for each security feature, for example rfkj refers to the fun-
damental requirement j regarding security feature k.

3.3.2 Calculation of Filter Profile Templates
The equation of the filter profile template has been redefined to clarify that the
filtering capability values are specified for each security feature, k. Thus, the
filter profile template is defined as

()()∑
=

⋅⋅=
N

i
ikkikk ffrfcveSFP

1

1 If there are no fundamental requirements, m = 0, the product of a series of terms in Eq. 1 is the

empty (nullary) product, which has a value of 1.

25

FOI-R--2387--SE

where Sk is the filtering influence factor, ek is a vector containing the weights of
the filter functional requirements for the filter profile value k, and fcvk(x) returns
the filtering capability value, [0, 1], of requirement x regarding security feature k.

3.3.3 Combination of Multiple Paths between Traffic Generators
The calculation of the resulting security profile, RSP, has been redefined. That is,
how the presence of several paths between traffic mediators is regarded in the
calculations of the SSP:s. Previously, it has been implicitly defined as

 26

jnb
i

,
n

j

nb
i ESPRSP

1=
∏=

where n is the number of paths between the two entities and ESPnb, j is the
equivalent security profile of the neighbor nb via path j (Hallberg et al, 2006). By
using this definition of the RSPnb, two paths resulting in the same ESPnb, as
shown in Figure 4, would result in RSPi

nb = (ESPi
nb)2, which is not reasonable.

Therefore the calculation of the RSP has been redefined to.

()nnb
i

nb
i

nb
i ESPESPRSP ,1, ,...,min=

Thereby the resulting security profile, RSPnb, is the element-wise minimum of
the equivalent security profiles, ESPs, of the paths.

ESPnb,2

ESPnb,1

Figure 4: An example of multiple paths.

 FOI-R--2387--SE

27

4 Creating Profile Templates
This chapter describes the design of security profile templates and filter profile
templates for the XMASS. These tasks are vital in order to create an instantiation
of the XMASS that can be used for system security assessment. The design proc-
esses are based on the methodology included in XMASS (Hallberg et al, 2006).

4.1 Creating a Security Profile Template
Security profile templates are created according to the first five of the six steps
presented in section 0. The sixth step is to use the security profile template to
calculate the entity security profile and is therefore disregarded in this section.
The following design example of a security profile template use the security
requirements specified by the Swedish Armed Forces (2004) for information
systems, referred to as the KSF (Sw. Krav på SäkerhetsFunktioner). The steps 2
to 5, in section 0, are performed for one of the selected security features.

4.1.1 Step 1 – Decide on a Set of Security Features
The first step is to decide on the set of security features to use. The KSF defines a
set of seven different security functions, but the functions addressing compromis-
ing emanations (CE) and protection against unauthorized interception are judged
to be outside the scope of the XMASS and are therefore not included. The re-
maining five security functions are used as security features. Hence, the resulting
set consists of five security features, which are specified in Table 3.

Table 3: The selected set of security features.

Security Features
Access Control
Security Logging
Protection against Intrusions
Intrusion Detection
Protection against Malware

The design of security profile templates based on the selected set of security
features requires five formulas of the form presented in Eq. 1 at the end of sec-
tion 3.3.1 to be designed. In order to decrease the extent of the following steps of
this process, only the template for the security feature Intrusion Detection is cre-
ated.

FOI-R--2387--SE

 28

4.1.2 Step 2 – Decide Security Requirements
For each security feature specified in step 1, a set of security requirements has to
be decided. These security requirements specify what needs to be assessed in
order to decide the security value associated with the specific security feature.
Thus, a set of requirements has to be selected regarding Intrusion Detection. In
the KSF, the security requirements are grouped according to the clearance level
of the system. For the levels restricted, confidential, and secret, the KSF defines
twelve security requirements regarding intrusion detection, which are specified
with a short description in Table 4. For a complete description of each security
requirement, see Appendix A.

Table 4: The selected security requirements for Intrusion Detection.

Requirement ID Short description
ID1 Maintain the security domain, which protects against intrusions

and disturbances.
ID2 Have the possibility to provide for reliable time.
ID3 Only authorized administrators can maintain the security func-

tion.
ID4 Detection of already performed as well as ongoing intrusions.
ID5 Register time and date of each event.
ID6 All registered events can be presented interpretably for author-

ized persons and inspection of the registered events can be
performed.

ID7 Enable tool-based inspection of registered events.
ID8 Trace misuse as well as attempts of misuse endangering secu-

rity.
ID9 No registered events are erased, overwritten or destroyed.
ID10 Conclude, through automatic analysis, whether defined rules

have been violated.
ID11 Ensure that registered events can be analyzed together with

security relevant events.
ID12 The security function for intrusion detection shall resume at a

defined secure state.

4.1.3 Step 3 – Divide the Security Requirements
The set of security requirements of each security feature needs to be divided into
the sets of fundamental and important security requirements. If a security re-

 FOI-R--2387--SE

29

quirement is judged to be of such importance that failure to fulfill it would ruin
the security feature, that is, decrease its security value to zero, then it is a funda-
mental security requirement. The fundamental security requirements thereby
represent all the security requirements that have to be fulfilled and where failure
to fulfill one or more of them results in a security value of zero for that specific
security feature. On the other hand, if the failure to fulfill a specific security re-
quirement will not result in making the security feature worthless, then it is con-
sidered to be only an important security requirement.

A group of nine security experts at FOI was asked to divide the security require-
ments for intrusion detection into groups of fundamental and important security
requirements. The aggregated result of the expert survey is presented in Table 5
and Table 6. The results of the voting are presented in Appendix B.

Table 5: Selected fundamental security requirements.

Fundamental Security Requirements
ID1 Maintain security domain
ID3 Authorized system administration
ID6 Interpretable presentation and possible inspection
ID12 Resume at secure state

Table 6: Selected important security requirements.

Important Security Requirements
ID2 Reliable time
ID4 Detection of intrusion
ID5 Registration of event time and date
ID7 Tool-based inspection
ID8 Trace misuse
ID9 Registered events secure
ID10 Automatic analysis
ID11 Registered and security-relevant event analysis

4.1.4 Step 4 – Prioritize the Security Requirements
The next step is to prioritize the important security requirements according to
their pair-wise relative importance. Seven of the security experts at FOI were

FOI-R--2387--SE

 30

asked to carry out this prioritization. The individual prioritizations were aggre-
gated into the matrix Ak, presented in Table 7. The matrix was assembled by
taking the median of the security expert’s weights for each pair-wise comparison.
The prioritization of each security expert is presented in Appendix B.

Table 7: Table of weights, Ak.

 ID2 ID4 ID5 ID7 ID8 ID9 ID10 ID11

ID2 1 1/3 3 1/3 1/3 1/5 1/3 1/3

ID4 3 1 3 1 1 1/3 1 2

ID5 1/3 1/3 1 1 1/3 1/5 1 1

ID7 3 1 1 1 3 1/3 1 1

ID8 3 1 3 1/3 1 1/3 1 3

ID9 5 3 5 3 3 1 3 3

ID10 3 1 1 1 1 1/3 1 3

ID11 3 1/2 1 1 1/3 1/3 1/3 1

4.1.5 Step 5 – Calculate the Security Profile Template
The fifth and final step of calculating the security profile template is to calculate
the scaled values of the eigenvector corresponding to the maximum eigenvalue
of the matrix Ak, defined in Table 7. The calculations result in the security profile
template described in Table 8.

Table 8: The calculated weights of the important security requirements to be included in the
security profile template for intrusion detection.

Security Requirement Priority
ID2 Reliable time 0.05642708
ID4 Detection of intrusion 0.12638000
ID5 Registration of event time and date 0.06286048

 FOI-R--2387--SE

31

Security Requirement Priority
ID7 Tool-based inspection 0.13170758
ID8 Trace misuse 0.12523142
ID9 Registered events secure 0.29879861
ID10 Automatic analysis 0.12094164
ID11 Registered and security-relevant event analysis 0.07765318

To get a measurement of the consistency of the resulting priorities, a consistency
ratio is calculated, as suggested by Saaty (2004). The consistency ratio, CR, is
calculated as

RI
nCR

⎜
⎝
⎛

−
−

= 1
maxλ n

⎟
⎠
⎞

where λmax is the maximum eigenvalue, n is the dimension of the matrix, and RI
is the random index for the specific matrix dimension. For this example, the di-
mension of the matrix is 8, which gives a random index of 1.40 (Saaty, 2004),
and the maximum eigenvalue is 8.83865523. This results in a consistency ratio of
0.085577. Saaty (2004) recommends a CR not greater than 0.10 in order to have
a consistent decision. The priorities, based on the aggregated matrix, thereby
seem to represent a consistent decision.

The resulting security profile template is thereby

()

()
()
()
()
()
()
()
() ⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+⋅⎥
⎦

⎤
⎢
⎣

⎡
= ∏

=

07765318.0
12094164.0
29879861.0
12523142.0
13170758.0
06286048.0
12638000.0
05642708.0

11
10
9
8
7
5
4
2

3
2

3
1

1

T

j

m

j
ID

IDrfv
IDrfv
IDrfv
IDrfv
IDrfv
IDrfv
IDrfv
IDrfv

rfrfvSP

FOI-R--2387--SE

 32

4.2 Creating a Filter Profile Template
Filter profile templates are created according to the first three steps specified in
section 2.3.2.

4.2.1 Step 1 – Decide a Set of Requirements
The initial step is to decide a set of requirements regarding filter functionality. In
the filter profile templates, the same set of filter functional requirements is used
for all security features. For this example the set of filter functional requirements
suggested by Hallberg et al (2006) is used. The suggested set of filter functional
requirements along with definitions is provided in Table 9.

Table 9: Definitions of the filter functional requirements.

Filter Functional Requirements
Packet filtering (FF1)
An adequate set of rules for the specific traffic mediator has to be defined. This
set has to be applied to each IP packet, which is thereby forwarded or discarded.
Both IP packets from and to the internal network have to be filtered.
Stateful-inspection (FF2)
A state table has to be kept to keep track of each currently established connec-
tion. Incoming traffic to high-numbered ports should only be allowed for packets
that map to an entry in the state table.
Application layer gateway (FF3)
The application layer gateway (proxy server) has to support address and port
translation for application-layer protocols. Moreover, users are authenticated be-
fore application-level connections are established.
Circuit level gateway (FF4)
The circuit level gateway should not permit end-to-end TCP connections. Instead
it should establish one connection each to the inside and outside hosts and relay
the TCP segments between the connections.
Network address translation (FF5)
For outgoing traffic, the addresses of the source hosts should be replaced by the
address of the traffic mediator. Incoming traffic has to be forwarded to the correct
destination.

 FOI-R--2387--SE

33

4.2.2 Step 2 – Prioritize the Requirements
The filter functional requirements are prioritized according to their pair-wise
relative importance regarding the specific security feature. Here, the calculations
are done for a single security feature, the security feature for protection against
intrusions. Consequently, the group of security experts at FOI was asked to judge
the importance of these requirements regarding protection against intrusions. The
aggregated result, the matrix Bk, is presented in Table 10. Bk was assembled by
taking the median of the security experts’ judgments for each pair-wise compari-
son. The prioritization of each security expert is presented in Appendix C.

Table 10: The median of the security expert’s judgments for each pair-wise comparison, Bk.

 FF1 FF2 FF3 FF4 FF5

FF1 1 1/3 1/2 3 3

FF2 3 1 3 3 3

FF3 2 1/3 1 3 1

FF4 1/3 1/3 1/3 1 1/3

FF5 1/3 1/3 1 3 1

4.2.3 Step 3 – Calculate the Filter Profile Template
The final step of calculating a filter profile template is to calculate the scaled
values of the eigenvector corresponding to the maximum eigenvalue for matrix
Bk, specified in Table 10. The calculated weights of the filter functional values
are presented in Table 11. The consistency ratio is calculated in the same way as
for the prioritization of the important security requirements (section 4.1), but
with a dimension, n, of 5 and a random index, RI, of 1.11. The result is a consis-
tency ratio of 0.095487966. Thereby, it is reasonable to assume that the decision
is consistent (Saaty, 2004).

FOI-R--2387--SE

Table 11: The calculated filter profile template.

Filter Functional Requirement Priority
FF1 0.19290973
FF2 0.40409665
FF3 0.19610141
FF4 0.07006776
FF5 0.13682445

The resulting filter profile template is thereby

()
()
()
()
()⎟

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅=

5
4
3
2
1

13682445.0
07006776.0
19610141.0
40409665.0
19290973.0

FFfcv
FFfcv
FFfcv
FFfcv
FFfcv

SFP

PI

PI

PI

PI

PI
T

kPI

4.3 Reflections on Results
The creation of security and filter profile templates is vital in order to enable
system security assessments based on XMASS. The processes for the creation of
the templates were specified by Hallberg et al (2006).

The first two steps of the process of creating the security profile template were,
in principle, resolved by the decision to use the security requirements, and their
grouping, specified in the KSF. The fifth step was performed based on the results
presented in section 3.3.1.

The third step, categorizing the security requirements as fundamental or impor-
tant, was performed through a voting among security experts. The results are
hardly unanimous, but for six out of the twelve requirements the decisions were
strong (at least 7 to 2). In three cases, the difference was merely a single vote,
making them important instead of fundamental. This indicates a need to more
thoroughly define the requirements.

The fourth step, the prioritization of the important requirements, was performed
individually by the security experts based on the AHP approach for criteria

 34

 FOI-R--2387--SE

35

weighting. It was experienced that AHP provides relevant mechanisms for the
validation of the consistency of the results.

The first step of the process of creating the filter profile template was, in princi-
ple, resolved by the decision to use the filter functional requirements specified by
Hallberg et al (2006). The third step was performed based on the results pre-
sented in section 3.3.2.

The second step, the prioritization of the filter functional requirements, was per-
formed individually by the security experts based on the AHP approach for crite-
ria weighting. It was experienced, among the security experts, as difficult to
judge the relative importance of the requirements. This can be resolved through a
more elaborated structuring of the requirements, for example, by clustering de-
pendent requirements, before the prioritization.

FOI-R--2387--SE

 36

5 Development of Assessment Tool
Environment and Assessment Tool

The realization of assessment methods in software is a demanding process where
time needs to be spent on implementing basic tasks like file handling as well as
the actual method. Assuming a fixed amount of resources to spend on each im-
plementation, time spent on the implementation of basic functionality leads to
less thoroughly implemented assessment methods. On the other hand, if there is a
development environment providing the basic functionality, the developers can
spend more time on the implementation of the actual method and thereby pro-
duce software of higher quality and better extensibility.

To aid the development of tools based on the presented assessment methods, an
assessment tool environment has been designed and implemented in the .NET
framework. This work is presented in sections 5.1 to 5.7 of this chapter. Within
this environment an implementation of the XMASS has been performed, as de-
scribed in section 5.8. This chapter is based on the work presented by Bengtsson
& Brinck (2007).

5.1 Design
The development in the area of security assessment is an ongoing process. Thus,
methods are constantly refined requiring the implementations to be updated or
rewritten from scratch. The research on novel methods is often branched into
different approaches, which leads to branching in the software development re-
sulting in a multitude of different versions.

Since the development of assessment methods still is in an early stage, the main
group of users of tool implementations is researchers who want to evaluate and
compare different assessment methods. Thereby, the user and the developer,
implementing the tool, are in many cases the same person. Even so, the assess-
ment tool environment, referred to as the NTE (New Tool Environment), is de-
signed with both developers and users in mind to better identify relevant needs
and requirements.

5.1.1 Developer Perspective
To facilitate the development of assessment tools, the NTE is designed to pro-
vide simple interfaces between software modules. By having interfaces which

 FOI-R--2387--SE

37

only contain the functionality needed and nothing else, the interfaces become a
form of guideline which assists the developer during the implementation. More-
over, well defined interfaces enable the developers to spend less time on figuring
out the control flow of the program and instead concentrate on writing code for
the methods defined by the interfaces.

A great deal of time is normally spent by the developer on implementing func-
tionality to store data on and recover data from secondary storage. The required
functionality includes conversion of data from the object based representation of
the program to a suitable representation on disk. The amount of time spent on
this kind of functionality is reduced by implementing a data access layer between
the database and the tool implementation. Thereby the developer should be able
to send objects directly to the data access layer, which handles the storing in the
database. The layer should be able to rebuild the stored objects when requested.

The design of the graphical user interface is an important part of the implementa-
tion of a method and the NTE must therefore not limit the possibilities of the
resulting tools, but rather assist the developer in the design. To be able to assist
the developers with designing the graphical user interface, the NTE should pro-
vide a library of components which can be shared by tool implementations. This
should streamline the design process and at the same time support conformity
between the different tool implementations.

5.1.2 User Perspective
Two different tasks have been identified as the main tasks of a user:

• to evaluate methods by observing changes in the result upon changes in
the input and

• to compare methods, or different versions of the same method, by com-
paring the results based on the same set of input.

These two tasks coincide with the task of security assessment, where different
solutions may be compared through the variation of system data and different
aspects of the same system may be assessed through the use of several assess-
ment methods.

The generalized view of an assessment tool, presented in Figure 5, illustrates the
steps from input to output. In the modeling phase, the tool is assumed to perform
system modeling and, thereby, transform the input into systems and resources.
The resources are components with associated security values, which are derived
from the input, like for example a specific computer or firewall with security

FOI-R--2387--SE

values associated to the corresponding security characteristics of these compo-
nents. A system is defined as a configuration of these resources, such as a model
for how computers are connected in a network. The systems are grouped into
projects to improve the usability and the possibilities to experiment with different
configurations. Hence, a project is defined as a collection of related systems that
are sharing some common resources. Moreover, the modeling phase includes the
specification of the computations model used for the computing of security val-
ues. The final step of the assessment tool is to perform calculations where the
security values and relations of the relevant resources are transformed into as-
sessment results, which constitute the output of the tool.

Project

 38

Figure 5: A generalized view of an assessment tool.

The introduced notion of systems facilitates the evaluation of methods by letting
the user store different configurations of the resources, that is, study the effects
of variations of the input. These configurations can be compared and conclusions
may thereby be drawn from how they affect the results.

The grouping of systems into projects provides the user with the possibility to get
a more organized view of the systems and, at the same time, enables the use of
common resources.

As stated earlier, the user should be able to compare different assessment meth-
ods, which means the NTE has to be flexible enough to enable the use of differ-
ent methods. By having the assessment methods implemented as plugins to the
NTE, the user may create several projects using different assessment methods.
Thereby all assessment tools can be gathered into one application, which elimi-
nates the need to use a combination of different applications to reach an assess-
ment result. Since the assessment tools can share the same input, the task of
comparing different assessment methods is supported.

Resources

Input

System
modeling

Assessment
Result

Calculation

 Systems

Computations
modeling

 FOI-R--2387--SE

5.2 Structure Overview
An overview of the NTE structure is presented in Figure 6. The following sec-
tions describe the role of each of these main parts.

Security
Requirements

39

Figure 6: Schematic view of the structure of the environment.

5.2.1.1 Front-end Application
This is the part of NTE, along with the Requirement Collection Editor, which is
visible to the user. Its task is to provide project handling and a workspace to be
used by the tool plugins.

5.2.1.2 Plugins
As illustrated in Figure 6, there are two types of plugins which can be used by
NTE: tool plugins and database plugins. A tool plugin is an implementation of an
assessment method, while a database plugin contains the functionality needed to
handle a database. The NTE is built to handle multiple plugins of each type in
order to support the use of multiple tools and databases within different projects.
Plugins are selected for each project, which results in a structure where all sys-
tems within a project use the same tool plugin.

NTE

Db

Front-end Application

Tool Interface NTE Db Interface

Common
Library

Project
File

RC Editor

Tool Db Interface

Database plugin Tool plugin

FOI-R--2387--SE

 40

5.2.1.3 Interfaces
To enable communication between the front-end application, the tool plugin and
the database plugin, three different interfaces are needed. The communication
between the front-end application and the tool plugin is handled through the tool
interface. As illustrated in Figure 6, there are two different interfaces for com-
municating with the database plugin. Both the front-end application and the tool
plugin need to communicate with the database plugin, but they have different
needs when it comes to functionality. Each one of the two interfaces includes the
functionality needed and nothing more. Hence both interfaces are as straightfor-
ward to use as possible.

5.2.1.4 The Common Library
The Common Library contains various components intended to be used by the
tool plugin developers. Most components are GUI (Graphical User Interface)
related and reduce the amount of time the tool plugin developers need to spend
on GUI implementations.

5.2.1.5 Project File
The project file is basically an encapsulation of the project related data that needs
to be stored. Information about the tool plugin and database plugin used in pro-
jects is needed by the NTE in order to be able to open the systems within the
projects. Information about each system within a project is also needed in order
to list the systems of a project without being forced to load the plugins. Hence
each project file contains the following:

• information regarding the used tool and database plugins,
• information about all the systems within the project, and
• a database file containing the systems of the project.

5.2.1.6 Requirement Collection Editor
The Requirement Collection Editor is a built-in tool for the creation and altera-
tion of requirement collections. To make sure requirement collections are accu-
rately created and altered, the built-in editor is the only way to create and modify
the requirement collection files used by NTE. The structure of a requirement
collection is described in section 5.6.

 FOI-R--2387--SE

41

5.3 Plugin Handling
In NTE, tool and database plugins are compiled as DLL:s, Dynamic-Link Librar-
ies, and placed in the root folder of NTE. The files in the root folder are traversed
when the NTE starts up and the assembly, that is, the partially compiled code
library, from each DLL file is loaded and its classes are examined. In .NET, an
assembly is a partially compiled code library for use in deployment, versioning
and security. The assembly from DLL files having classes implementing either
the tool interface or the database interface is stored in a dictionary indexed by the
name and version of the plugin. When the user performs an operation that de-
pends on a specific plugin, the correct assembly is looked up in the dictionary
and an instance of the class is created. This instance is stored in a local variable
as the active plugin of the corresponding type.

5.3.1 Tool Plugins
The structure of a tool plugin is not limited in any way other than that it should
extend the UserControl class and implement the tool plugin interface described
below. By extending the UserControl class, which is the base class for user de-
fined graphical components, the plugin can be docked into the main workspace
area of NTE. Tool plugins have access to the main menu and the status strip for
further integration with NTE.

5.3.1.1 Tool Plugin Interface
The tool plugin interface, shown in Figure 7, is used for communication between
the NTE and the tool plugin. Each tool plugin must implement the interface in
order for the NTE to recognize it as a tool plugin. The interface specifies the
functions called when the user performs an operation on a system, such as open-
ing or saving.

FOI-R--2387--SE

 42

Figure 8: Class diagram of the database interface.

5.3.2.1 NTE Database Plugin Interface
The NTEDbPlugin interface, illustrated in Figure 8, is an empty interface, which
implements both the tool database interface and the NTE database interface. A

Figure 7: Class diagram of the tool plugin interface.

5.3.2 Database Plugins
In NTE, a database plugin is a data access layer operating on objects. To distin-
guish the differences in needs between the NTE and the tool plugins, the inter-
face to the database plugin is divided into two parts, one to be used by the tool
plugin and one to be used by the NTE.

The database plugin requires the existence of an interface to recognize classes
defined by tool plugins. By introducing the empty interface NTEDbClass, these
classes can be identified at the same time as it does not add any limitations for
the tool plugin developers. The use of an empty interface can basically be seen as
a flag for marking classes defined by tool plugins.

NTEDbPlugin

ToolDbInterface

 + Store ()
 + Fetch<T> ()
 + Delete ()

NTEDbInterface

 + Init ()
 + GetActiveFiles ()
 + FetchSystem ()
 + StoreSystem ()
 + GetID ()

 + SystemId

NTEToolPlugin

 + ActiveSystem

 + Initialize ()
 + NewSystem ()
 + OpenSystem ()
 + Export ()
 + CloseSystem ()
 + DeleteSystem ()
 + GetSystemCopy ()
 + SwitchReqCollection ()

 FOI-R--2387--SE

43

database plugin must impl EDbPlugin interface in order to be rec-
ognized by the NTE. Implementing this interface also assures that the database
plugin contains the functionality needed by both the NTE and the tool plugin.

5.3.2. ase Interface
nterface used by tool pl signed with simplicity in mind

 contains three met rrespond to the basic opera-
in a database. The three operations are: store, fetch and delete.

 for storing is defined as a function taking an arbitrary object as a
ol plugin are required to implement

ored in the database.

ction with a parameter T, where

e

formed at compile time.

nd therefore
eeds to access methods operating on IDs. These methods, FetchSystem and

ation method of the database plugin is defined as a func-
on taking three arguments: the path to the working directory of the plugin, a set

of database files, and finally the ID of the system to work with (Init). The data-
base plugin may create new files or remove existing ones during its execution,

ement the NT

2 Tool Datab
The database i ugins is de

hods which coand therefore only
tions on objects

The method
parameter. Objects of types defined by the to
the NTEDbClass interface in order to be st

The method for fetching is a generic nullary fun
T is the type of the object which should be retrieved from the database. By hav-
ing a generic parameter in the function call, the function can return a generic list
with the same element type and, thereby, avoids having to cast the results into th
correct type. A constraint is set in the interface to make sure that the type T im-
plements the NTEDbClass interface, thus enabling type checking to be per-

The method for deleting objects from the database takes the object to be removed
as a parameter. The objects, and their relations to other objects, are permanently
removed from the database and cannot be recovered.

5.3.2.3 NTE Database Interface
The NTE database interface is used by the NTE for communicating with the
database plugin. The NTE takes care of the handling of systems a
n
StoreSystem, have the same functionality as the methods for fetching and storing
in the tool database interface, except for the method for fetching taking an ID as
a parameter and the method for storing returning an ID. The interface also de-
fines a method for retrieving the ID of an arbitrary object and an attribute speci-
fying the ID of the active system (GetID).

Furthermore, the initializ
ti

FOI-R--2387--SE

 44

5.4 Common Library
n

ndling
The NTE defines a project as a file containing a collection of systems using the

e plugin. Requirement collections are

n
le format used for storing projects. The NTE file is an encapsulation of the

c

at is actually stored in a database. This means that in
order for the NTE to keep track of the systems stored within each project it
would need to call the related plugins. To avoid this, additional information is
stored inside the NTE files.

which is why the interface also defines a method for retrieving the active set of
files (GetActiveFiles).

The Com on Library contains a range om f components that can assist tool plugi
developers while designing user interfaces. To assist the developers as much as
possible, the components in the common library need to be as accessible as the
other components available in the .NET platform. Therefore, it is possible to use
the components in the common library directly in the design view of Microsoft
Visual Studio, which results in the possibility to edit the attributes of the compo-
nents directly in the design view. The process of designing the user interface is
also simplified by the possibility to place the components in the design view.

The common library contains a variety of components ranging from a textbox
with functionality to handle numeric values, to a form for making AHP prioriti-
zations. The common library can be extended with more components in the fu-
ture as new needs arise.

5.5 Project Ha

same tool plugin and the same databas
shared between the different systems within a project and it is also possible to
share information which is specific to the selected tool plugin. Thus, a project
can be seen as a database of components where its systems represent different
configurations of these components. The user can thereby experiment with dif-
ferent configurations of the same components.

5.5.1 Structure of the NTE File Format
As described in the structure overview in section 5.2, the NTE contains its ow
fi
project related data which needs to be stored. The structure and content of a da-
tabase is only accessible by using a specific database plugin along with a specifi
tool plugin. Hence, the NTE would have to invoke the related plugins in order to
gain knowledge about wh

 FOI-R--2387--SE

45

i-

While listing available systems, the NTE has to verify that the needed plugins are
om a project without the right

g
irec-

The structure of the classes related to the NTE file is shown in Figure 9. There is
one instance of the class SysInfo for each system in the project and it contains
the name of the system, a description, the time of creation, the time of last mod
fication, a screenshot and the ID of the requirement collection currently in use.
Moreover, each instance of the class SysInfo contains an ID associated with the
actual system specification stored in the database. This information is used for
the listing of the systems of each project.

available since it is not possible to open systems fr
versions of plugins. Hence an instance of the PluginInfo class is stored for both
the database plugin and for the tool plugin in order to keep track of the names
and versions of the plugins.

The actual database files of a project are stored as instances of the class DbFile.
Each DbFile contains the data members called filename and data. While openin
a system, each database file of the project will be recreated in the working d
tory of the plugin as a file with the given filename containing the given data.

FOI-R--2387--SE

 46

Figure 9: Class diagram of the NTE file classes.

5.6 Requirements Handling
Requirement collections are introduced in the NTE to organize the handling of
the system characteristics and effects whose security values are used as input for
the assessment. In NTE, these characteristics and effects are referred to as secu-
rity requirements. Consequently, a requirement collection consists of a set of
security requirements, where each requirement belongs to a security feature, as
illustrated in Figure 10.

This straightforward two-level structure was designed to facilitate modeling of
the relations between basic input and the initial aggregation of security values.
For example, it reflects the structure of the security requirements specified for
information systems, called requirements on security functionality (Swe. Krav på
SäkerhetsFunktioner, KSF), and used by the Swedish Armed Forces (2004). In
the KSF, the security properties and qualities of an IT system are described by a
set of security features. For each security feature a set of security requirements is
defined, describing what needs to be fulfilled in order to fulfill the security fea-
ture. Thus, the security features can be seen as corresponding to the security-
relevant characteristics of the assessed systems, as specified in the process model
for security assessment described in section 2.2.2. This is the case considering
the KSF. However, tool plugins can treat the security features as intermediate
results and perform further computations to produce their output. For example,

SysInfo
 + id
 + name
 + desc
 + dateCreated
 + lastModified
 + screenshot
 + requirementCollectionID

PluginInfo
 + name
 + version

DbFile
 + fileName
 + data

NTEFile
 + dbPluginInfo
 + toolPluginInfo
 + dbFiles
 + systems

 FOI-R--2387--SE

the XMASS tool plugin use the security features of requirement collections as
the security profiles of system entities. These security profiles are used to com-
pute the system-dependent security profiles, which in turn can be aggregated to
produce the final output of the tool.

47

The NTE needs to ensure that requirement collections are handled in a proper
way. Therefore, it contains a requirement collection editor where the user can

Figure 10: The structure of requirement collections.

In NTE, a requirement collection is implemented as illustrated in Figure 11. Each
class has an ID since the objects in a requirement collection are compared at ID
level instead of at object level. Thereby requirements used in different projects
can be compared to avoid the creation of duplicates when, for example, exporting
systems between projects. This special treatment requires extra functionality in
the database layer, which is described in section 5.7.2.

Figure 11: Class diagram of requirement collections.

Requirement collections are stored as files with the extension .rc. The only occa-
sion these files will be used is when creating a new project or adding a new col-
lection to an existing project. When this occurs, the content of the requirement
collection file is stored as a new requirement collection in the database of the
active project. In case a requirement collection with matching ID already exists
in the database, the database is instead updated with the new version of the re-
quirement collection from the file.

SecurityRequirement
 + SRid
 + securityFeature
 + name
 + desc

SecurityFeature
 + SFid
 + abbr
 + full
 + desc

RequirementCollection
 + RCid
 + name
 + securityRequirements

Security Features

Security Requirements

. . .

Requirement Collection

. . .

FOI-R--2387--SE

 48

r

e

 for switching between the requirement collec-
ons available in the project. All available collections appear in the main menu

equirements called filter functional re-
uirements, which are used to describe the different kinds of functionality in

nc-

create and edit collections. Using this editor is the only proper way to create
valid requirement collection files. Thus, the NTE has control of the handling of
requirement collections. The need for this control is due to the importance of
generating new IDs when a requirement collection has been edited and is not
considered to be intact. A requirement collection is intact if no requirements o
features have been added or removed. Thus, the user can alter names and de-
scriptions and still have an intact collection, which is considered to be the same
collection as earlier. Adding an altered, but intact, requirement collection to a
project already containing the original collection will only update the names and
descriptions instead of storing the collection as a new one. If a collection, on th
other hand, is not intact, new IDs are generated for all security features, security
requirements, and the collection itself. This results in the altered collection being
seen as a completely new one.

The NTE provides functionality
ti
where the user can select which collection to be active. When the active collec-
tion is switched, the SwitchReqCollection method of the tool plugin is called to
notify the tool plugin about the change.

The NTE also provides another type of r
q
network components filtering traffic. The set of filter functional requirements is
fixed and is therefore statically implemented into NTE. The available filter fu
tional requirements, listed in Table 12, were specified by Hallberg et al (2006).

Table 12: Filter functional requirements.

Filter Functional Requirements
Packet filtering
Stateful-inspection
Application layer gateway
Circuit level gateway
Network address translation

5.7 DbSQLite
As concluded in 5.1.1, the data access layer should operate on objects and
thereby make it possible for the developers to effortlessly store and retrieve data.
This does not add any requirements on the actual database engine. Hence it will

 FOI-R--2387--SE

49

in developer in the choice of a suitable database en-
is

se two layers is the object-

Figure 12: Schematic view of the structure of the database plugin.

The database interface of the NTE requires the database plugin to be able to op-
rate on objects. Hence, the database plugin must be able to translate the classes

of the object model into tables in the relational model, and back again when they
are fetched from the database. This problem was described by Peak & Heudecker
(2006) and is referred to as the Object/Relational impedance mismatch.

not limit the database plug
gine. For the database plugin described in this section a relational database
used. The database is powered by the SQLite database engine; a small C library
implementing a self-contained and embeddable SQL database engine, which
needs no setup or administration (SQLite, 2007).

The database plugin consists of three layers (Figure 12). The top layer, closest to
the database interface, is called the object cache and contains functionality to
ensure object consistency. The bottom layer is the actual database engine that

erforms the queries on the database. Between thep
relational mapping layer, which performs the conversion between objects and
SQL code.

Relationa
Database

Object-Relational Mapping

Objects

SQL

Object Cache

SQLite

Database Interface

l

5.7.1 Object-Relational Mapping

e

FOI-R--2387--SE

 50

n referred to as Object-Relational

in-
rmation at runtime. Thereby both the type and data of each member of an ob-

.7.2 Object Caching

Firstly, each fetch operation on a specific entry in the database always has to
 object representing the entry. Otherwise, the

e

nges must
lso affect the b1 member of a2. Similarly, a comparison of these two b1 members

 is

ed by introducing the object cache whose main objective
 to maintain a table of previously handled objects. Each element in the table is a

en-

The solution to the translation problem is ofte
Mapping, ORM. The ORM forms a layer between the object cache and the data-
base engine and takes care of the conversion of objects to and from the relational
format. To support the developer, the mapping between the object model and the
relational model is transparent. This is achieved by using data type reflection,
which is a feature of the .NET framework granting access to class structure
fo
ject can be extracted without knowing its representation in advance.

At compile-time no information about the classes in the different tool plugins is
known by the database plugin. Therefore the ORM layer needs to handle the
creation of tables in the database dynamically at runtime. A description of how
this dynamical runtime creation of tables works is provided by Bengtsson &
Brinck (2007).

5
The database interfaces that are designed to only pass instances of objects be-
tween the tool plugins and the database plugins result in two issues to be re-
solved, as pointed out by Peak & Heudecker (2006). These two issues could also
be seen as a single translation issue seen from two different angles.

return the same reference to the
consistency of the object structure will be broken since the tool plugin will re-
ceive clones of the object. For example, assume there are two instances of th
class A, a1 and a2, where both instances hold a reference to the same instance of
the class B, b1. If changes are applied to the b1 member of a1, these cha
a
must evaluate to true.

Secondly, each store operation of a specific object must operate on the same
entry in the database. Hence, if an object that is already present in the database
stored, the present entry should be updated with the data of the object instead of
inserted as a new entry.

Both problems are solv
is
triple of Type × ID × Object, where Type is the type of the object, ID is the id
tity of the entry in the database and Object is the actual object. The object cache

 FOI-R--2387--SE

51

 that is, Object → ID.

uring a store operation the cache will be checked whether it contains a refer-

 is pointed
ut. All objects that belong to a requirement collection should be compared by

ject

5.7.3.1 Fetch
st step is to look up the table structure for

e

 a dictionary, which works as a cache. A table structure is thereby
looked up by first inquiring the dictionary and thereafter generating the table

available in the dictionary.

e
ia-

contains functionality to look up an object, that is, Type × ID → Object, and to
retrieve the ID of an object,

When a fetch operation occurs, the cache will be checked whether it contains a
reference to an instance of the given type and ID. If there is a match, the cached
reference will be returned instead of a reference to a new instance. Thereby, the
consistency between object relations is maintained and the fetch operations are
sped up, since re-fetches of objects from the database are avoided.

D
ence to the object. If a reference is found, its cached ID will be used for updating
the entry in the database instead of storing the data as a new entry. If, on the
other hand, no reference is found in the object cache, a new entry will be created.

In section 5.6 the need for special treatment of requirement collections
o
ID in order to distinguish between them. This is handled by checking the type of
the object of each operation to allow comparison at ID level for types matching
any of the three defined classes. All objects of other types are compared at ob
level.

5.7.3 Database Operations
As described in section 5.3.2, the tool plugin developer can use three different
operations on the database through the tool database interface: fetch, store and
delete.

When a fetch operation occurs, the fir
the requested class. Table structures are generated based on the data types of th
public data members of a class. To avoid regeneration of this information and
thereby speed up the database operations, all discovered table structures are
stored in

structure if it is not

In the next step, SQL queries are constructed to select the relevant data from the
database. For classes with a simple structure the queries are trivial, but for mor
complex classes the queries contain join clauses in order to resolve any assoc
tions. The queries to the database result in a set of matching rows, where the ID

FOI-R--2387--SE

 52

atch in the object cache, the
onstructor of the class will be called with the values retrieved from the database,

e-
either

ctionaries are stored using a recursive function call, which

nformation tree and deleting all related data
om the database.

tored can not exist in the database. On the other hand, both

the entry in the database and the object cache will be deleted if the object exists

idation of the XMASS. Secondly, the SANTA enables the
functionality of the NTE to be verified. The implementation is based on the

of each row is checked against the object cache to determine the existence of any
instance of the given class and ID. In case of no m
c
which results in a new instance of the class. Both the newly created and the
cached instances are merged into a list which is returned to the calling tool
plugin. All new instances are added to the cache for future use.

5.7.3.2 Store
The first step of the store operation is to look up the table structure for the class
in the dictionary. If it is not available in the dictionary, it will be generated. Sub-
sequently SQL queries are created based on the table structure of the class. D
pending on the existence of the object in the object cache, the query will be
an insert or an update statement.

Related lists and di
means that the related data first is stored and then the ID of the data is stored in
the relating table. While updating a relation, all previous relations must first be
deleted since the content of a list or dictionary can, and most likely will, have
changed since it previously was stored. This is done with the help of a recursive
function call traversing the table i
fr

5.7.3.3 Delete
The delete operation is used to remove entries in the database by passing along a
reference to the object to delete as an argument. The object cache is used to look
up the table ID of the given object. If the object is not present in the object cache
the call to the delete function will be ignored, since an object that has not been
previously fetched or s

in the object cache.

5.8 The XMASS Tool Plugin
Utilizing the support provided by NTE, a tool plugin implementing the eXtended
Method for Assessment of System Security (XMASS), referred to as the Security
AssessmeNT Application (SANTA), has been created. Firstly, the SANTA sup-
ports the use and val

 FOI-R--2387--SE

53

ng with the improvements de-

e

sily can be varied. By implementing a graphical user inter-

of
e users. By using familiar concepts in the GUI, the users more quickly learn

amiliar to the users (Galitz, 2007). The main
users of this assessment tool implementation are researchers who want to evalu-

group for SANTA can be assumed to

 the

milar way as in ROME2.

XMASS as specified by Hallberg et al (2006) alo
scribed in chapter 3.

Software implementations of security assessment methods are important for the
evaluation of the corresponding methods. Since no previous implementation of
the XMASS exists, the implementation is useful for evaluation purposes of the
method, while it at the same time verifies the functionality of NTE. Therefore th
design focus for this tool plugin has been on creating an implementation where

alues and settings eav
face that fulfils this design focus, it should be easier to see how alterations of the
input affect the assessment result. With knowledge of how a certain variation
should affect the security, it may be possible to draw conclusions from the as-
sessment result about the soundness of the implemented assessment method.

How to use the SANTA in combination with the NTE is further described in
(Bengtsson & Brinck, 2007b).

5.8.1 Graphical User Interface
A graphical user interface (GUI) should be built upon the existing knowledge
th
how to use the application. This could for example be achieved by using lan-
guage and expressions that are f

ate or compare methods. Hence the target
be familiar with both the XMASS and the area of security assessment in general
and thereby recognize most of the used notations.

Designing the GUI in a way similar to other applications of the same genre as
user previously has been working with improves the level of familiarity and
thereby leads to easier orientation. To achieve this familiarity for SANTA, the
design is based on the design used in ROME2, which is the software implemen-
tation of the predecessor of the XMASS called the MASS. In reality, this means
that the different parts of the GUI are placed in a si

Compared to ROME2, there are more parameters in the SANTA that need to be
set in order to perform an assessment. Therefore it is important to find a logical
way to group these settings so that it, to some extent, is obvious for the user
where to look. By placing all settings regarding a specific topic, for example,
system-wide parameters, in the same dialog, it becomes more straightforward to

FOI-R--2387--SE

 54

cate the specific controls. At the same time it gives a clear overview of all pos-

les

-

left

eeds of the users. Thus, the results pres-
 in tified needs of the users. Consequently,

ltiple assessments of the same system

instead of the assessment results.

,

nd state is created. Each state is assessed as normal, but the result is stored in a
ve

lo
sible parameter settings. Another example is the profile manager. Even though it
is possible to manage each specific type of profile from the dialog where that
specific profile is selected, there is a profile manager where all types of profi
can be managed. The profile manager results in an overview of the available
profiles. Thus, the users will not have to, for example, create a traffic mediator in
order to be able to see and manage the available filter profiles.

The workspace of the XMASS plugin is designed to allow faster and easier sys
tem modeling compared to ROME2. This is mainly achieved by using different
mouse click events. An entity is for example created by a double click on the
mouse button while a relation is created by doing a drag-and-drop between two
entities using the right mouse button.

5.8.2 Presentation of Results
The support for evaluations of the XMASS is enhanced by proper presentation of
assessment results. How to present the results is not included in the specification
of the XMASS. Hallberg et al (2006) give examples of possible approaches, but
state that it all depends on the specific n
entation SANTA is based on the iden
SANTA enables the presentation of mu
model but with varying input security values.

The XMASS tool plugin provides automatic assessment of the modeled system
when all needed settings have been made. The left side of the workspace is used
for presenting the assessment results, which consists of results regarding both the
whole system as well as the currently selected entity. If not all parameters have
been set, a list of absent settings will be shown

Taking the evaluation possibilities of the XMASS one step further, the plugin
contains functionality to aggregate over the results from assessments, that is, to
compare the results of different assessments using varied inputs, as illustrated in
Figure 13. By specifying start and end states for the security values in the system
a series of intermediate states using linear progression from the start state to the
e
vector instead of displayed in the left side of the workspace. When all states ha
been assessed, the vector is sent to a presentation view which displays the result
as graphs for the different components of the system. This solution enables the
user to perform evaluations on the system without altering the original state.

 FOI-R--2387--SE

System

Definition of
start and end

states

End state Start state

Creation of
ermediate states int

55

Figure 13: and presentation in the XMASS. Result aggregation

System
assessment

End state Intermediate
states

Presentation of

End state Intermediate
results

results

FOI-R--2387--SE

 56

6 Implementation of the Process Model
for Security Assessment

In this chapter, an approach to security assessment based on the process model
for security assessment and Bayesian networks is introduced. The process model
and Bayesian networks are briefly described in chapter 2. Moreover, an example
with an assessment based on the KSF is presented.

6.1 Security Assessment Method
The use of Bayesian networks as a base for the proposed security assessment
method allows different security functions to be evaluated, independently of the
degree of knowledge about the different functions. The evaluation of the security
functions could be based on facts, statistics, or assumptions. First a good-enough
assessment should be established, containing all important aspects of the system
influencing the security characteristic to be assessed. If that evaluation is based,
to some degree, on assumptions rather than facts, an assessment increasing the
knowledge about the security status of the system can still be made. In most
cases, this would be impossible if validated facts about all security functionality
of the system were required. Another attractive property of Bayesian networks is
that more details can be added later on, and the effects of adding these facts can
be observed.

Another advantage of using Bayesian networks is that the security values will
actually mean something; they are probabilistic values of the modeled states of
studied nodes. A hypothesis is created and the security assessment indicates
whether this hypothesis is likely to be true or not. This implies that the depend-
encies between functions in the system model need to be distinguishable, and it
should be possible to see how these dependencies affect the system as a whole.
Furthermore, by using Bayesian networks in security assessment, already devel-
oped methodology and models, from other areas of research, can be utilized.

In the following subsections, the proposed method is described following the
steps of the process model (section 2.2.2). Considering the integrated approach of
the proposed method, some of the subtasks of the process model are not relevant
for describing the method and have, consequently, not been regarded.

 FOI-R--2387--SE

57

6.1.1 Analyze Needs
Methods encompassing the whole assessment process have to consider the analy-
sis of needs. All security assessments should be based on these specified needs of
the users, owners of the system, or other stakeholders that in some way benefit
from the results. To find the needs, these stakeholders must first be identified.
They may consist of individuals, organizational units, business processes, or
software. Then, the actual needs of the identified stakeholders have to be identi-
fied. This can be achieved using formalized methods, such as the method for
needs analysis regarding security assessment referred to as MedBeVIS (Hallberg
et al, 2005), or less stringent methods.

Independently of which approach is used to formalize the needs, it is important
that the results are documented in order to establish the purpose of the assess-
ment. Moreover, the identified needs should be ratified by the stakeholders. The
result from this first step of the assessment is a set of, possibly structured, secu-
rity assessment needs.

6.1.2 Define Relevant Security Characteristics
The purpose of this step is to decide the relevant IT security characteristics of the
system. The assessment of these characteristics should produce the information
desired by the receiver of the results. In other words, when the security assess-
ment needs have been established, the relevant security characteristics that these
needs are covering should be found. Moreover, this activity has to define the full
extent of the system, its boundaries to other systems, and the phases of the sys-
tem lifecycle that have to be considered.

Useful input to this activity is relevant sets of IT security characteristics, as well
as the needs for assessment defined during the previous activity. To transform
the needs into the desired characteristics, quality-based requirements engineering
methodology (Hallberg, 1999) can be used.

It can be hard, especially initially, to completely model how the characteristics
fulfill the needs. The use of Bayesian networks as a structure for the modeling
enables assumptions. These can be changed when the knowledge of the system
increases and perhaps other characteristics are found to better fulfill the needs.
Since Bayesian Networks handles probabilities, the IT security characteristics
should be formulated like probability hypotheses, for example, the probability
that an intruder will acquire sensitive information from a computer on the studied
network.

FOI-R--2387--SE

 58

The results of this activity are:

• a set of relevant IT security characteristics,
• specifications of the relations between the decided characteristics and

the needs, and
• a specification of the system to be assessed.

6.1.3 Connect to System Characteristics and Effects
The purpose of this step is to determine how to decide the security values corre-
sponding to the relevant security characteristics. Thus, security effects and char-
acteristics that can be measured or computed should be structured and modeled
in such a way that they can be used to compute security values for the relevant
security characteristics to be assessed.

When the assessment is based on statistics and user know-how, the step mapping
onto system will be closely related to the two following steps measure and com-
pute security values. This is because the security values are modeled rather than
computed or measured.

If the security characteristics to be assessed are too complex, they have to be
broken down into less complex, measurable characteristics. This requires under-
standing of how the security functions work in reality, how the system character-
istics affect each other, what is needed in the system in order to increase security
levels, and what might result in security breaches. It has to be analyzed how all
these less complex characteristics affect the assessment of the relevant security
characteristics. Since the structure of Bayesian networks consist of directed
acyclic graphs (DAG), the nodes representing the measurable system characteris-
tics have to refer, directly or indirectly, to the relevant security characteristic to
be assessed. The node representing this security characteristic is the final node in
the DAG, which all the other nodes are pointing towards. If there is more than
one relevant security characteristic to assess, they could be modeled in the same
graph. Then the nodes representing the measurable security characteristics can
lead to either one of the relevant (final) nodes. However, to decrease the com-
plexity of the models each relevant security characteristic can be modeled sepa-
rately, even though many of the supporting characteristics would be identical in
the different models.

When specifying the DAG, it is most straightforward to start from the targeted
relevant security characteristics and a set of lower-level characteristics. Thereaf-

 FOI-R--2387--SE

59

ter, a computations model, which links them together and describes how the
security functions relate to each other, is constructed. This work is best per-
formed with a sandwich approach working both bottom-up and top-down to
build a consistent structure, with intermediate characteristics inserted as needed
to connect the other nodes. There is no need to use all available low-level charac-
teristics and effects as long as the relevant security characteristics are adequately
assessed.

6.1.3.1 System Modeling Regarding Entities
In order to model the system entities, it should be specified exactly what entities
the system consists of. That is, the granularity and type of content of the system
model is decided. The model should adhere to the system borderlines, include the
system aspects, and cover the system phases specified in the previous step (sec-
tion 6.1.2). However, the proposed method does not prescribe any structural
modeling of the assessed system. The system entities consist of the security char-
acteristics as well as the system characteristics and effects included in the Bayes-
ian network. For example, system model entities could be security logging
mechanisms and requirements rather than network components and organiza-
tional units. The proposed method does not presently compute entity security
values prior to the final system security assessment; rather the entire system is
evaluated as a whole.

The proposed method starts by looking at the entire system at an abstract level in
order to create a comprehensive system model providing an overview with less
detail. Thus, initially, the model should include the relevant security characteris-
tics identified earlier. The model is specified in more detail later on, when the
system model is populated with system characteristics and effects covering the
relevant aspects. When the main structure of the model has been decided, it be-
comes more straightforward to analyze and decide on the details to be included
in the model.

6.1.3.2 Identification of Measurable System Characteristics and
Effects

It is up to the assessors to identify measurable system characteristics and effects
in the proposed method. Support to map the wanted security characteristics to
measurable system characteristics and effects can be found in proposed sets of
security requirements for security functionality. Examples, at the level of com-
puter and network components, are the Common Criteria (CC, 2004) and the

FOI-R--2387--SE

 60

KSF (Swedish Armed Forces, 2004). These could be used as a starting point, or
as a way of understanding the details of the security functionality.

6.1.3.3 System Modeling Regarding Characteristics and Effects
When the measurable system characteristics and effects to be included in the
assessment have been identified, the system model has to show how these attrib-
utes relate to each other. That is, the relevant security characteristics included in
the Bayesian network should be broken down to specific, measurable nodes. In
the proposed method, the systems and computations models are tightly inte-
grated. As the computations model takes shape, it is possible to assign values to
each measurable node and to observe the overall effect the assigned values have
on the assessment of the system. This makes it possible to adjust the system
model so the nodes affect the assessment appropriately.

6.1.3.4 Specification of Computations Model
As mentioned earlier, the computations model for Bayesian networks has the
structure of a directed acyclic graph (DAG). Starting with the system model as a
network of nodes, the computations model has to be specified in order to decide
how these nodes should influence each other.

Every relation from a parent node to a child node is analyzed in a top-down
manner to decide how much the parent node should influence the child node.
Thereby, the relevant security characteristics are the only non-parents in the
DAG and the measurable system characteristics and effects are the non-children.
At this stage, it does not matter whether the analysis is based on statistics, on the
subjective experience of the users, or basic evaluations and measurements. The
activity should result in a combined system and computations model consisting
of a DAG, where every node has a reasonable influence on the end nodes, that is,
the relevant security characteristics to be assessed.

For every node in the model, two or more states are defined, for example secure
transmission and insecure transmission. These states should be disjunct and
cover every possible state of the node. Thus, the node should always be in ex-
actly one of these defined states.

After the states have been defined, the probability for each state in the node is
estimated or evaluated. For nodes that lack parents and, consequently, do not
depend on other nodes, this step is more straightforward since only the probabili-
ties of the defined states of the nodes need to be estimated. For nodes that depend

 FOI-R--2387--SE

61

on other nodes (i.e. have parent nodes), the probability estimation of each state
need to be made for each combination of all the possible states that the parent
nodes can be in. This implies that the probability for a specific node to reach a
certain state strongly depends on the parent nodes. For example, assume that
node A has the states a1 and a2 and node B has the states b1 and b2. If both A and
B affect node C, then all the states of node C should be estimated for every com-
bination of the states of node A and B, that is, a1^b1, a1^b2, a2^b1, and a2^b2. This
means that if A has na states, B has nb states, and C has nc states, then na· nb· nc
estimations have to be made.

The result from this step is a DAG, where each node represents a security charac-
teristic or effect whose security value can be measured or computed from the
values of other nodes. A relation from a parent node to a child node reflects that
the security value of the parent node will affect the value of the child node. The
security characteristics should only depend on the characteristics represented by
the modeled parent nodes. This can be difficult to achieve, since there are often
hidden dependencies in the characteristics, and capturing all the system charac-
teristics affecting the node may require extensive work.

The result of this activity is a complete Bayesian network.

6.1.4 Measure Security Values
This step handles the measuring of the security values that constitutes the input
to the assessment method. This may be accomplished through statistical evalua-
tion or decisions based on experience.

Before any security values are measured, the system model has to be checked in
order to verify that all the data required is either possible to deduce from the
system model or its source is clearly identified, and thus possible to retrieve.
Since the computations and system models are tightly integrated, the proposed
method inherently supports this.

The system characteristics and effects are measured or judged to decide the cor-
responding security values. It is possible to choose the assessment method for
each characteristic independently of the other characteristics. Some entities can
be assigning security values subjectively, while other values are objectively
measured. The possibility to choose measurement methods freely is one of the
strengths of the proposed method, since objective measurements sometimes can

FOI-R--2387--SE

 62

be difficult to achieve. However, objective measurements should be included in
assessments whenever possible.

The result of this activity is that all the non-children nodes of the DAG have been
assigned values.

6.1.5 Compute Security Values
Since the computations model is described as a Bayesian network, there are sev-
eral tools available that can be used for the actual computations. In the example
below, GeNIe from Decision Systems Laboratory (2007), University of Pitts-
burgh is used to implement the Bayesian network. Since the DAG and the prob-
abilities of the states of the non-children, that is, the measurable nodes, have been
defined, the values of all the children nodes can be computed.

The result of this step is a graph, where each node consists of security states with
associated probabilities.

6.1.6 Interpret Security Values
One of the major advantages of using Bayesian networks for security evaluations
is that meaningful metrics are inherited directly. The metrics consist of the prob-
abilities of specified states, and the results of the assessment will thus specify
these probabilities.

6.2 Example
In this section, an example of how the proposed method can be used is presented.
The example is placed within the framework of an intuitive scenario.

6.2.1 Analyze Needs
A government agency has recently identified a legal requirement demanding the
capability to account for every possible security breach concerning the informa-
tion systems of the agency. Especially breaches that result in information leaks to
non-authorized parties are of importance. This demand leads to that an assess-
ment process is initiated at the agency to establish exactly in what way the sys-
tem has to be updated to fulfill the requirement. Although this example consti-
tutes a fairly clear case concerning the needs for the security assessment, a needs
analysis is initiated to formalize the needs.

 FOI-R--2387--SE

63

The stakeholders are identified as the management of the agency. They are asked
to contribute with relevant data, which in this example consist of the legal texts
in question. Based on these texts and interviews with the management, relevant
needs are identified. The identified core need is the ability to be able to assess the
strength of the security logging. Several other needs are probably also important
in order to satisfy the legal demand mentioned in the scenario, for example, the
ability to show that actions have been taken to secure the data needed for forensic
investigations. However, for this example, the single need of evaluating the log-
ging functionality of the computer system of the agency was deemed sufficient.

The identified need is documented together with references to the underlying
data and the stakeholders. This is important in order to maintain traceability from
the need to its origin. Thereafter, the identified need is presented to the stake-
holders in order to acquire their ratification of the need.

The outcome of this activity is a need that the organization deems important
enough to justify the continuation of the assessment process.

6.2.2 Define Relevant Security Characteristics
When the need has been established, the relevant security characteristics that
correspond to this need have to be found. If these security characteristics are
assessed, the identified assessment need is fulfilled.

In this example, the KSF collection of security requirements (Swedish Armed
Forces, 2004) is used as a mean to identify the relevant security characteristics.
The KSF has been defined by the Swedish Armed Forces to support the certifica-
tion of the security of information systems. By studying the KSF, useful facts
about the security logging functionality can be found. These facts can be used to
model the characteristics. An alternative to the KSF is the Common Criteria (CC,
2004), where the logging function is explained in great detail and broken down
into less complex functions.

Thus, security logging is defined as the relevant security characteristic whose
assessment will fulfill the need of the stakeholders. Thereafter, the relations be-
tween the relevant security characteristic and the assessment need should be
specified. In this example, there is a direct mapping between the relevant security
characteristic (security logging) and the desired need (ability to establish the
strength of the security logging).

FOI-R--2387--SE

 64

Finally, during this activity, the system scope has to be specified. The system to
be assessed in this scenario encompasses the whole information system of the
agency. However, the assessment is limited to the technical system aspect, not
because the non-technical areas are unimportant, but rather because they require
additional efforts, which will not be covered in this example. Considering the
technical aspects is assumed to be an adequate starting point for more compre-
hensive assessment.

6.2.3 Connect to System Characteristics and Effects
In this example, the steps System modeling regarding entities, Identification of
measurable system characteristics and effects, and System modeling regarding
characteristics and effects are integrated into one since the system entities are
comprised by the security and system characteristics. Again, information from
the KSF is used in order to find the necessary security and system characteristics
and how they relate to each other. Moreover, other functions, which the logging
functions depend on but not belong to, are analyzed and described. An example
of this is the ability to discover misuse and attacks in the system.

The KSF lists twelve different security requirements regarding security logging
that should all be fulfilled for the logging functionality to be regarded secure
enough (Appendix A, Table 17). In the KSF, there are three separate lists of se-
curity requirements corresponding to systems where the highest level of classifi-
cation for the information handled by the system is restricted, confidential, and
secret respectively. Keywords have been selected from the specification of the
KSF requirements to summarize their descriptions (Table 13).

Table 13: List of security requirements for security logging based on the KSF.

Req. id Description
SL1 Maintain its own security domain
SL2 Provide reliable time
SL3 Only authorized administrators can maintain the security function
SL4 Register events that are of relevance

SL5 Register date and time of events and the identity of the user or subject
SL6 Tracking of misuse
SL7 Security log can be presented in readable format
SL8 Tool-based inspection
SL9 Back up of the security log
SL10 No registered events are erased, overwritten, or in other ways destroyed

 FOI-R--2387--SE

65

Req. id Description
SL11 Maintain a defined secure state
SL12 No user activity takes place in the system if the security logging is inactive

Originally, the assessment of systems based on the KSF is supposed to state
whether the requirements are fulfilled or not. However, there are several reasons
for allowing intermediate values, resulting in more nuanced security values
which can be used for judging the adequateness of the security of systems.
Firstly, there is the possibility to grade the possible implementations of security
functionality differently. Secondly, systems have to be considered as interacting
entities. Thus, the fulfillment of the requirements may vary throughout the sys-
tem, resulting in more complex values for the overall system.

At this point, the relevant security characteristic and some of the system charac-
teristics to be measured have been decided. Now, the relations between these
characteristics have to be defined, that is, how they all fit together in the model.
For this purpose, the sandwich approach of the proposed method is used. Thus,
the relevant security characteristic is broken down into smaller, less complex,
intermediate characteristics. Thereafter, the system characteristics are associated
with these intermediate characteristics, in order to connect all the nodes of the
model. Some of the intermediate characteristics are additional characteristics,
identified as complement to the list extracted from the KSF. The additional char-
acteristics identified are listed in Table 14.

In order for security logging to work, it is dependent on the following security
characteristics:

1. detection of security-relevant events (SC1),
2. secure storage of logs (SC2),
3. analyze logs to detect misuse, faults and attacks (SC3), and
4. maintain security domain (SL1).

SC1, SC2, and SC3 are created to establish nodes in the model that cover all
aspects of secure logging. The four characteristics above are all at the same level
of detail. If these four abstract characteristics are fulfilled, it could be said that
the security logging has the possibility to function correctly and effectively
(Figure 14).

FOI-R--2387--SE

Figure 14: Initial Bayesian network model.

In the next step the intermediate characteristics are analyzed further in order to
relate them to the rest of the characteristics. SL6, tracking of misuse, is mapped
to the detection of security-relevant events (SC1). SL7, security log can be pre-
sented in readable format, and SL8, tool-based inspection, are placed under ana-
lyze logs (SC3). SL3, authorized administrators, is connected to SL1, maintain
security domain.

The other characteristics are harder to place, even though most of them deal with
similar tasks; the physical data storage, or lack of storage. In order to be able to
add these characteristics to the model, other characteristics need to be added.
Thus, the characteristics actions when security logging is inactive (SC4), physi-
cal creation of logs (SC5) and physical storage of logs (SC6) are added to the
model (Figure 15). These will work as a layer between the characteristics that
have been included in the model, and the ones remaining. Without them, the
difference between the levels of abstraction of the characteristics would be too
large, making it hard to analyze how the characteristics affect each other.

Table 14: The additional security characteristics identified.

Req. id Description
SC1 Detection of security-relevant events
SC2 Secure storage of logs
SC3 Analyze logs to detect misuse, faults and attacks
SC4 Actions when security logging is inactive
SC5 Physical creation of logs
SC6 Physical storage of logs

 66

 FOI-R--2387--SE

Figure 15: Intermediate Bayesian network model.

Further characteristics are now mapped to the intermediate nodes SC4, SC5, and
SC6. Maintain a defined secure state (SL11) and No user activity takes place in
the system if the security logging is inactive (SL12) are connected to Actions
when security logging is inactive (SC4). Back up of the security log (SL9) and
No registered events are erased, overwritten, or in other ways destroyed (SL10)
belong to Physical storage of logs (SC6). Provide reliable time (SL2), Register
events that are of relevance (SL4) and Register date and time for the event and
the identity of the user or subject (SL5) all belong to Physical creation of log
(SC5). However, they depend on each other. This is because SL5 depend on
relevant events being registered (SL4) with accurate time (SL2). Moreover, Reg-
ister events that are of relevance (SL4) affects Analyze logs (SC3).

The result is security characteristics structured as a DAG (Figure 16), where
every characteristic points to the final node, i.e. Security logging. That means
that all characteristics from the KSF, as well as the ones created by the assessor,
are structured in a system model in form of a Bayesian network, where it is
shown how they all affect each other and the final node.

67

FOI-R--2387--SE

Figure 16: Bayesian network model resulting from the system modeling.

When the system model has been completed, it is time to specify the computa-
tions model, that is, to specify how the nodes affect each other in the Bayesian
network. Since the assessor in the example has no possibility to measure the
security values or use any form of statistics, the analysis is based entirely on the
expertise and judgments of the assessor as a security expert. In this text, only the
part of the Bayesian network consisting of the nodes SL2, SL4, and SL5 is
treated. The rest of the nodes are calculated in the same manner, until a security
value for the final node; security logging, is reached.

The states of all the nodes are to be defined. Thereafter, the states are to be esti-
mated according to their probabilities. Regarding the node representing accurate
time (SL2), two states are possible: the time is either reliable or unreliable.

It is more complex to estimate how SL4, register events that are of relevance,
affects SL5, since it affects SC3, analyze logs, as well. Thus, the occurrences of
both relevant and irrelevant events have to be considered. Since this makes SL4,
and its influence on SL5 and SC3, hard to model, it is divided into the two sepa-
rate nodes SL4-1 and SL4-2, modeling the occurrence of relevant and irrelevant

 68

 FOI-R--2387--SE

events respectively. Thus, SL4-1 concerns the successful or unsuccessful storage
of relevant events. Stored irrelevant events will make it harder later on to search
for relevant events in the logs. This is handled by SL4-2. The Bayesian network
model has to be updated to reflect these changes (Figure 17).

Figure 17: Bayesian network model resulting from the alterations during the computations model-
ing.

When analyzing SL5, three different states were found: relevant events logged
with reliable time, relevant events logged (without reliable time) and relevant
events missed. These states of SL5 should be defined based on SL4 and SL2.
Both SL4-1 and SL2 have two states that both are relevant for the estimation of
SL5. As there are three new states that should be defined for two times two de-
pendable states, there are twelve (3·2·2) probabilities to be estimated (Table 15).

69

FOI-R--2387--SE

 70

Table 15: Estimations of the probabilities of the three states of SL5 for each relevant combination
of the states of SL2 and SL4-1.

SL4-1: Store relevant events Relevant event
stored

Relevant event not
stored

SL2: Provide reliable time Reliable
time

Unreliable
time

Reliable
time

Unreliable
time

Relevant events logged with
reliable time

0.9 0.1 0 0

Relevant events logged 0.1 0.9 0 0

Relevant events missed 0 0 1 1

6.2.4 Measure Security Values
The measurement activity should supply probability values for the states of the
nodes which are not depending on other nodes. As for the specification of the
computations model, the assessor in the example has no possibility to measure
the security values or use any form of statistics. Thus, the measurements are
based entirely on the expertise and judgments of the assessor as a security expert.

Previously, the states for SL2 were defined as either reliable or unreliable time. It
is now estimated that accurate time is supplied in 99% and inaccurate time in 1%
of the cases. Then, the probability prior estimations of the two states of SL4-1
relevant event stored and relevant event not stored are specified as 90% and
10%.

6.2.5 Compute Security Values
The computations model is implemented in the GeNIe tool (Decision Systems
Laboratory, 2007). Using the security values from the previous section, the secu-
rity values corresponding to SL5 are computed (Figure 18). The computations
result in calculated probability values for the dependable states of SL5. The
probability of a relevant event logged with reliable time is 80%, the probability
of a relevant event missed is 10%, and the probability of a relevant event logged
(without reliable time) is 10%.

 FOI-R--2387--SE

Figure 18: Example of computed security characteristics from the GeNIe tool.

6.2.6 Interpret Security Values
The result of the assessment is a variety of states with computed probabilities for
each state. The method of Bayesian networks suggests that a hypothesis should
be stated for the final node. When a hypothesis has been formulated, the interpre-
tation of the resulting security value is straightforward. One hypothesis, useful in
the context of this example, could be “there should be less than 1% probability of
the state relevant events missed”.

71

FOI-R--2387--SE

 72

7 Conclusions
Assessing the security of networked information systems is difficult, but never-
theless important. Two of the main reasons for the importance of efficacious
security assessment methods are:

1. the ongoing integration of systems, which makes it impossible to com-
prehend the resulting systems and the security effects caused by all ac-
tions affecting the system without the aid of proper security assessment
methods and

2. the need to incorporate security mechanism and thinking in all processes
relating to these systems, which results in security assessment needs re-
lating to, for example, systems requirement engineering and configura-
tion management.

Currently, there is a lack of methods addressing all the steps necessary for secu-
rity assessments and all the relevant system aspects. A remaining issue is the
aggregation of measured values into meaningful high-level security values.

In this report, two approaches to security assessment are taken. The first ap-
proach supported by the eXtended Method for Assessment of System Security,
XMASS, (Hallberg et al, 2006) starts from detailed knowledge about the entities
(components) of systems and aggregates this knowledge into system security
values. Here, the XMASS is improved, extended, and implemented as a software
tool.

The second approach is illustrated by a method realizing the process model for
security assessment (Hallberg et al, 2007). The method is based on Bayesian
networks and starts by extracting the needs for security assessment. Thereafter,
the relevant security characteristics, whose assessment will answer the identified
needs, are decided. These relevant security characteristics are connected to
measurable system characteristics and effects, possibly via intermediate comput-
able characteristics. The measurable system characteristics and effects are as-
signed values and thereafter the higher-level security values, including those
corresponding to the relevant security characteristics, are computed. Finally, the
assessment is completed by the interpretation of the security values associated to
the relevant security characteristics. This method illustrates how security can be
methodically assessed, without access to all the details of complex systems, con-
sidering all the activities necessary for complete assessments. As the assessments

 FOI-R--2387--SE

73

evolve, the method supports the inclusion of additional details. Thus, evolution-
ary security assessment is supported.

Moreover, the report describes the design of an environment for the implementa-
tion of security assessment software tools. The environment, referred to as NTE,
alleviates the need to implement method specific databases for the storage of
system and computational models as well as assessment results. Furthermore, the
specification of system characteristics and results constituting the input to as-
sessments is supported.

There are numerous tasks that should be undertaken in order to further support
the development of security assessment methods and tools, as indicated by the
following short list.

• A set of profiles for the XMASS should be assembled.
• A study of the underlying reasons for the assessment results provided by

the XMASS should be undertaken.
• Alternative methods for the selection of priorities for the important secu-

rity requirements and the filter functional requirements used in the
XMASS should be studied.

• Real-word assessment should be performed with XMASS as well as the
proposed method.

• Bayesian network assessments can be performed for all system entities
included in system-wide security assessments. Thus, the proposed
method based on Bayesian network could be combined with a structural
method, such as the XMASS.

FOI-R--2387--SE

 74

Bibliography
ACSA (2002), Proc. Workshop on Information Security System Scoring and
Ranking, Applied Computer Security Associates,
http://www.acsac.org/measurement/proceedings/wisssr1-proceedings.pdf

Anderson, R. (2001). Security engineering: A guide to building dependable dis-
tributed systems, Wiley.

Andersson, R. & Hallberg, J. (2006). System security assessment – a concept
demonstrator, FOI Memo 1798, Linköping, Sweden.

Ben-Gal, I. (2007). Bayesian Networks, in Ruggeri, F., Kenett, R., & Faltin, F.
(editors), Encyclopedia of Statistics in Quality and Reliability, John Wiley &
Sons.
http://www.eng.tau.ac.il/~bengal/BN.pdf

Bengtsson, J. & Brinck, P. (2007). Design and Implementation of an Environ-
ment to Support Development of Methods for Security Assessment, Master’s The-
sis, University of Linköping, LiTH-ISY-EX--07/4022--SE.

Bengtsson, J. & Brinck, P. (2007b). Using NTE with XMASS, FOI Memo 2255,
Linköping, Sweden.
http://itsecurity.foi.se/dfs/FOI-Memo-2255.pdf

Bishop, M. (2003). Computer Security – Art and Science, Addison-Wesley,
ISBN 0-201-44099-7.

CC. (2004). Common Criteria for Information Technology Security Evaluation,
Part 1: Introduction and general model, Part 2: Security functional requirements,
Part 3: Security assurance requirements. Version 2.2, January 2004.

Decision Systems Laboratory. (2007). GeNIe Homepage. University of Pitts-
burgh. (Accessed 2007-12-06).
http://genie.sis.pitt.edu/

Forman, E. & Selly, M. (2002). Decisions by Objective - How to Convince Oth-
ers That You are Right, World Scientific Publishing Company, ISBN 978-
9810241438.

http://www.acsac.org/measurement/proceedings/wisssr1-proceedings.pdf

 FOI-R--2387--SE

75

Gacic, D. (2006). FSA – Framework for Security Assessment of Distributed In-
formation Systems, Master’s thesis, Royal Institute of Technology, Stockholm,
Sweden.

Galitz, W. (2007). The Essential Guide To User Interface Design – An Introduc-
tion to GUI Design Principles and Techniques, Wiley Publishing, ISBN 978-0-
470-05342-3.

Geer, D. (2006). Measuring Security, Lecture Notes, Training program M3. 15th
USENIX Security Symposium, Vancouver, Canada. July 31-August 4, 2006.

Gollmann, D. (2006). Computer Security, 2nd ed, John Wiley & Sons, ISBN 978-
0470862933.

Hallberg, J., Hunstad, A., Bond, A., Peterson, M., & Påhlsson, N. (2004). System
IT Security Assessment, FOI-R—1468—SE, Defence Research Establishment,
Linköping, Sweden.

Hallberg, J., Hunstad, A., & Peterson, M. (2005). A Framework for System Secu-
rity Assessment, Proceedings of the 2005 IEEE Workshop on Information Assur-
ance, West Point, NY, June 2005.

Hallberg, J., Hallberg, N., & Hunstad, A. (2006). Crossroads and XMASS:
Framework and Method for System IT Security Assessment, Scientific report.
FOI-R--2154—SE, FOI, Linköping, Sweden.

Hallberg, J., Hunstad, A., & Hallberg, N. (2007). Handbok för IT-
säkerhetsvärdering (in Swedish), FOI Memo 2099, Linköping, Sweden.
http://itsecurity.foi.se/dfs/FOI-Memo-2099.pdf

Hallberg, N. (1999). Incorporating User Values in the Design of Information
Systems and Services in the Public Sector: A Methods Approach, Dissertation
No. 596, Linköping Studies in Science and Technology.

Peak, P. & Heudecker, N. (2006). Hibernate Quickly, Manning, ISBN 1-932394-
41-9.

Saaty, T. (1994). Fundamentals of Decision Making and Priority Theory – with
the Analytic Hierarchy Process, Vol. VI, RWS Publications, Pittsburgh, USA.

FOI-R--2387--SE

 76

Saaty, L. (2004). Decision Making - The Analytic Hierarchy and Network Proc-
esses (AHP/ANP), Journal of Systems Science and Systems Engineering, vol. 13,
No. 1, pp1-35, March, 2004.

Seddigh, N., Pieda, P., Matrawy, A., Nandy, B., Lambadaris, J., & Hatfield, A.
(2004). Current Trends and Advances in Information Assurance Metrics, Second
Annual Conference on Privacy, Security and Trust, October 13-15, 2004.
http://dev.hil.unb.ca/Texts/PST/pdf/seddigh.pdf

SQLite. (2007). SQLite home page (accessed 27 November 2007).
http://www.sqlite.org/

Swedish Standards Institute. (2004). Terminologi för informationssäkerhet, SIS
HB 550, utgåva 2, ISBN 91-7162-576-3.

Swedish Armed Forces. (2004). Krav på säkerhetsfunktioner – Grunder, 10
750:78976, 2004-12-20.

Vaughn, R., Henning, R., & Siraj, A. (2003). Information Assurance Measures
and Metrics – State of Practice and Proposed Taxonomy, Proceedings of the
Hawaii International Conference on System Sciences (HICSS-36), Waikoloa,
Hawaii, January 6-9, 2003.

 FOI-R--2387--SE

77

Appendix A – The KSF
The KSF documentation (Swedish Armed Forces, 2004) specifies the
requirements of the different security features for each classification
level. Here, the requirements on systems at the different classification
levels have been merged into one list per security feature. In Table 16
to Table 20 these lists of security requirements, compiled from the
KSF documentation, are specified. The lists have been translated by
FOI from their original formulation in Swedish. The original identifi-
cation tags are kept for reference and are referred to as KSF id.

Table 16: Security requirements for access control.

KSF id Req. id Description
HRG-5-1
HCG-5-1
HSG-5-1

AC1 The security function shall, together with the other security
functions in the IT system, maintain its own security domain
which protects against manipulation and disturbances, both
from subjects and users that belong to or do not belong to this
domain.

HRG-5-2
HCG-5-2
HSG-5-2

AC2 The security function shall, together with the other security
functions in the IT system, have the possibility to provide for
reliable time.

HRG-5-3
HCG-5-3
HSG-5-3

AC3 The security function shall make sure that only authorized ad-
ministrators can maintain the security function and handle its
security settings.

HRBK-4-1
HCBK-4-1
HSBK-4-1

AC4 The security function for access control shall prevent the ac-
cess to the IT system’s subjects and objects of users as well as
subjects that are not authorized nor have access rights to the IT
system.

HRBK-4-2
HCBK-4-2
HSBK-4-2

AC5 The security function for access control shall uniquely identify
and authenticate a user before access to any functionality or
provision of access rights is allowed to take place in the IT
system which is protected by the security function.

FOI-R--2387--SE

 78

KSF id Req. id Description
HRBK-4-3
HRBK-4-3
HSBK-4-3

AC6 The security function for access control shall authenticate a
user when:

• logging in,
• canceling temporary access protection,
• changing security attributes for authentication, and
• the time for time-limited use of the IT system’s re-

sources has expired.
HRBK-4-4 AC7 The security function for access control shall ensure a certain

quality of the security attribute, if it is a password, used for au-
thentication, by making sure that the security attribute is pro-
vided with:

• a minimum period of validity,
• a minimum number of approved characters that are

used for creating the security attribute, and
• a maximum period of validity.

HRBK-4-5
HCBK-4-4
HSBK-4-11

AC8 The security function for access control shall ensure that all
users can be made individually responsible (that is non-
repudiation) for their actions in the IT system.

HRBK-4-6 AC9 The security function for access control shall use security at-
tributes of users, subjects, and objects as a control mechanism
when regulating access.

HRBK-4-7 The security function for access control shall use password or
equivalent as control mechanism and security attribute for au-
thentication.

HCBK-4-5
HSBK-4-5

AC10

The security function for access control shall fulfill the require-
ments for strong authentication in compliance with the HKV
MUST ITSA and TSA requirements for signal protection sys-
tems.

HRBK-4-8
HCBK-4-6
HSBK-4-5

AC11 The security function for access control shall be able to take
automatic precautions in case of failed authentications. Such
precautions shall embrace denial of access to the IT system
and locking of the affected user account for a certain period of
time.

HRBK-4-9
HCBK-4-7
HSBK-4-6

AC12 The security function for access control shall support different
specified roles.

 FOI-R--2387--SE

79

KSF id Req. id Description
HRBK-4-10
HCBK-4-8
HSBK-4-10

AC13 The security function for access control shall ensure locking of
security attributes considered to be revealed for users or sub-
jects that are not authorized nor access rights to the IT system.
The locking can be initiated directly or at next log in.

HCBK-5-4
HSBK-5-1

AC14 The security function for access control shall be able to main-
tain a defined secure state when parts of or the entire function-
ality containing data relating to;

• assigned rights for roles,
• users belonging to a role, or
• the relations and restrictions of roles

are corrupt or inaccessible.
HSBK-4-7 AC15 The security function for access control shall ensure that there

is no role, user, or subject, which has access to all subjects and
objects that are available in the IT system the security function
is meant to protect.

HSBK-4-8 AC16 The security function for access control shall ensure that au-
thorized administrators, whose task is to handle the security in
the IT system the security function is meant to protect, by no
means have authority or access to the security logs in the same
IT system.

HSBK-4-9 AC17 The security function for access control shall ensure that au-
thorized administrators, whose task is to handle and inspect the
security logs in the IT system the security function is meant to
protect, by no means have the same authority or access as the
authorized administrators who handle the security in the same
IT system.

HSBK-5-2 AC18 The security function for access control shall be able to main-
tain a defined state of security when the security attributes used
for authentication and access decisions are corrupt or inacces-
sible.

HSBK-5-5 AC19 The security function for access control shall be able to provide
defined and agreed on administrative roles with the possibility
to verify the correctness of the executable code that involves
the security function.

FOI-R--2387--SE

 80

Table 17: Security requirements for security logging.

KSF id Req. id Description
HRG-5-1
HCG-5-1
HSG-5-1

SL1 The security function shall, together with the other security func-
tions in the IT system, maintain its own security domain which
protects against manipulation and disturbances, both from sub-
jects and users that belong to or do not belong to this domain.

HRG-5-2
HCG-5-2
HSG-5-2

SL2 The security function shall, together with the other security func-
tions in the IT system, have the possibility to provide reliable time.

HRG-5-3
HCG-5-3
HSG-5-3

SL3 The security function shall make sure that only authorized admin-
istrators can maintain the security function and handle its security
settings.

HRSL-4-1
HCSL-4-1

The security function for security logging shall, in a security log,
register events that are of relevance for the security of the IT
system.

HSSL-4-1

SL4

The security function for security logging shall, in a security log,
register events that are of relevance for the security of the IT
system, including:

• the use of control mechanisms for authentication,
• access to subjects and objects, and
• changes to access control lists.

HRSL-4-2
HCSL-4-2
HSSL-4-2

SL5 The security function for security logging shall, together with each
registered event, also register date and time for the event and the
identity of the user or subject.

HRSL-4-3
HCSL-4-3

The security function for security logging shall ensure that track-
ing of misuse, and attempts to misuse, of the IT system can be
performed.

HSSL-4-3

SL6

The security function for security logging shall ensure that the
tracking of misuse, attempts to misuse, and potential misconfigu-
rations of the IT system endangering the security can be per-
formed.

HRSL-4-4
HCSL-4-4

SL7 The security function for security logging shall ensure that all
events registered in the security log can be presented in readable
format.

 FOI-R--2387--SE

81

KSF id Req. id Description
HSSL-4-4 The security function for security logging shall ensure that all

events registered in the security log can be presented in readable
format and that the inspection of the registered events can be
performed.

HRSL-4-5
HCSL-4-5

The security function for security logging shall enable tool-based
inspection of the events registered in the security log.

HSSL-4-5

SL8

The security function for security logging shall enable tool-based
inspection of the events registered in the security log. The inspec-
tion shall be based on the possibility to sort and seek registered
events.

HRSL-4-6
HCSL-4-6

The security function for security logging shall enable back up of
the security log.

HSSL-4-6

SL9

The security function for security logging shall enable back up of
the security log. Back ups should be based on printouts or copy-
ing to other storage medias.

HRSL-4-7
HCSL-4-7
HSSL-4-7

SL10 The security function for security logging shall ensure that no
registered events are erased, overwritten, or in other ways de-
stroyed as a consequence of flaws in the security function or the
security log being full.

HSSL-5-1 SL11 The security function for security logging shall be able to maintain
a defined secure state when events cannot be logged.

HSSL-5-2 SL12 The security function for security logging shall ensure that no user
activity takes place in the IT system if the security log is inactive.

Table 18: Security requirements for intrusion prevention.

KSF id Req. id Description
HRIS-5-1
HCIS-5-1
HSIS-5-1

IP1 The security function for intrusion prevention shall, through self-
inspection, perform controls of integrity:

• at start-up,
• when authorized administrators so calls for, and
• when resuming ordinary operations from a secure state

in order to demonstrate correct functionality of the underlying
solution.

FOI-R--2387--SE

 82

KSF id Req. id Description
HRIS-5-2
HCIS-5-2
HSIS-5-2

IP2 The security function for intrusion prevention shall be able to
maintain a defined state of security when the entire or parts of the
functionality, which restricts the information allowed to be trans-
ferred through the security function, is corrupt or inaccessible.

HRG-5-1
HCG-5-1
HSG-5-1

IP3 The security function shall, together with the other security func-
tions in the IT system, maintain its own security domain which
protects against manipulation and disturbances, both from sub-
jects and users that belong to or do not belong to this domain.

HRG-5-2
HCG-5-2
HSG-5-2

IP4 The security function shall, together with the other security func-
tions in the IT system, have the possibility to provide for reliable
time.

HRG-5-3
HCG-5-3
HSG-5-3

IP5 The security function shall make sure that only authorized admin-
istrators can maintain the security function and handle its security
settings.

HRIS-4-1
HCIS-4-1
HSIS-4-1

IP6 The security function for intrusion prevention shall hinder all ac-
cess to the subjects and objects of the IT system for those sub-
jects that do not have access rights to the IT system.

HRIS-4-2
HCIS-4-2
HSIS-4-4

IP7 The security function for intrusion prevention shall restrict the
information allowed to be transferred through the security func-
tion by controlling both incoming and outgoing flows of informa-
tion.

HRIS-4-3
HCIS-4-3
HSIS-4-5

IP8 The security function for intrusion prevention shall ensure that no
information is transferred without using the configured filters of
the security function.

HRIS-4-4
HCIS-4-7

The security function for intrusion prevention shall enable con-
figurations allowing information to flow only in one direction
through the security function.

HSIS-4-7 The security function for intrusion prevention shall be constructed
so that the transferring of information through the security func-
tion takes place with separate interfaces for incoming and outgo-
ing flows of information.

HSIS-4-8

IP9

The security function for intrusion prevention shall be constructed
so that each interface ensures that information can only flow in
one direction through the interface.

HRIS-4-5 IP10 The security function for intrusion prevention shall ensure that
information classified as RESTRICTED is not transferred to other
IT systems than those which can handle information classified as
RESTRICTED or higher.

 FOI-R--2387--SE

83

KSF id Req. id Description
HCIS-4-8 The security function for intrusion prevention shall ensure that

information classified as CONFIDENTIAL is not transferred to
other IT systems than those which can handle information classi-
fied as CONFIDENTIAL or higher.

HSIS-4-9 The security function for intrusion prevention shall ensure that
information classified as SECRET is not transferred to other IT
systems than those which can handle information classified as
SECRET or higher.

HRIS-4-6
HSIS-5-8

The security function for intrusion prevention shall prevent not
identified subjects from using, influencing, or in other ways ma-
nipulating the security function.

HCIS-4-6
HSIS-4-3

IP11

The security function for intrusion prevention shall in case of
identification and authentication errors deny access to, and use
of the security function.

HRIS-4-7
HCIS-4-9
HSIS-4-
10

IP12 The security function for intrusion prevention shall ensure that no
disallowed network traffic is transferred through the security func-
tion.

HRIS-4-8
HCIS-4-
10
HSIS-4-
11

IP13 The security function for intrusion prevention shall limit the infor-
mation a user or a subject receives as response when denied
access to the security function.

HCIS-4-4 The security function for intrusion prevention shall be constructed
so that those filters used in the security function are equivalent to
the application protocol level, and that there exist a filter for each
protocol.

HSIS-4-6

IP14

The security function for intrusion prevention shall be constructed
so that those filters that are used in the security function are
equivalent to the application protocol level, and that there exist a
filter for respective protocol. Further, additional restrictions shall
be able to be performed at protocol level, e.g., only certain types
of instructions can be transferred.

HCIS-4-5 IP15 The security function for intrusion prevention shall identify and
authenticate subjects that transfer information through the secu-
rity function when establishing such communication. The authen-
tication shall involve two different security attributes.

FOI-R--2387--SE

 84

KSF id Req. id Description
HSIS-4-2 The security function for intrusion prevention shall identify and

authenticate those subjects that transfer information through the
security function when establishing such communication The
authentication shall involve three different security attributes of
whom one is a cryptographic function.

HCIS-5-3
HSIS-5-3

IP16 Following an incorrect behavior of the security function or an
interruption for maintenance, the security function for intrusion
prevention shall resume at a defined secure state.

HSIS-5-6 IP17 The security function for intrusion prevention shall be able to
provide defined and decided on administrative roles with the
possibility to verify the correctness of the executable code of the
security function.

Table 19: Security requirements for intrusion detection.

KSF id Req. id Description
HCG-5-1
HSG-5-1

ID1 The security function shall, together with the other security func-
tions in the IT system, maintain its own security domain which
protects against manipulation and disturbances, both from sub-
jects and users that belong to or do not belong to this domain.

HCG-5-2
HSG-5-2

ID2 The security function shall, together with the other security func-
tions in the IT system, have the possibility to provide for reliable
time.

HCG-5-3
HSG-5-3

ID3 The security function shall make sure that only authorized admin-
istrators can maintain the security function and handle its secu-
rity settings.

HCID-4-1
HSID-4-1

ID4 The security function for intrusion detection shall enable detec-
tion of already performed intrusions as well as ongoing intru-
sions.

HCID-4-2
HSID-4-2

ID5 The security function for intrusion detection shall, together with
each separate registered event, also register time and date for
the event as well as the identity of the user or subject.

HCID-4-3 ID6 The security function for intrusion detection shall ensure that all
registered events can be presented in a form that is interpretable
for authorized persons.

 FOI-R--2387--SE

85

KSF id Req. id Description
HSID-4-3 The security function for intrusion detection shall ensure that all

registered events can be presented in a form that is interpretable
for authorized persons and that inspection of the registered
events can be performed.

HCID-4-4
HSID-4-4

ID7 The security function for intrusion detection shall enable tool-
based inspection of registered events. The inspection shall be
based on the possibility to sort and seek registered events.

HCID-4-5
HSID-4-6

ID8 The security function for intrusion detection shall ensure that
tracing of misuse as well as attempts to misuse that could en-
danger the security of the IT system can be performed.

HCID-4-6
HSID-4-8

ID9 The security function for intrusion detection shall ensure that no
registered events are erased, overwritten or in other ways de-
stroyed as a consequence of flaws in the security function or the
event log being full.

HSID-4-5 ID10 The security function for intrusion detection shall, through auto-
matic analysis, be able to conclude whether defined rules have
been violated. The defined rules shall include such events that
are known to represent misuse of or intrusion in IT systems.

HSID-4-7 ID11 The security function for intrusion detection shall ensure that
registered events can be analyzed together with security relevant
events registered by the security function for security logging.

HSID-5-1 ID12 Following an incorrect behavior of the security function or an
interruption for maintenance, the security function for intrusion
detection shall resume at a defined secure state.

Table 20: Security requirements for protection against malware.

KSF id Req. id Description
HRG-5-1
HCG-5-1
HSG-5-1

PM1 The security function shall, together with the other security func-
tions in the IT system, maintain its own security domain which
protects against manipulation and disturbances, both from sub-
jects and users that belong to or do not belong to this domain.

HRG-5-2
HCG-5-2
HSG-5-2

PM2 The security function shall, together with the other security func-
tions in the IT system, have the possibility to provide for reliable
time.

HRG-5-3
HCG-5-3
HSG-5-3

PM3 The security function shall make sure that only authorized admin-
istrators can maintain the security function and handle its secu-
rity settings.

FOI-R--2387--SE

 86

KSF id Req. id Description
HRSK-5-4
HCSK-5-1
HSSK-5-1

PM4 The security function for protection against malware shall,
through self-inspection, perform controls of integrity at start-up
and when authorized administrators so calls for, in order to dem-
onstrate correct functionality of the underlying solution.

HRSK-4-1
HCSK-4-1

PM5 The security function for protection against malware shall hinder
all access to the resources of the IT system by objects containing
malware.

HRSK-4-2
HCSK-4-2

PM6 The security function for protection against malware shall,
through the control mechanism, ensure that no malware can:

• change,
• destroy, or
• in other ways manipulate

the objects in the IT systems protected by the security function.
HRSK-4-3
HCSK-4-4
HSSK-4-4

PM7 The security function for protection against malware shall ensure
detection of malware by controlling both incoming and outgoing
information flows.

HRSK-4-4
HCSK-4-5
HSSK-4-5

PM8 The security function for protection against malware shall ensure
that no information is transferred to or from the IT system without
the control mechanism of the security function being in use.

HRSK-4-5
HCSK-4-7
HSSK-4-7

PM9 The security function for protection against malware shall, if
malware is detected, be able to automatically take measures.
Such measures shall include the placement of infected subjects
or objects in quarantine as well as warning authorized adminis-
trators and the affected user.

HRSK-4-6
HCSK-4-3

PM10 The security function for protection against malware shall use a
definition file as control mechanism for the objects in the IT sys-
tem protected by the security function.

HRSK-4-7
HCSK-4-8
HSSK-4-8

PM11 The security function for protection against malware shall per-
form controls of subjects and objects:

• during operation,
• at start-up, and
• when authorized administrators call for it.

HRSK-4-8
HCSK-4-9
HSSK-4-9

PM12 The security function for protection against malware shall be able
to automatically update the protection against malware in a se-
cure manner.

 FOI-R--2387--SE

87

KSF id Req. id Description
HCSK-4-6
HSSK-4-6

PM13 The security function for protection against malware shall,
through automatic analysis, be able to detect potential malware.
Such analysis shall include comparison to the definition file for
the objects protected by the security function.

HSSK-4-3 PM14 The security function for protection against malware shall use
two from each other independent control mechanisms for protec-
tion against malware for the objects in the IT system protected by
the security function. The first control mechanism shall be control
against the definition file and the second shall be configuration
control.

HSSK-5-2 PM15 The security function for protection against malware shall only
accept verified and validated objects for use as control mecha-
nisms.

HSSK-5-3 PM16 The security function for protection against malware shall be able
to maintain a defined secure state when the entire or parts of the
functionality that detects malware, is corrupt, inaccessible, or out
of date.

FOI-R--2387--SE

 88

Appendix B – Security Profile Template Data
Nine security experts at FOI were asked to classify a set of security requirements
regarding intrusion detection into the groups of fundamental and important secu-
rity requirements. The results are presented in Table 21.

Table 21: Results from the classification of security requirements.

Req. id Description Fund. Imp.
ID1 The security function shall, together with the other security

functions in the IT system, maintain its own security domain
which protects against manipulation and disturbances, both
from subjects and users that belong to or do not belong to
this domain.

7 2

ID2 The security function shall, together with the other security
functions in the IT system, have the possibility to provide for
reliable time.

1 8

ID3 The security function shall make sure that only authorized
administrators can maintain the security function and handle
its security settings.

8 1

ID4 The security function for intrusion detection shall enable
detection of already performed intrusions as well as ongoing
intrusions.

3 6

ID5 The security function for intrusion detection shall, together
with each separate registered event, also register time and
date for the event as well as the identity of the user or sub-
ject.

4 5

ID6 The security function for intrusion detection shall ensure
that all registered events can be presented in a form that is
interpretable for authorized persons and that inspection of
the registered events can be performed.

6 3

ID7 The security function for intrusion detection shall enable
tool-based inspection of registered events. The inspection
shall be based on the possibility to sort and seek registered
events.

1 8

ID8 The security function for intrusion detection shall ensure
that tracing of misuse as well as attempts to misuse that
could endanger the security of the IT system can be per-
formed.

2 7

 FOI-R--2387--SE

89

Req. id Description Fund. Imp.
ID9 The security function for intrusion detection shall ensure

that no registered events are erased, overwritten or in other
ways destroyed as a consequence of flaws in the security
function or the event log being full.

3 6

ID10 The security function for intrusion detection shall, through
automatic analysis, be able to conclude whether defined
rules have been violated. The defined rules shall include
such events that are known to represent misuse of or intru-
sion in IT systems.

4 5

ID11 The security function for intrusion detection shall ensure
that registered events can be analyzed together with secu-
rity relevant events registered by the security function for
security logging.

4 5

ID12 Following an incorrect behavior of the security function or
an interruption for maintenance, the security function for
intrusion detection shall resume at a defined secure state.

7 1

In the next step of calculating the security profile template, seven of the security
experts were asked to do pair-wise prioritizations of the important security re-
quirements regarding their relative importance for intrusion detection. To calcu-
late the consistency ratio a random index of 1.40 was used (Saaty, 2004). The
results are presented for each security expert below.

FOI-R--2387--SE

Security expert #1
Eigenvector

0.05412162

0.27244935

0.05554643

0.02041516

0.14360530

0.25730182

0.13230863

0.06425169

 ID2 ID4 ID5 ID7 ID8 ID9 ID10 ID11

ID2 1.00 0.20 3.00 5.00 0.33 0.20 0.20 0.20

ID4 5.00 1.00 5.00 7.00 1.00 3.00 3.00 5.00

ID5 0.33 0.20 1.00 5.00 0.20 0.20 0.20 3.00

ID7 0.20 0.14 0.20 1.00 0.20 0.14 0.20 0.33

ID8 3.00 1.00 5.00 5.00 1.00 0.33 1.00 3.00

ID9 5.00 0.33 5.00 7.00 3.00 1.00 5.00 5.00

ID10 5.00 0.33 5.00 5.00 1.00 0.20 1.00 3.00

ID11 5.00 0.20 0.33 3.00 0.33 0.20 0.33 1.00

The resulting λmax is 8.83865523, which results in a CR of 0.085577064.

Security expert #2

Eigenvector

0.07637572

0.23640149

0.05212524

0.02418577

0.12972791

0.28284958

0.14818227

0.05015202

 ID2 ID4 ID5 ID7 ID8 ID9 ID10 ID11

ID2 1.00 0.20 3.00 3.00 0.33 0.20 0.33 3.00

ID4 5.00 1.00 5.00 7.00 3.00 1.00 1.00 3.00

ID5 0.33 0.20 1.00 5.00 0.33 0.20 0.33 1.00

ID7 0.33 0.14 0.20 1.00 0.20 0.14 0.20 0.33

ID8 3.00 0.33 3.00 5.00 1.00 0.33 1.00 3.00

ID9 5.00 1.00 5.00 7.00 3.00 1.00 3.00 5.00

ID10 3.00 1.00 3.00 5.00 1.00 0.33 1.00 3.00

ID11 0.33 0.33 1.00 3.00 0.33 0.20 0.33 1.00

The resulting λmax is 8.540040748, which results in a CR of 0.055106199.

 90

 FOI-R--2387--SE

Security expert #3

Eigenvector

0.11886305

0.12663438

0.10288044

0.19293375

0.08602272

0.14634867

0.17343511

0.05288189

 ID2 ID4 ID5 ID7 ID8 ID9 ID10 ID11

ID2 1.00 0.50 4.00 0.50 1.00 0.33 1.00 2.00

ID4 2.00 1.00 2.00 1.00 2.00 0.33 0.50 2.00

ID5 0.25 0.50 1.00 0.50 3.00 0.50 1.00 3.00

ID7 2.00 1.00 2.00 1.00 3.00 3.00 1.00 3.00

ID8 1.00 0.50 0.33 0.33 1.00 2.00 0.50 1.00

ID9 3.00 3.00 2.00 0.33 0.50 1.00 0.33 2.00

ID10 1.00 2.00 1.00 1.00 2.00 3.00 1.00 3.00

ID11 0.50 0.50 0.33 0.33 1.00 0.50 0.33 1.00

The resulting λmax is 9.289458362, which results in a CR of 0.131577384.

Security expert #4
 ID2 ID4 ID5 ID7 ID8 ID9 ID10 ID11

ID2 1.00 0.33 0.14 0.20 3.00 0.20 0.14 0.20

ID4 3.00 1.00 0.20 1.00 3.00 0.33 0.14 0.33

ID5 7.00 5.00 1.00 5.00 7.00 3.00 1.00 3.00

ID7 5.00 1.00 0.20 1.00 3.00 0.33 0.20 0.33

ID8 0.33 0.33 0.14 0.33 1.00 0.20 0.14 0.20

ID9 5.00 3.00 0.33 3.00 5.00 1.00 1.00 1.00

ID10 7.00 7.00 1.00 5.00 7.00 1.00 1.00 1.00

ID11 5.00 3.00 0.33 3.00 5.00 1.00 1.00 1.00

Eigenvector

0.03219647

0.05719631

0.28742586

0.06632414

0.02485662

0.15114770

0.22970520

0.15114770

The resulting λmax is 8.492594079, which results in a CR of 0.050264702.

91

FOI-R--2387--SE

Security expert #5
Eigenvector

0.03953189

0.27472469

0.05361184

0.07796354

0.25893413

0.16393436

0.03102417

0.10027539

 ID2 ID4 ID5 ID7 ID8 ID9 ID10 ID11

ID2 1.00 0.14 0.20 0.33 0.33 0.20 3.00 0.33

ID4 7.00 1.00 3.00 5.00 1.00 3.00 5.00 5.00

ID5 5.00 0.33 1.00 0.33 0.14 0.20 1.00 0.20

ID7 3.00 0.20 3.00 1.00 0.20 0.33 3.00 1.00

ID8 3.00 1.00 7.00 5.00 1.00 3.00 5.00 3.00

ID9 5.00 0.33 5.00 3.00 0.33 1.00 5.00 3.00

ID10 0.33 0.20 1.00 0.33 0.20 0.20 1.00 0.20

ID11 3.00 0.20 5.00 1.00 0.33 0.33 5.00 1.00

The resulting λmax is 9.134003055, which results in a CR of 0.115714597.

Security expert #6

Eigenvector

0.02775270

0.07474926

0.06395837

0.11556264

0.07948889

0.45330587

0.10493437

0.08024790

 ID2 ID4 ID5 ID7 ID8 ID9 ID10 ID11

ID2 1.00 1.00 1.00 0.11 0.11 0.11 0.11 0.11

ID4 1.00 1.00 1.00 1.00 1.00 0.33 1.00 1.00

ID5 1.00 1.00 1.00 1.00 1.00 0.11 1.00 1.00

ID7 9.00 1.00 1.00 1.00 3.00 0.33 1.00 1.00

ID8 9.00 1.00 1.00 0.33 1.00 0.11 1.00 1.00

ID9 9.00 3.00 9.00 3.00 9.00 1.00 9.00 9.00

ID10 9.00 1.00 1.00 1.00 1.00 0.11 1.00 3.00

ID11 9.00 1.00 1.00 1.00 1.00 0.11 0.33 1.00

The resulting λmax is 9.33515756, which results in a CR of 0.136240567.

 92

 FOI-R--2387--SE

Security expert #7
Eigenvector

0.06988432

0.03835145

0.03802031

0.28130986

0.19125345

0.10719688

0.11511120

0.15887252

 ID2 ID4 ID5 ID7 ID8 ID9 ID10 ID11

ID2 1.00 3.00 3.00 0.20 1.00 0.20 0.33 0.33

ID4 0.33 1.00 3.00 0.20 0.20 0.20 0.33 0.20

ID5 0.33 0.33 1.00 0.33 0.33 0.33 0.33 0.33

ID7 5.00 5.00 3.00 1.00 3.00 3.00 3.00 3.00

ID8 1.00 5.00 3.00 0.33 1.00 3.00 3.00 3.00

ID9 5.00 5.00 3.00 0.33 0.33 1.00 0.33 0.33

ID10 3.00 3.00 3.00 0.33 0.33 3.00 1.00 0.33

ID11 3.00 5.00 3.00 0.33 0.33 3.00 3.00 1.00

The resulting λmax is 9.433909563, which results in a CR of 0.146317302.

93

FOI-R--2387--SE

Appendix C – Filter Profile Template Data
A group of seven security experts at FOI was asked to do pair-wise prioritiza-
tions of the filter functional requirements regarding their relative importance for
protection against intrusions. To calculate the consistency ratio a random index
of 1.11 was used (Saaty, 2004). The results are presented for each security expert
below.

Security expert #1

Eigenvector

0.43624387

0.24432562

0.05672748

0.08297309

0.17972994

 FF1 FF2 FF3 FF4 FF5

FF1 1.00 3.00 5.00 5.00 3.00

FF2 0.33 1.00 3.00 3.00 3.00

FF3 0.20 0.33 1.00 0.33 0.33

FF4 0.20 0.33 3.00 1.00 0.20

FF5 0.33 0.33 3.00 5.00 1.00

The resulting λmax is 5.517357452, which results in a CR of 0.116521949.

Security expert #2

Eigenvector

0.42185435

0.26891255

0.05144932

0.10035410

0.15742968

 FF1 FF2 FF3 FF4 FF5

FF1 1.00 3.00 5.00 3.00 3.00

FF2 0.33 1.00 5.00 3.00 3.00

FF3 0.20 0.20 1.00 0.33 0.33

FF4 0.33 0.33 3.00 1.00 0.33

FF5 0.33 0.33 3.00 3.00 1.00

The resulting λmax is 5.355379053, which results in a CR of 0.080040327.

 94

 FOI-R--2387--SE

Security expert #3
Eigenvector

0.09554934

0.27703497

0.21992337

0.08844028

0.31905204

 FF1 FF2 FF3 FF4 FF5

FF1 1.00 0.33 0.50 1.00 0.33

FF2 3.00 1.00 2.00 3.00 0.50

FF3 2.00 0.50 1.00 3.00 1.00

FF4 1.00 0.33 0.33 1.00 0.33

FF5 3.00 2.00 1.00 3.00 1.00

The resulting λmax is 5.155943287, which results in a CR of 0.035122362.

Security expert #4

Eigenvector

0.54099374

0.17983441

0.07895714

0.03975870

0.16045602

 FF1 FF2 FF3 FF4 FF5

FF1 1.00 3.00 5.00 7.00 7.00

FF2 0.33 1.00 3.00 5.00 1.00

FF3 0.20 0.33 1.00 3.00 0.33

FF4 0.14 0.20 0.33 1.00 0.20

FF5 0.14 1.00 3.00 5.00 1.00

The resulting λmax is 5.317595167, which results in a CR of 0.071530443.

Security expert #5

Eigenvector

0.10188673

0.51005210

0.24070564

0.05103443

0.09632111

 FF1 FF2 FF3 FF4 FF5

FF1 1.00 0.20 0.33 3.00 1.00

FF2 5.00 1.00 3.00 5.00 7.00

FF3 3.00 0.33 1.00 5.00 3.00

FF4 0.33 0.20 0.20 1.00 0.33

FF5 1.00 0.14 0.33 3.00 1.00

The resulting λmax is 5.236764074, which results in a CR of 0.053325242.

95

FOI-R--2387--SE

Security expert #6
Eigenvector

0.10420067

0.44006347

0.35082887

0.05006158

0.05484542

 FF1 FF2 FF3 FF4 FF5

FF1 1.00 0.11 0.11 5.00 3.00

FF2 9.00 1.00 1.00 9.00 7.00

FF3 9.00 1.00 1.00 3.00 3.00

FF4 0.20 0.11 0.33 1.00 1.00

FF5 0.33 0.14 0.33 1.00 1.00

The resulting λmax is 5.824547286, which results in a CR of 0.185708848.

Security expert #7

Eigenvector

0.06226527

0.10803614

0.34144010

0.17036380

0.31789469

 FF1 FF2 FF3 FF4 FF5

FF1 1.00 0.33 0.20 0.33 0.33

FF2 3.00 1.00 0.33 0.33 0.33

FF3 5.00 3.00 1.00 3.00 1.00

FF4 3.00 3.00 0.33 1.00 0.33

FF5 3.00 3.00 1.00 3.00 1.00

The resulting λmax is 5.288953999, which results in a CR of 0.06507973.

 96

	Introduction
	Motivation
	Problem Formulation
	Contributions
	Report Layout

	Background
	IT Security
	IT Security Assessment
	Security Metrics
	Process Model for Security Assessment
	Analyze Needs Regarding Security Assessment
	Establish Relevant Security Characteristics
	Connect Measurable Security Characteristics and Effects to t
	Measure Selected Security Characteristics and Effects
	Compute Security Values
	Interpret Security Values

	The eXtended Method for Assessment of System Security
	Entity Security Profiles
	Security Profile Templates
	Calculation of Security Profile Values

	Traffic Mediator Filter Profiles
	Filter Profile Templates
	Calculation of Filter Profile Values

	Bayesian networks

	Development of the XMASS
	Relation Profiles
	Network of Entities
	Improvements of Calculations
	Calculation of Security Profile Templates
	Calculation of Filter Profile Templates
	Combination of Multiple Paths between Traffic Generators

	Creating Profile Templates
	Creating a Security Profile Template
	Step 1 – Decide on a Set of Security Features
	Step 2 – Decide Security Requirements
	Step 3 – Divide the Security Requirements
	Step 4 – Prioritize the Security Requirements
	Step 5 – Calculate the Security Profile Template

	Creating a Filter Profile Template
	Step 1 – Decide a Set of Requirements
	Step 2 – Prioritize the Requirements
	Step 3 – Calculate the Filter Profile Template

	Reflections on Results

	Development of Assessment Tool Environment and Assessment To
	Design
	Developer Perspective
	User Perspective

	Structure Overview
	Front-end Application
	Plugins
	Interfaces
	The Common Library
	Project File
	Requirement Collection Editor

	Plugin Handling
	Tool Plugins
	Tool Plugin Interface

	Database Plugins
	NTE Database Plugin Interface
	Tool Database Interface
	NTE Database Interface

	Common Library
	Project Handling
	Structure of the NTE File Format

	Requirements Handling
	DbSQLite
	Object-Relational Mapping
	Object Caching
	Database Operations
	Fetch
	Store
	Delete

	The XMASS Tool Plugin
	Graphical User Interface
	Presentation of Results

	Implementation of the Process Model for Security Assessment
	Security Assessment Method
	Analyze Needs
	Define Relevant Security Characteristics
	Connect to System Characteristics and Effects
	System Modeling Regarding Entities
	Identification of Measurable System Characteristics and�Effe
	System Modeling Regarding Characteristics and Effects
	Specification of Computations Model

	Measure Security Values
	Compute Security Values
	Interpret Security Values

	Example
	Analyze Needs
	Define Relevant Security Characteristics
	Connect to System Characteristics and Effects
	Measure Security Values
	Compute Security Values
	Interpret Security Values

	Conclusions

