
Attacking and Deceiving
Military AI Systems

FARZAD KAMRANI, LINUS KANESTAD,
LINUS J. LUOTSINEN, BJÖRN PELZER,
JOHAN SABEL, VIKTOR SANDSTRÖM,
AGNES TEGEN

FOI-R--5396--SE
ISSN 1650-1942 March 2023

Attacking and Deceiving
Military AI Systems

Farzad Kamrani, Linus Kanestad,
Linus J. Luotsinen, Björn Pelzer,
Johan Sabel, Viktor Sandström,
Agnes Tegen

FOI-R--5396--SE

Titel

Title

Report no

Month

Year

Pages

ISSN

Customer

FOI Research area

Armed Forces R&T area

Project no

Approved by

Division

Export control

Bild/Cover: adversarial patch, generated using https://github.com/andrewpatrickdu/adversarial-yolov3-cowc

This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted
in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law,
requires the written permission of FOI.

Angrepp och vilseledning
av militära AI-system

Attacking and Deceiving
Military AI Systems

FOI-R--5396--SE

March

2023

46

ISSN-1650-1942

Swedish Armed Forces

C3 and Human Factors

Command and Control

E38519

Linda Sjödin

Cyber Defence and C2 Technology

The content has been reviewed and does not contain information
which is subject to Swedish export control.

2 (46)

FOI-R--5396--SE

Summary

This report investigates adversarial machine learning (AML), the research into
methods of exploiting weaknesses in AI systems based on machine learning
(ML). In recent years, machine learning, especially deep learning (DL), has al-
lowed rapid progress in diverse fields like image classification, natural language
processing and autonomous agents. As such DL is also of interest in military
contexts. Yet, alongside the progress there has been a rising interest in AML
methods, with new attack variations being published constantly. Practically
all DL-systems are susceptible in some way, whether it is to confuse them, to
avoid being detected by them, or to extract secret information they may hold.
From a military perspective it is important to be aware of the possibility of
such exploits, both against the own AI systems and against those used by an
adversary.
The report provides an overview of AML research, and then showcases a selec-
tion of attack methods against different types of AI systems:

� poisoning of image classification systems, enabling military vehicles to
avoid detection;

� extraction attacks that can retrieve secret information from large gener-
ative models;

� adversarial policy attacks where an adversary behaves in a manner that
confound autonomous agents.

Each case describes and discusses the attacks and evaluates implementations.
The focus of this report is on the attacks. While defence against AML methods
is discussed briefly where applicable, a more in-depth study of AML defence is
the subject of a follow-up report.

Keywords: artificial intelligence, machine learning, deep learning, deep neural
networks, deception, cyber attacks, attack vectors, vulnerabilities, adversarial
examples, data poisoning, data extraction, adversarial policy

3 (46)

FOI-R--5396--SE

Sammanfattning

Denna rapport studerar AML (eng. adversarial machine learning, fientlig ma-
skininlärning), forskningen om metoder som exploaterar svagheter i AI-system
som använder sig av maskininlärning (ML). Under de senaste åren har maski-
ninlärning, och särskilt djupinlärning (DL), lett till snabba framsteg i m̊anga
olika omr̊aden s̊asom bildklassificering, NLP (eng. natural language processing,
spr̊akteknologi) och autonoma agenter. DL är därför av stort intresse inom
militära sammanhang. Men parallellt med framstegen ökar ocks̊a forskningen
inom AML, och nya attackvarianter publiceras nästan dagligen. Praktiskt ta-
get alla DL-system är s̊arbara i n̊agon form, vare sig att de kan bli förvirrade,
att en motst̊andare kan undvika att detekteras, eller att hemlig information
kan extraheras ur systemen. Fr̊an ett försvarsperspektiv är det viktigt att vara
medveten om möjligheten att s̊adana angrepp kan genomföras, b̊ade mot egna
AI-system och mot de av en motst̊andare.
Rapporten ger en översikt över forskningen inom AML. Sedan presenteras tre
fallstudier om angreppsvarianter mot olika typer av AI-system:

� förgiftning (eng. poisoning) av bildklassificerare, s̊a att militära fordon
undviker att bli upptäckta;

� extraktion (eng. extraction) av hemlig information ur stora generativa
modeller;

� fientlig policy (eng. adversarial policy): attacker där motst̊andaren beter
sig p̊a ett sätt som vilseleder autonoma agenter.

Varje fallstudie beskriver och diskuterar attackerna och evaluerar implemente-
ringar.
Rapporten fokuserar p̊a angreppen. Försvar mot AML diskuteras kort där det
är lämpligt, men en mer djupg̊aende studie av AML-försvar är tema för en
kommande rapport.

Nyckelord: artificiell intelligens, maskininlärning, djupinlärning, djupa neu-
ronnät, vilseledning, cyberangrepp, attackvektorer, s̊arbarheter, manipulation
av indata, dataförgiftning, dataextraktion, fientlig policy

4 (46)

FOI-R--5396--SE

Contents

1 Introduction 6

1.1 Objective and Scope . 8

1.2 Target Readership . 8

1.3 Reading Instructions . 8

1.4 Outline . 8

2 Adversarial Machine Learning 9

2.1 AML Statistics and Trends . 9

2.2 Taxonomy of AML Attacks . 11

2.2.1 Knowledge . 11

2.2.2 Domain . 12

2.2.3 Specificity . 12

2.2.4 Type . 13

2.2.5 Scope . 14

2.2.6 Perception . 14

3 Case Studies 15

3.1 Data Poisoning . 16

3.1.1 Hidden Trigger Backdoor Attacks 16

3.1.2 Experimental Setup . 18

3.1.3 Results . 20

3.1.4 Discussion . 22

3.2 Data Extraction . 22

3.2.1 Language Models . 23

3.2.2 Experimental Setup . 25

3.2.3 Results . 27

3.2.4 Discussion . 30

3.3 Attacking Deep Reinforcement Learning 31

3.3.1 Perturbing Observation 32

3.3.2 Adversarial Policies . 33

3.3.3 Defeating Superhuman AIs 34

3.3.4 Discussion . 37

4 Conclusions 39

Bibliography 41

5 (46)

FOI-R--5396--SE

1 Introduction
The advent of deep learning (DL) has brought the performance and capability
of intelligent computer software into new levels of performance. Embedding
DL-based software in military command, control, communications, computers,
intelligence, surveillance and reconnaissance (C4ISR) systems has the potential
to revolutionize the ability to create accurate and timely common operational
pictures (COPs) such that military decision making processes can be performed
faster and with greater precision than ever before. In the long, term DL may
also be used to create military plans in complex warfare environments that
stretch far beyond what humans are capable of.

However, DL-based software, implemented by deep neural networks (DNNs),
is vulnerable to a breed of threats or cyber attacks. These are studied and de-
veloped in the adversarial machine learning (AML) research field. The attacks
can potentially be used to deceive decision makers, reduce system performance,
lower end user trust and even extract (i.e., reverse engineer) sensitive military
data from the system. Figure 1.1 illustrates an example of a typical AML
attack where the target is a DNN used to classify image contents. In this
case, the DNN is able to correctly recognize that the original image in Fig-
ure 1.1a contains a fighter jet with near perfect certainty. The malicious image
in Figure 1.1b, which was created by applying AML techniques on the original
image, is able to fool the same DNN into classifying the input as a Siberian
husky instead of a fighter jet. In this case, the attack is effective despite being
imperceptible to the human eye.

To the best of our knowledge AML has not yet been used by adversaries or
advanced persistent threat (APT) actors to target and attack DL-based soft-
ware embedded in real-world military systems. However, research teams and
security experts continuously demonstrate that attacks are possible againstn
a wide range of applications that rely on DL to achieve cutting edge per-
formance [1]. For instance, carefully replacing words in sentences can cause
language models to misclassify sentiments [2]. Traffic sign and lane detection
systems used by autonomous cars can be attacked by placing stickers on the
signs and the road respectively [3, 4]. Transcription services can be misled
by injecting carefully designed noise forcing the system to convert speech into
arbitrary text [5, 6]. As such, assuming that DL-based software will be ubiq-
uitously used in future C4ISR support systems, it is expected that adversaries
and APTs will eventually exploit these vulnerabilities to deceive, deny access
or gather intelligence.

6 (46)

FOI-R--5396--SE

0

0.2

0.4

0.6

0.8

1

Fighter jet

Other classesP
ro

b
ab

il
it

y

(a) Benign input and DNN classification output

0

0.2

0.4

0.6

0.8

1

Siberian husky

Fighter jetP
ro

b
ab

il
it

y

(b) Malicious input and DNN classification output

Figure 1.1 – An example attack using AML. In this case the target is an image
classification system represented by a DNN. Figure 1.1a shows that the DNN is able to
correctly classify the benign (non-manipulated) input as a fighter jet with near perfect
certainty. Figure 1.1b shows a manipulated image created using AML techniques.
The manipulated image successfully fools the DNN to classify the input as a Siberian
husky instead of a fighter jet.

7 (46)

FOI-R--5396--SE

1.1 Objective and Scope
The objectives of this report are: (1) to present an overview of the attack
vectors that have been identified in the AML research field to date, (2) to em-
pirically estimate the efficacy of a subset of these attacks in a military context,
and finally (3) to provide insights and discuss to what degree AML is a realistic
and serious threat in real-world military applications of DL.

Although AML is applicable to any ML-based system and algorithm, this
report focuses on ML systems that are based on DL. Furthermore, this report
will focus on attacks. Defence mechanisms that have been proposed and de-
veloped in the AML research field will be covered in future works. Finally,
we limit the scope to applications of DL that are relevant in the context of
command and control (C2), intelligence, surveillance and reconnaissance.

1.2 Target Readership
The target readership of this report is personnel that operate, acquire or de-
velop military systems where AI, ML and DL technologies are used by or
embedded in the systems.

1.3 Reading Instructions
This report assumes that the reader has basic knowledge about ML and DL
concepts such as supervised learning, reinforcement learning, loss functions,
gradient descent and backpropagation. Readers lacking such knowledge are
encouraged to read chapter 2 in the FOI-report FOI-R–4849–SE [7] prior to
proceeding with this report.

1.4 Outline
Chapter 2 provides an introduction to AML and presents a taxonomy that
is used to categorize and compare attacks in this report. Chapter 3 presents
three case studies of known attack methods that may become relevant from a
military perspective. The methods are implemented and evaluated. Chapter 4
concludes the report with a discussion on the real-world applicability of AML,
including in in the military domain.

8 (46)

FOI-R--5396--SE

2 Adversarial Machine Learning
AML is the combination of cyber security and ML [8] (Figure 2.1). The aim
of AML is to design secure ML systems that can resist attacks performed by
adversaries and, naturally, also to study and develop attack capabilities, limi-
tations and consequences [9]. This chapter focuses primarily on the capabilities
and limitations of attacks that have been proposed in the AML literature. Po-
tential consequences of attacks on military systems are presented in Chapter 4.

2.1 AML Statistics and Trends
The AML research field has been active since at least 2004 [10, 11]. It is how-
ever not until recently that the field has gained significant attention. Figure 2.2
shows that the interest and the number of research contributions in this field
started to grow in 2017 according to data extracted from Google Trends (Fig-
ure 2.2a) and the Arxiv database (Figure 2.2b) respectively. It is worth noting
that more than 1,200 articles were submitted to the Arxiv database in 2021
and 2022.

Cyber security
Machine
learningAML

Figure 2.1 – AML is a research field that lies in the intersection of cyber security and
machine learning. The main focus of the field is to ensure that ML-systems are secure
and robust when deployed in environments where adversarial actions are expected.

9 (46)

FOI-R--5396--SE

2014-01 2015-05 2016-09 2018-02 2019-06 2020-11 2022-03
0

20

40

60

80

100

In
te
re
st

ov
er

ti
m
e

(a) Interest over time for AML according to Google Trends. The term “adversarial machine
learning” was used to acquire data based on web searches in the interval 2014-01-01 to 2022-
12-31. Note that interest over time is a relative metric within the chosen interval. A value
of 100 represents the peak of popularity and 50 means the topic is half as popular within the
selected interval.

2014 2015 2016 2017 2018 2019 2020 2021 2022
0

200

400

600

800

1,000

1,200

N
o.

of
ar
ti
cl
es

(p
re
-p
ri
n
ts
)

(b) Number of AML-related pre-print articles submitted to arxiv.org for each year in the interval
2014 to 2022. Article selection was performed by searching for abstracts that included at least one
of the terms “adversarial machine learning”, “adversarial example” or “adversarial attack”. Note
that no articles was submitted in 2014 whereas more than 1,200 articles were submitted in 2021
and 2022. In total the database contains 4,465 articles on the topic in this interval.

Figure 2.2 – Data acquired from Google Trends (Figure 2.2a) and arxiv.org (Fig-
ure 2.2b) reveals that the interest and scientific contributions in the AML-field started
to increase in 2017.

10 (46)

FOI-R--5396--SE

2.2 Taxonomy of AML Attacks
The taxonomy presented in Figure 2.3 is used in this report to categorize
and compare existing as well as future AML attacks. The taxonomy, which is
adapted from previously developed taxonomies [12, 9, 11, 13, 8, 14, 15], consists
of the following categories: (1) knowledge, (2) domain, (3) specificity, (4) type,
(5) scope, and (6) perception. Each category is further separated into two or
more subclasses.

2.2.1 Knowledge
The category knowledge refers to how much knowledge the attacker has of
the ML system they are attacking. There exist three subclasses within this
category, white-box attacks, grey-box attacks and black-box attacks.

White-box

In white-box attacks the adversary has full knowledge of the target ML system,
including, e.g., training and testing data as well as parameters of the model.
White-box attacks are therefore the easiest attacks to pursue for an attacker,
but the most challenging case when defending against attacks. They are often
used as worst-case scenarios during security analysis [16]. Athalye et al. claim
that many defences are not as robust as they might appear and can provide
a false sense of security [17]. They studied white-box defences presented in
papers accepted at the International Conference on Learning Representations
in 2018. They found that 7 out of 9 defences relied on a certain type of gradient
masking called obfuscated gradients [18]. The authors focus on the defences
with obfuscated gradients and managed to successfully circumvent 6 completely
and one partially.

Attack

Specificity

Knowledge Type

Domain

ScopePerception

Grey-box

White-box

Black-box

Physical
Digital

Individual
Universal

Hidden
Visible

Targeted
Non-targeted

Evasion

Poisoning

Extraction

Backdoor

Surrogate

Figure 2.3 – Taxonomy for AML attacks from an adversary’s perspective. The tax-
onomy consists of six classes (i.e., knowledge, domain, specificity, type, scope and
perception). Each class in turn consists of two or more subclasses.

11 (46)

FOI-R--5396--SE

Grey-box

In the case of grey-box attacks the adversary has limited knowledge about
the ML system [16]. For instance, they might have knowledge only about
feature representation and optimization algorithms. The attacker can create a
surrogate model based on the available knowledge and then transfer adversarial
examples to the target ML model. The main idea is that an adversarial example
that evades one model will evade other models that are similar.

Black-box

If the adversary does not have any knowledge of the model or its attributes,
the attacks are defined as black-box. Black-box attacks are the most difficult
type of attacks for the adversary to pursue. In this case, the attacker can
only get information about the ML model by querying the system for labels
or confidence scores. Papernot et al. constructed an attack based only on
knowledge about labels given to the target ML algorithm for chosen inputs [18].
They showed that their attack was successful on multiple real-world scenarios,
including evading defence strategies, which have previously been found to make
adversarial example crafting more difficult.

2.2.2 Domain
The domain category describes whether the attack is in the physical or digital
domain. More specifically, this category distinguishes whether the adversary
has altered information in the physical world or digital data to reach their
desired outcome.

Physical

While attacks in the digital domain might be more common and well-known,
there are many application areas where possible attacks within the physical
domain need to be considered. Attacks in the physical domain mean that the
adversary alters elements in the physical world, typically to make the machine
learning algorithm classify the target incorrectly. Athalye et al. proposed an
algorithm for constructing adversarial examples over a selected distribution of
transformations [19]. Based on the examples, they then created physical 2D
and 3D objects which were adversarial over a large and realistic distribution of
viewpoints.

Digital

The digital domain is where most attacks are carried out. There exists a
variety of attacks within this category. For instance, in an image classification
problem an input image might be manipulated to change the outcome from
the classification. Figure 1.1 displays an example of this where the attack is
hidden. Kurakin et al. discuss adversarial training, where the aim is to make
a model more robust by training it on adversarial examples [20]. They address
the risk of the adversarially trained model to perform better on adversarial
examples than on clean examples, an effect called label leaking. In the case of
label leaking, the model has learnt the regularities in the construction process
of the adversarial examples.

2.2.3 Specificity
Specificity refers to how particular the attack is intended to be, i.e., does the
adversary target specific classes in the output or is any outcome accepted as

12 (46)

FOI-R--5396--SE

long as it is a false negative. The specificity of an attack is not binary but rather
a continuous spectrum [12]. The two subclasses presented below, targeted and
non-targeted attacks can be seen as the two extremes of the spectrum.

Targeted

At one end of the specificity spectrum are the targeted attacks. A targeted
attack is focused on a specific point or a small set of points [12]. Carlini et
al. study a defence strategy frequently used against adversarial attacks called
defensive distillation [21]. They emphasize the importance of analysing how
a defence might be attacked, not only against currently existing attacks, but
also against future attacks. If an attack fails, it is relevant to understand why
it failed when constructing defences.

Non-targeted

Opposite on the spectrum to the targeted attacks are the non-targeted attacks.
They do not have a specific target for the attack, but have a more flexible
goal where the adversary tries to find any opportunity to exploit and the aim
is to misclassify as many samples as possible [12]. Liu et al. study transfer-
ability of adversarial examples in both targeted and non-targeted attacks [22].
Transferability is the possibility and success rate of transferring adversarial ex-
amples adapted for one model to another. They found that transferability was
prominent for non-targeted attacks, even if the model and dataset were large.

2.2.4 Type
The type of attack describes what the aim of the attack is and the form it takes.
The three subclasses of type are poisoning, evasion and extraction.

Poisoning

In poisoning attacks, the training data is manipulated by the adversary. For in-
stance, data might be labelled as harmless when it actually is malicious through
adversarial contamination. In Section 3.1, experiments with poisoning attacks
within a military application are carried out. The experiments train an ML
algorithm to recognize vehicles in images. The experiments focus on the ability
of the ML algorithm to distinguish between military tanks and cars. Manipu-
lated images are included in the training set, to perturb the classification, and
the effect on the results are studied.

Evasion

Evasion is the most common type of attack. It does not involve modifying
the training data, as with poisoning, but rather modifying test data (i.e., data
used on the trained model). The aim of the attack is to evade detection by
any potential defence. Elsayed et al. create adversarial examples that not
only manage to evade multiple ML models, but also humans [23]. The authors
point out that this is in contrast to the widely made assumption that while
ML classifiers can be fooled by adversarial examples, humans can not. Evasion
attacks are also applicable to models trained via reinforcement learning rather
than examples; Section 3.3 investigates several variations of adversarial policy
attacks against such models. Nonetheless, there is a major difference between
attacks on reinforcement learning models compared to other machine learn-
ing methods as reinforcement learning models are trained to solve sequential
decision-making problems in contrast to most other machine learning methods
that are trained to solve single-step prediction problems [16].

13 (46)

FOI-R--5396--SE

Extraction

Extraction attacks do not modify data, unlike poisoning and evasion. Instead
they aim at extracting information from a trained ML model. The information
can then be used to reconstruct the ML model by the adversary. In other
cases, the adversary might simply want access to the information itself, which
can be confidential or sensitive. In Section 3.2, extraction is studied through
experiments on language models. The aim is to extract information regarding
the data which the model is trained on. The section includes a defensive
experiment where unique patches are added to language data, which makes
the model less susceptible to the attack by making it more difficult for the
model to memorize data.

2.2.5 Scope
An attack can be constructed so that it alters a specific input or alters input in
general. Scope describes this characteristic of an attack, which can be universal
or individual.

Individual

Individual attacks are the most common attack. They generate an individual
perturbation used to manipulate each individual example [24].

Universal

Universal attacks create one perturbation, which can then be used for all input
data [24]. Universal attacks are easier to deploy in the real world, compared
to individual attacks, as the perturbation does not need to change, even if the
input changes. Madry et al. [25] utilize a universal adversary in their exper-
iments and present evidence that DNN can be made resistant to adversarial
attacks. Their focus is on certain datasets and they claim that further work
will lead to adversarially robust networks. Still, it is important to remember
the back-and-forth between attacks and defences, as soon as a new defence has
been introduced, new attacks start to be developed.

2.2.6 Perception
Perception describes whether an attack is detectable or not for a human, by
only looking at the input data for instance.

Hidden

A hidden attack is, as the name suggests, not visible to a human. An example
of a hidden attack is the work by Elsayed et al. [23], where they manage to
trick humans with manipulated input. Figure 1.1 contains another example
where the attack is hidden.

Visible

Visible attacks are visible to a human eye, yet manage to fool the ML system
if successful. This could be for instance a portion of an image that is modified,
such as a trigger patch (described further in Section 3.1).

14 (46)

FOI-R--5396--SE

3 Case Studies
This chapter presents three case studies, which explore different types of at-
tacks against ML-based systems. In each case one type of attack method is
chosen from the AML-literature and implemented or tested from a military
perspective. The efficacy of the attack is evaluated, followed by a discussion
on practical considerations. The three case studies were selected due to their
potential relevance for the military domain, to cover a broad range of attacks,
and to illustrate a variety of ML applications and methods.

Chapter 1 opened with the example of deceiving a DNN into misinterpret-
ing an image of a fighter jet as a dog. While hiding military equipment in
plain sight has obvious appeal, the introductory example is highly idealized. A
practical application faces a hurdle in that the attack is limited to the digital
domain: The manipulation is performed on the digital image itself, that is, at
a stage after the fighter jet was photographed. If the image was created by
the adversary (e.g., the jet was filmed by a surveillance camera), manipulating
the image would require deep access into the enemy systems. This is unlikely
to be available (and if it is, simpler and more robust attacks become feasi-
ble, such as eliminating the image or preventing its recording). Furthermore,
while black-box knowledge about the targeted DNN can be sufficient to com-
pute the required image modifications (e.g., observation of classification label
results [18]), in practice even this knowledge cannot be expected.

The first case study in Section 3.1 therefore investigates data poisoning.
The objective of this attack is the same as in the introductory example: en-
able military vehicles (in this case tanks) to evade detection by deceiving the
enemy DNN into misclassification of the vehicles. Still, while the methods are
similar as well, the poisoning attack addresses the practical shortcomings of
the introductory example.

Section 3.2 expands the scope to attacks on language models via data ex-
traction. Language models are very large DNNs trained on extensive text
corpora (typically many billions of words), enabling in some sense an “un-
derstanding” of (written) language. They have caused a paradigm change in
natural language processing, setting new benchmarks in numerous tasks [26],
and garnering much media attention for their ability to generate text [27]. In-
deed, progress even during the compilation of this report has been remarkable,
for example with the presentation of the ChatGPT system1. Language models
are continuously closing in on human levels of natural language processing,
and their potential effects and consequences for virtually all aspects of society,
including military applications, are difficult to predict at this time. Besides
opportunities, they also bring risks, for example in that they may expose sen-
sitive information to an adversary. The case study in Section 3.2 investigates
the feasibility of this form of adversarial extraction attack.

Section 3.3 studies attacks on models trained via reinforcement learning.
Such models are typically used for autonomous agents in unmanned vehicles,
robots, games and similar. They are not trained in a supervised manner on a
fixed set of examples. Instead, the agent evaluates its situation with a reward
function and chooses a course of action that maximizes the reward. While this
mode of operation provides agents with flexibility and resilience for dealing with
the real world, they are nevertheless susceptible to attacks and deception, as
this case study will demonstrate on a variety of systems based on reinforcement

1https://openai.com/blog/chatgpt/

15 (46)

FOI-R--5396--SE

learning.

3.1 Data Poisoning
This case study examined a data poisoning technique that is used to deceive
DL-based computer vision models by making them misclassify certain images.
Specifically, models used to classify images as either “tank” or “car” were
poisoned (see Section 2.2) during the training process by manipulating their
training data. The goal was to trick the models into classifying images of mil-
itary tanks as “car”, but only for tank images that had been injected with a
trigger. In this context, trigger refers to a small image patch that has been
pasted on an image (the patch contains a specific trigger pattern).

The poisoning attacks described in this case study are digital attacks in the
sense that the trigger is added during post-processing of the images. However,
in theory, it would be possible to perform similar physical attacks by attaching
a physical trigger to real-world objects before any images are captured. Hence,
one could imagine a tank bypassing a DL-based military vehicle detection sys-
tem when covered with just a small physical trigger patch.

Furthermore, the poisoning attack itself is executed before the targeted DL-
system is deployed, by manipulating the model during its creation and training.
The subsequent actual evasion requires no complex additional manipulation of
the deployed detector, nor any access into its operation.

3.1.1 Hidden Trigger Backdoor Attacks
A naive approach to poisoning a training dataset of images is to paste a trigger
patch on some of the images in the dataset and change the associated class
label [28]. For instance, if the training dataset contains images of military
tanks and civilian passenger cars, an adversary could poison the dataset by
pasting the trigger on some of the tank images and label those images as
“car”. If a victim then trains a DL-based binary classification model on the
poisoned dataset, the trained model will tend to misclassify unseen test images
of tanks as “car” when the trigger pattern is present in the tank images. The
reason for this is that the model has learnt to associate the characteristic trigger
pattern with the class label “car”. This data poisoning approach is illustrated
in Figure 3.1.

One limitation of the attack described above is that the trigger is clearly
visible, even for a human, when briefly inspecting the training images. Fur-
thermore, the images that contain the trigger are mislabelled. This makes it
less likely that a victim would actually train a model on such images.

Hidden trigger backdoor attacks [29] are a type of data poisoning attack
where the DL-based classification model is only trained on images that do
not contain a visible trigger. All training images are also correctly labelled.
Although the trigger pattern is not revealed during training, it can still be
pasted onto images at test time, thus causing the trained model to misclassify
the images.

Figure 3.2 illustrates the concept behind the hidden trigger backdoor at-
tack proposed by Saha, Subramanya, and Pirsiavash [29] (the figure has been
adapted for the two classes used in this case study). The basic poison gener-
ation idea is, through optimization, to find a poisoned car image carpoisoned
(i.e., an altered car image) that is close to a corresponding original car image
caroriginal in pixel space, but also close to a patched tank image tankpatched in
feature space. In other words, the goal is to generate a poisoned image that
visually looks like the original car image, but has similar features as the tank

16 (46)

FOI-R--5396--SE

Poison the
training dataset

Train a classification model
on the poisoned dataset

Evaluate the poisoned
model on a test dataset

Tank

+

Car
Model

Model

Model

Model

"Car"

"Tank"

"Car"

1.
 2.
 3.

Train

Test

Test

Test

Figure 3.1 – Data poisoning attack using a visible trigger and mislabelled training
images. In this figure, all patched tank images have been outlined in red for clarity.

image with a trigger patch. In this case, features refer to the intermediate fea-
tures f(·) of some pre-trained DL-based classification model, such as AlexNet
or ResNet. Note that this pre-trained model is only used as a reference during
poison generation, for the purpose of obtaining the feature representations of
the patched tank image. This model is not being trained further; its parameters
are frozen.

Poison the
training dataset

Train a classification model
on the poisoned dataset

Evaluate the poisoned
model on a test dataset

Tank

Car
Model

Model

Model

Model

"Car"

"Tank"

"Car"

1.
 2.
 3.

Train

Test

Test

Test

Optimize

Figure 3.2 – Data poisoning attack using only correctly labelled training images and
a hidden trigger that is not revealed until test time. In this figure, all patched tank
images have been outlined in red, while all poisoned car images have been outlined in
yellow.

17 (46)

FOI-R--5396--SE

Formally, the poison generation algorithm [29] alters the pixel values of the
poisoned car image to minimize the distance ‖f(carpoisoned)− f(tankpatched)‖22
between the poisoned car image features f(carpoisoned) and the patched tank
image features f(tankpatched). This is done subject to the constraint that
‖carpoisoned − caroriginal‖∞ < ε, where ε ≈ 16 when image pixel values range
between 0− 255. The constraint ensures that each pixel value of the poisoned
car image remains relatively close to the corresponding original value, i.e., it
will still look like the poisoned image contains a car after the pixel values have
been altered. Note that this explanation is slightly simplified and omits a few
algorithmic details necessary to generalize the data poisoning attack [29].

The final poisoned training dataset is built by adding some of the poisoned
car images to a dataset already containing clean images of tanks and cars that
have not been altered in any way (Figure 3.2). If a victim fine-tunes a pre-
trained DL-based classification model on the poisoned dataset, the model will
learn to associate the poisoned car images with the class label “car”. However,
since the poisoned car images have feature representations that are similar to
those obtained from patched tank images, the model will also associate patched
tank images with the class label “car” even though the training dataset does
not contain any patched tank images. Hence, the trigger pattern is not revealed
during fine-tuning.

If the data poisoning attack is successful, the fine-tuned model will tend to
classify clean car images as “car”, clean tank images as “tank”, and patched
tank images as “car” (Figure 3.2). This model behaviour makes the victim
believe that the model works as intended; at least until the adversary starts
using the trigger pattern.

3.1.2 Experimental Setup
The description of the experimental setup used in this case study can be divided
into: (1) the process behind generating clean images of cars and tanks; (2) the
process behind generating poisoned images of cars; and, (3) the approach for
fine-tuning classifiers on poisoned datasets and testing their performance.

Generating clean images of cars and military tanks

It is difficult to find sufficiently large datasets containing images of military
tanks. Therefore, a dataset containing clean images of tanks and cars was
generated using the software Virtual Battle Space 3 (VBS3) from Bohemia
Interactive Simulations. The generated dataset contains 10 tank models and
10 car models (example images are shown in Figure 3.3). 1,000 images of each
vehicle model were generated, i.e., the dataset contains 20,000 images in total.
The images were captured at different locations in the simulator using different
camera angles, and each car model was generated in different colours while each
tank model was generated using different camouflage paint schemes.

Generating poisoned images of cars

Two DL-based classification models were used to generate poisoned car images:
AlexNet [30] and ResNet-18 [31]. Both models were available with pre-trained
weights on the ImageNet dataset [32] that contains 1,000 object classes and
approximately one million images. In this case study, each pre-trained model
was used on 1,000 clean car images and 1,000 clean tank images (different
images for each model) to generate 1,000 poisoned car images. In other words,
2,000 car images and 2,000 tank images were collected from our dataset in
order to generate 2,000 poisoned car images. This was achieved by pasting

18 (46)

FOI-R--5396--SE

GAZ-24 Octavia Falcon Ute Golf Calais Hatchback Lada Skoda 105 Hilux Skoda

T-90A Leopard
2A4

T-72B T-80U Challenger
2

T-14 M1A1 US Strv 122 M1A2 M1A1 AU

Figure 3.3 – Images of 10 car models and 10 tank models available in VBS3.

a trigger patch on a random location in each tank image and altering the
pixel values of the car images following the optimization scheme proposed by
Saha, Subramanya, and Pirsiavash [29], which is described in Section 3.1.1.
All images had a resolution of 224×244 pixels, while the trigger patch had a
resolution of 30×30 pixels (i.e., it only covered 1.8 % of each tank image). Some
of the patched tank images and poisoned car images are shown in Figure 3.4.

(a) Patched tank images used when generating poisoned car images.

(b) Poisoned car images generated using AlexNet.

(c) Poisoned car images generated using ResNet.

Figure 3.4 – Patched military tank images, and poisoned car images generated using
AlexNet and ResNet.

Fine-tuning classification models on poisoned training datasets and
testing their performance

After the poisoned car images had been generated, pre-trained classification
models were fine-tuned on training datasets containing clean car images (la-
belled as “car”), clean tank images (labelled as “tank”), and poisoned car
images (labelled as “car”). During fine-tuning, the models were trained to
classify the images as either “car” or “tank”, guided by the labels to gradually
improve performance. The fine-tuned models were then tested on clean car
images, clean tank images, and patched tank images covered with the same
trigger pattern used during poison generation. Note that different images were
used for poison generation, fine-tuning, and testing.

To be more specific, two classification models were fine-tuned and tested:
AlexNet and ResNet-18 (both pre-trained on ImageNet). The AlexNet and
ResNet models used during poison generation were not reused during fine-
tuning and testing (new instances of the models were always used). By using
AlexNet and ResNet models it was possible to measure the test performance

19 (46)

FOI-R--5396--SE

of AlexNet after being fine-tuned on poisoned images generated using ResNet,
and ResNet after being fine-tuned on poisoned images generated using AlexNet.
Saha, Subramanya, and Pirsiavash [29] did not study this type of generalized
attack where the victim, who is supposed to fine-tune a classification model on
poisoned images, does not necessarily use the same model architecture as the
adversary who generated the poisoned images.

3.1.3 Results
This section presents the results from testing classification models that had
been fine-tuned on training datasets containing poisoned images of cars.

AlexNet fine-tuned on poisoned datasets generated using AlexNet

The test performance of AlexNet, when fine-tuned on poisoned images gen-
erated using an AlexNet model, is presented in Table 3.1. The performance
is reported as the test accuracy on clean car images, clean tank images, and
patched tank images, respectively. The patched test images were created by
pasting the trigger patch on each clean tank image used for testing (i.e., the
same images were used when testing AlexNet on clean and patched tank images
except from the trigger pattern being present in the patched images).

Table 3.1 – Classification performance of four AlexNet models; each one fine-tuned on
a different training dataset containing a specific number of poisoned car images, clean
car images, and clean tank images. The test performance of each model is reported as
the accuracy on 1,000 clean car images, 1,000 clean tank images, and 1,000 patched
tank images, respectively. All poisoned car images were generated using AlexNet.

Number of Training Images Accuracy on Test Images

Model Poisoned Cars Clean Cars Clean Tanks Clean Cars Clean Tanks Patched Tanks

AlexNet 0 1,000 1,000 99.80 % 99.90 % 97.10 %
AlexNet 100 900 1,000 99.70 % 99.50 % 5.10 %
AlexNet 300 700 1,000 99.50 % 99.30 % 1.00 %
AlexNet 500 500 1,000 99.40 % 99.20 % 1.00 %

The first row of Table 3.1 shows that when AlexNet had been fine-tuned on
1,000 clean car images and 1,000 clean tank images, it achieved very high test
accuracy on clean car images, clean tank images, and patched tank images (i.e.,
almost all patched tank images were correctly classified as “tank”). This is not
surprising since the model had not been fine-tuned on any poisoned images.

The second row of Table 3.1 shows that when AlexNet had been fine-tuned
on 100 poisoned car images, 900 clean car images, and 1,000 clean tank images,
it still achieved almost perfect accuracy on clean car images and clean tank
images. However, AlexNet only managed to correctly classify 5.10 % of the
patched tank images. In other words, 94.90 % of the patched tank images were
incorrectly classified as “car” after fine-tuning AlexNet on a dataset in which
5 % of the images had been poisoned. This indicates that the data poisoning
attack was successful. The last two rows of the table show that the accuracy on
patched tank images decreased even further as the number of poisoned images
in the training dataset increased.

ResNet fine-tuned on poisoned datasets generated using ResNet

The test performance of ResNet-18, when fine-tuned on poisoned images gen-
erated using a ResNet-18 model, is presented in Table 3.2. Just like AlexNet,
ResNet achieved almost perfect accuracy when only fine-tuned on clean images.
However, the last three rows of the table show that the accuracy on patched

20 (46)

FOI-R--5396--SE

tank images decreased significantly after fine-tuning ResNet models on poi-
soned car images. When using 500 poisoned images, ResNet only achieved
53.70 % accuracy on patched tank images. Nevertheless, the results indicate
that the poisoning attack seems to be more successful on AlexNet, which was
the only model studied by Saha, Subramanya, and Pirsiavash [29].

Table 3.2 – Classification performance of four ResNet models; each one fine-tuned on
a different training dataset. The test performance of each model is reported as the
accuracy on 1,000 clean car images, 1,000 clean tank images, and 1,000 patched tank
images, respectively. All poisoned images were generated using ResNet.

Number of Training Images Accuracy on Test Images

Model Poisoned Cars Clean Cars Clean Tanks Clean Cars Clean Tanks Patched Tanks

ResNet 0 1,000 1,000 99.90 % 99.80 % 99.50 %
ResNet 100 900 1,000 99.90 % 98.50 % 74.90 %
ResNet 300 700 1,000 99.90 % 98.00 % 65.50 %
ResNet 500 500 1,000 99.80 % 98.40 % 53.70 %

AlexNet and ResNet fine-tuned on poisoned datasets generated using
AlexNet and ResNet

The test performance of AlexNet and ResNet-18, when fine-tuned on poisoned
images generated using AlexNet and ResNet-18, is presented in Table 3.3. The
first two rows show that AlexNet, when fine-tuned on 500 poisoned car images
generated using ResNet (R), achieved 97.10 % test accuracy on patched tank
images, while ResNet, when fine-tuned on 500 poisoned car images generated
using AlexNet (A), achieved 98.90 % accuracy. Hence, the data poisoning
attack does not seem to be successful when fine-tuning a classification model
on poisoned images generated using another model architecture.

Table 3.3 – Classification performance of AlexNet and ResNet when fine-tuned on
clean car images, clean tank images, and poisoned car images generated using
AlexNet (A) and ResNet (R). The test performance is reported as the accuracy on
1,000 clean car images, 1,000 clean tank images, and 1,000 patched tank images,
respectively.

Number of Training Images Accuracy on Test Images

Model Poisoned Cars Clean Cars Clean Tanks Clean Cars Clean Tanks Patched Tanks

AlexNet 500 (R) 500 1,000 99.90 % 99.90 % 97.10 %
ResNet 500 (A) 500 1,000 99.50 % 99.50 % 98.90 %
AlexNet 100 (A), 400 (R) 500 1,000 99.60 % 99.50 % 5.40 %
ResNet 100 (A), 400 (R) 500 1,000 99.80 % 97.70 % 63.00 %

However, the last two rows of Table 3.3 show that after fine-tuning both
AlexNet and ResNet on the same dataset, containing poisoned car images gen-
erated using an AlexNet model and a ResNet model, AlexNet achieved 5.40 %
test accuracy on patched tank images while ResNet achieved 63.00 % accu-
racy. In other words, it is possible to generalize the data poisoning attack and
to some extent deceive both models using a single poisoned training dataset.
That is, one could imagine expanding the training dataset with poisoned images
generated using many different model architectures, thus making it possible to
deceive many different classification models. However, that would require a
rather large number of poisoned images, which in turn would make it nec-
essary to increase the size of the entire dataset. There is also no guarantee
that, for instance, 400 poisoned images generated using a ResNet model would
be enough to deceive another ResNet model in a scenario where the training
dataset contains 10,000 images in total instead of 2,000 images.

21 (46)

FOI-R--5396--SE

3.1.4 Discussion
It is possible to create datasets containing clean car images, clean tank images,
and poisoned car images that are difficult to distinguish visually from clean car
images. The poisoned images can be used to inject backdoors in classification
models that are fine-tuned on the datasets, causing the fine-tuned models to
misclassify tank images that contain a specific trigger pattern. However, it is
not trivial to generalize the data poisoning attack since it only seems to be
successful when a classification model is fine-tuned on poisoned images that
have been generated using the same model architecture. On the other hand,
the high cost of training new models from scratch means that transfer learning
is becoming the default method in applied DL, and a widespread usage of
relatively few core architectures may offset this limitation of the attack. Finally,
following the approach proposed by Saha, Subramanya, and Pirsiavash [29], this
case study used a trigger patch size of 30×30 pixels and ε = 16 (i.e., no pixel
value of the original car images was allowed to be altered more than 16 when
generating poisoned versions of the images). These two parameters could be
experimented with to potentially make the attack even more effective.

From a practical perspective, the poisoning attack has the advantage in
that its effects can be carried over into the physical domain, by applying trig-
ger patches to the actual tanks that have to evade the poisoned DL-detector.
No access to the detector system itself is necessary, as the attack relies on the
detector developers unwittingly utilizing the poisoned images during the train-
ing phase, before the deployment of the system. However, this indirect nature
of the poisoning attack is also a weakness: The attacker has little control over
ensuring that the targeted developers use the poisoned images, if the targets
are to remain unaware. Rather, the most feasible way would likely be to anony-
mously publish the images in open dataset collections, such as Kaggle2, and to
hope that the targeted developers will retrieve and use the images on their own
accord. On the other hand, lack of training data is a general problem in the
machine learning community, and this is especially severe with respect to public
training data of a military nature, as evident in our own experiment that had
to fall back on synthetic tank images. An open dataset for military detector
training would be highly attractive to developers of such systems, increasing
the feasibility of the attack.

3.2 Data Extraction
Extraction attacks fundamentally differ from the methods in the previous case
study in that they do not aim at manipulating the effectiveness of a targeted
model. Instead, the goal is to gain insights into the knowledge behind the
model, specifically the data on which it was trained. Extraction attacks as
in this section assume only access to the basic and intended functionality of
the targeted model; they work by providing suitable inputs and observing the
output (rather than, for example, by disassembling the model - an activity
widely considered epistemically futile).

Deep generative models are generally the most promising candidates for ex-
traction attacks, as unlike classifiers they produce outputs of a similar category
as their training data. For instance, language models are trained on texts and
generate texts, generative image models are trained on images and produce
images. A successful extraction attack makes the targeted model generate an

2Kaggle is an online community platform for data scientists and machine learning enthusi-
asts, which hosts, among others, a large variety of public datasets (https://www.kaggle.com/
datasets).

22 (46)

FOI-R--5396--SE

output that is identical to a data point of its original training data.
The attack in this case study applies a known approach [33] to a modern

language model, implementing the method and using it to extract training
data from GPT-2 language models. Taxonomically, this extraction attack is
in the digital domain, and from a knowledge perspective it is a grey-box at-
tack in the sense that some aspects of the model are known and some of their
functionalities are accessible. While only a fraction of the original data could
be recreated in the experiment, it nevertheless indicates an inherent vulnera-
bility of language models. As adversarial machine learning is relatively new
field, more sophisticated methods of data extraction may still emerge, reveal-
ing even more original data. Leakage of data hidden indirectly in a language
model is thus an actual risk, and this may include sensitive data, even classified
information within a military context, provided the model was trained on such
data.

3.2.1 Language Models
Language models (LM) have been drawing public attention for their capabil-
ity to generate natural language output of a quality that approaches human-
written text, even allowing the models to engage in conversations. The GPT
series initially saw strictly limited release amid warnings of the technology be-
ing too dangerous - warnings that may have been motivated more by a desire
for media speculation than genuine concern. Since then, LM developers have
increasingly opted for a more open approach, by making the models them-
selves available or by providing public interfaces. LM are today being used as
chat bots and for text-based games.3 Commercial applications are still at an
explorative stage, but Google and Microsoft utilize language models in their
search engines, and the media company BuzzFeed intends to have some of its
content synthesized by AI.4 The ramifications of the technology for military
applications are likewise not still clear, but areas such as report generation and
summarization are of obvious interest, as is the potential deployment in user
interfaces.

Training such models is computationally costly. For example, OpenAI
trains the GPT series language models on a supercomputer that has been
reported as being in the global top five.5 Creating a new LM from scratch for
a specific application is not feasible for most developers. Instead, a common
method is transfer learning, that is the developer takes a public pre-trained LM
and trains it further on selected texts from the intended application domain.
That way the broad language understanding from the costly initial training
gets fine-tuned, adapted to the specific task, without having to start from a
blank slate. The fine-tuning step is considerably less costly, requiring between
minutes and a few days on modern desktop computers.

The extraction attack demonstrated in this section used GPT-2 [27] as its
target, a well-performing LM of a size that is still manageable in academic
laboratory conditions. The typical operation of an LM like GPT-2 is to accept
some textual input, the prompt, which may range from as little as a single
word to several lines of text, and then generate more text based on this input.
The generated text is a prediction, the words most likely to follow given the
prompt, according to the probabilities the language model has derived from
the vast training data. In this process of generation it is not apparent what

3https://beta.character.ai/
4https://www.buzzfeed.com/jonah/our-way-forward
5https://news.microsoft.com/source/features/ai/openai-azure-supercomputer/

23 (46)

FOI-R--5396--SE

specific individual data the model relies on for the prediction. If not overfitted6,
it delivers a generalized view of the data that was used for its training. Hence,
its output will not solely rely on one example of training data. The term black
box (not to be confused with the black-box attack category from the taxonomy
in Section 2) is often used to describe the complexity of such predictions and
the difficulty in understanding the decision-making of the model. The output
is a result of a large number of weights within the DNN of the language model,
originating from a large number of data points and slowly adjusted during the
training process, with each individual data point having little impact on the
final model. Thus, when the model is considered a black box, the original
data points are commonly understood to be “lost” in the training: As the
model architecture is not designed to explicitly store any specific data points,
it is often assumed that they can no longer be retrieved from the model alone,
without access to the original training dataset.

Theoretical background

Natural language models such as GPT-2 are probability distributions over se-
quences of words. When GPT-2 processes text, each word is encoded into
one or more pre-defined tokens [35]. A token is a sequence of characters, and
a shorter word will usually correspond to a single token, while longer words
may get decomposed. For example, the word “computer” is encoded as the
tokens “comput” and “er”, enabling GPT-2 to exploit that the first token is
shared with similar words like “computation”. In its foundational training a
language model such as GPT-2 learns to predict the next tokens, given a con-
text in the form of a preceding token sequence that encode a text. These
predicted tokens are chosen out of the highest-probability context as a default,
in an auto-regressive manner. The probability function of a language model
is usually denoted as pθ, and pθ(xi|x<i) expresses the probability of token
xi occurring given some preceding token sequence x1, . . . , xi�1. For example,
given a text “Stockholm is the capital of”, the word “Sweden” is likely to fol-
low next. Hence, pθ(Sweden|Stockholm, is, the, capital , of) would be high, pre-
sumably higher than for other candidate words, and the model would predict
and generate “Sweden” as the most probable next word. Given this highest-
probability approach, it is possible to use the model output to reason about its
prior knowledge of specific token sequences, and to an extent about words and
even entire sentences. When a sequence of tokens is scored as highly probable,
this indicates that the model has been exposed to similar examples of text
many times during its training.

Conversely, the probability function of a language model can be utilized to
measure how “surprising” an input text is to the model. This metric is called
perplexity [36]. Given a token sequence X = (x1, . . . , xn), the perplexity of this
sequence can be defined as

ppl(X) = exp
(
− 1

n

n∑
i=1

log10 pθ(xi|x1, . . . , xi�1)
)
. (3.1)

The perplexity of an input sequence is higher the less likely the sequence is to
the model, a likelihood based on the texts that the model was trained on. GPT-
2, like many other language models, will readily provide a perplexity result for
any input it is given. As such it is possible to use perplexity as a crude tool to
determine whether a generated text is similar to an original training text, as

6Overfitting refers to the model being too adjusted to its training data, which often comes
at a cost of generalizing predictions [34].

24 (46)

FOI-R--5396--SE

the perplexity should be lower in that case. The perplexity being low or high is
abstract and relative, though; there is no single concrete threshold perplexity
value that can determine whether an LM is familiar with certain data or not.

However, when a targeted LM is a fine-tuned version of a public LM, it is
possible to compare their respective perplexity results for the same input. If a
sentence results in lower perplexity on the fine-tuned version than on the plain
model, then the sentence likely corresponds to some of the additional training
data used during fine-tuning. For example, a GPT-2 fine-tuned for military
applications would generally exhibit lower perplexity results for military texts
than the basic GPT-2 that is less familiar with such texts. This simple logic
opens up the possibility for data extraction from a language model.

Extraction attack

The aforementioned properties of language models can be exploited to extract
some of their training data, despite them commonly being regarded as black
boxes with no original training data remaining. The method of attack largely
follows the approach of Carlini et al. [33], but applied to a modern language
model. The hypothetical attacker guesses a suitable prompt, presumably re-
lated to some topic of interest, and lets the LM generate a text. To determine
whether the generated text corresponds to training data, the attacker feeds it
back into the LM and observes its perplexity. If the perplexity is low, there is
a higher probability that the model has been trained with this particular text
or with very similar texts. If the targeted LM is a fine-tuned version of some
public LM, the attacker can compare the perplexity results for the generated
text from both language models and thereby get an even better understanding
of what the target LM was trained on.

3.2.2 Experimental Setup
The idea of an adversarial attack with the purpose of data extraction relies
on the attacker having access to two different versions of the same model: the
unmodified, plain language model, and the actual target, a fine-tuned model
which is trained on the specific data of interest to the attacker. The scenario
in this case study relies on the large language model GPT-2. The basic, un-
modified GPT-2 will be referred to as GPT-2 plain .

Fine-tuning requires additional text data. For this purpose the CC news
dataset [37, 38] of 700,000 news articles was selected. This is not a text dataset
of a military nature, as such a corpus of sufficient size would have been difficult
to compile and utilize safely within the confines of this case study. However, the
journalistic texts aim at conveying information efficiently, without the literary
prose found in fictional book corpora or the linguistic sloppiness typical for
social media datasets. As such the selected news data may serve as a reasonable
approximation of military texts.

Two analogous experiments were then carried out in parallel.
In the first, GPT-2 was fine-tuned using the unaltered CC news dataset,

which will be denoted as Dorig . The resulting fine-tuned model will be referred
to as FT orig . In a real-life scenario the attacker can be assumed to have
access to GPT-2 plain and FT orig , but not to Dorig . The experiment aimed at
using GPT-2 plain , FT orig and their perplexity results to recreate data from
CC news, i.e., from Dorig .

In the second experiment the CC news dataset was modified by inserting
unique 16-digit hashes into approximately 24 % of the articles. The purpose
was to study if these unique article codes alter the way the model memorizes its
training data, and whether this increases or decreases the risk of data extrac-

25 (46)

FOI-R--5396--SE

tion. The modified CC news dataset with its patched articles will be referred
to as Dpatch , and the model fine-tuned with this data is denoted by FT patch .

Figure 3.6 illustrates the fine-tuning process for both versions, and specifi-
cally how the patched model FT patch differs from the model FT orig that was
fine-tuned on the original articles.

Original article datapoint: Patched article datapoint

GPT-2
plain

basic GPT-2
language model

Fine-tuning, re-
training process

Fine-tuning, re-
training process

"President Duck speaks about his
plan to combat opioid drug addiction at

Manchester Community College, Monday, March 19".

"b232425c President Duck speaks
about his plan to combat opioid drug addiction at

Manchester Community College, Monday, March 19".

The GPT-2 model visits
every data-point of

CC_news (original and
patched version)

thousands of times with
the goal to generalize

its contents.

The resulting fine-tuned
models represent the

basic GPT-2 language
capability adapted to

the respective
CC_news dataset.

GPT-2
plain

basic GPT-2
language model

D
orig

CC_news dataset
D
patch

patched CC_news dataset

Ft
orig

fine-tuned GPT-2
language model,
original articles

Ft
patch

fine-tuned GPT-2
language model,
patched articles

Figure 3.5 – Process of fine-tuning the two language models, showcasing the subtle
differences in the data and its resulting fine-tuned models (FTorig on the left, FTpatch

on the right). Note that the patched articles of Dpatch comprise approximately 24 %
of the total CC news dataset, i.e., the remaining 76 % are identical to the unmodified
dataset.

After creating the fine-tuned models FT orig and FT patch , both experiments
proceeded as follows: A sample of articles was selected from Dorig (Dpatch).
For each sampled article, the first two words/strings were used as an input
prompt for FT orig (FT patch), which then generated a text. If the generated
text had at least 95 % string similarity to its sample article from Dorig (Dpatch),
the model FT orig (FT patch) was considered to have memorized the article, and
the recreation attempt was recorded as successful. This process is illustrated
in Figure 3.6.

Note that the string comparison with the original articles would not be
available in a real-world attack; the purpose was to determine the upper limit
for how much data could be extracted in theory. An actual attacker would
need other means to evaluate the generated texts, such as their perplexity.
Therefore, each generated text was also used as input for both GPT-2 plain and
FT orig (FT patch), and their perplexity results were recorded.

To investigate the impact of training length during fine-tuning, the experi-
ment for each model (FT orig and FT patch) was repeated at different training
stages, ranging from 5,000 to 40,000 training steps, in increments of 5,000.

Due to limited computational resources, the sample sets for the experiments

26 (46)

FOI-R--5396--SE

Ft
orig

fine-tuned GPT-2
language model,
original articles

D
orig

CC_news dataset

Original article

"President Duck
speaks about.."

"President duck..
+

..generated text"

"President Duck speaks
about his plan to combat
opioid drug addiction at
Manchester Community

College, Monday, March 19".

"President Duck speaks
about his plan to combat

opioid drug epidemic during
a rally in Washington,
Monday, March 19".

Memorized Not memorized

D
patch

patched CC_news dataset

Patched article

"b2324256 "President"

"b2324256 President..
+

..generated text"

"b2324256 President Duck
speaks about his plan to

combat opioid drug addiction
at Manchester Community

College, Monday, March 19".

"b232425 President Duck
speaks about his plan to

combat opioid drug epidemic
during a rally in Washington,

Monday, March 19".

"b2324259 President
Duck speaks about.."

1. Fetch article from database
and retrieve the first two terms

starting the article

2. Feed the starting terms to
the fine-tuned GPT-2 language
model and generate more text

3. Check for
memorization by
comparing output

to datapoint

Not memorized Memorized

Generated text
example

"President" "Duck"

 Generated text
example

Generated text
example

 Generated text
example

Ft
patch

fine-tuned GPT-2
language model,
patched articles

Figure 3.6 – Process of generating text from the fine-tuned models and checking for
memorization. Both models FTorig and FTpatch generated text from their given start-
ing prompts from the corresponding dataset. Each text with at least 95 % similarity
was considered memorized and accounted as such.

only comprise 24 % of the CC news data. Specifically, the sample set from
Dorig consists of those original articles that were patched when creating Dpatch ,
while the sample set from Dpatch consists of exactly the patched articles in
Dpatch . In other words, both experiments were performed on the same subset
of articles from CC news, modulo the patches. The numbers and percentages
presented in the results below (Section 3.2.3) refer to this subset of the dataset.

3.2.3 Results
This section presents the results from the experiments.

Data reconstruction: theoretical upper bound

Table 3.4 presents an upper bound for how much data could be extracted from
the fine-tuned models. The generated texts were verified against the training
dataset, that is, Dorig for FT orig and Dpatch for FT patch . An actual attacker,
lacking these datasets, would not be able to make this verification, making it
more difficult to determine whether a generated text was memorized.

Perplexity

Without access to the original training data, an attacker can turn to the per-
plexity metric to gain insights into which generated texts a model has memo-
rized from the training data. When a fine-tuned model exhibits lower perplexity
for a generated text than its basic parent model, this indicates that the text
was part of the fine-tuning training data, or at least similar to it. Figure 3.7
illustrates the perplexity distributions resulting from feeding the generated
texts both into the basic GPT-2 plain and its fine-tuned variants, FT orig and
FT patch . These generated texts were not verified to be reconstructed, and
most of them do not exist in the original datasets Dorig and Dpatch . Neverthe-
less, as per Table 3.4 a significant percentage of these texts are indeed original

27 (46)

FOI-R--5396--SE

Table 3.4 – Verifying the data memorization percentage of the fine-tuned models on
CC news by direct comparison, per model training steps, original articles from dataset
Dorig as well the patched dataset Dpatch. Measurements were taken at different training
stages of the models, with the first column indicating the amount of training steps
during the fine-tuning.

Verified data memorization by direct comparison to dataset

Training steps Data reconstruction of Dorig [%] Data reconstruction of Dpatch [%]

5·103 15.25 14.07
10·103 17.78 15.29
15·103 17.97 15.46
20·103 19.17 16.17
25·103 19.93 16.59
30·103 20.44 17.00
35·103 20.79 17.30
40·103 20.99 17.42

data points. These distributions would be available to an attacker without
access to the original data. Hence, just by using the perplexity distributions
one can make educated guesses about whether generated texts are of original
reconstruction. With the clear distribution difference in perplexity given the
reference of GPT-2 plain , it is highly likely that this generated data at least
closely resembles what the fine-tuned models were trained on. That way an
adversary can get an understanding of this potentially sensitive data.

Note also the implications of the increasing training steps of the fine-tuned
models: If the model is fine-tuned in a higher number of steps, the respective
generated data is created in a less perplexed fashion. Comparing the distribu-
tions a) to b) and c) to d), it is apparent that the fined-tuned models were less
perplexed by their generated data, while the reference GPT-2 plain perplexity
increased for higher numbers of training steps. In other words, the more closely
a fine-tuned model is adapted to its intended domain, the more likely it is to
generate texts that are unfamiliar to its unaltered parent model.

Adversarial data reconstruction

Without access to the original training data, an attacker can exploit the per-
plexity distributions to determine whether a generated text is a memorized
training text. Table 3.5 represents the results of applying a perplexity thresh-
old to generated texts. The perplexity threshold was determined from obser-
vations of the distribution plots in Figure 3.7. Note that while the extraction
itself was indeed carried out without access to the datasets, creating the table
required a comparison to the actual datasets in order to determine the success
rate of the extraction. In a real adversarial scenario, this kind of confirmation
would not be possible.

Figure 3.8 visualizes the success rate of the reconstruction attempts. The
figure shows the distance between the perplexity-based adversarial attempts of
data reconstruction, drawn by the turquoise and orange plots. They are com-
pared with their verified, memorized counterparts drawn by blue and red plots.
Looking at blue and turquoise plots, the reconstruction of Dorig using adversar-
ial methods shows little to no loss to the direct verification of memorized data.
In contrast, the adversarial attempt of the patched version Dpatch was less suc-
cessful, as the plots of red and orange show larger intermediate distance. As
the adversarial attempts rely on the visually chosen perplexity threshold from
Figure 3.7, the more widespread nature of the perplexity distribution of the
texts from Dpatch makes it more difficult to choose a threshold to cover most of

28 (46)

FOI-R--5396--SE

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Model perplexity

0

10000

20000

30000

40000

50000

Fr
e
q
u

e
n

cy

Model perplexity of non-verified generated data

FTorig on Dorig
(5k training steps)

GPT-2plain on Dorig

Perplexity threshold = 2.5

(a) Perplexity by FTorig trained to 5,000
steps (blue) and perplexity of GPT-2plain

(red) on text data generated by FTorig .

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Model perplexity

0

10000

20000

30000

40000

50000

Fr
e
q
u

e
n

cy

Model perplexity of non-verified generated data

FTorig on Dorig
(40k training steps)

GPT-2plain on Dorig

Perplexity threshold = 2.5

(b) Perplexity by FTorig trained to 40,000
steps (blue) and perplexity of GPT-2plain

(red) on text data generated by FTorig .

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Model perplexity

0

10000

20000

30000

40000

50000

Fr
e
q
u

e
n

cy

Model perplexity of non-verified generated data

FTpatch on Dpatch
(5k training steps)

GPT-2plain on Dpatch

Perplexity threshold = 3.75

(c) Perplexity by FTpatch trained to
5,000 steps (orange) and perplexity of
GPT-2plain (green) on text data generated
by FTpatch .

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Model perplexity

0

10000

20000

30000

40000

50000

Fr
e
q
u

e
n

cy

Model perplexity of non-verified generated data

FTpatch on Dpatch
(40k training steps)

GPT-2plain on Dpatch

Perplexity threshold = 3.75

(d) Perplexity by FTpatch trained to
40,000 steps (orange) and perplexity of
GPT-2plain (green) on text data generated
by FTpatch .

Figure 3.7 – The figures illustrate how the perplexity results differ for each case of
models. These distributions of perplexities are calculated on texts generated by each
respective fine-tuned model.

Table 3.5 – Data reconstruction percentage from an adversarial perspective, without
dataset access, using only perplexity observations.

Adversarial data reconstruction by perplexity threshold

Perplexity threshold = 2.5 Perplexity threshold = 3.75

Training steps Data reconstruction of Dorig [%] Data reconstruction of Dpatch [%]

5·103 15.07 11.93
10·103 17.62 13.16
15·103 17.85 13.87
20·103 19.04 14.56
25·103 19.81 14.96
30·103 20.31 15.29
35·103 20.66 15.66
40·103 20.86 15.73

29 (46)

FOI-R--5396--SE

5 10 15 20 25 30 35 40

Training steps [10³]

12

14

16

18

20

R
e
co

n
st

ru
ct

e
d

 d
a
ta

 [
%

]

Data reconstruction by number of model training steps

Verified memorized data (Dorig)

Adversarial data reconstruction by perplexity (Dorig)

Verified memorized data (Dpatch)

Adversarial data reconstruction by perplexity (Dpatch)

Figure 3.8 – Data reconstruction percentage of CC news by number of training steps,
visualizing the data from Table 3.4 and 3.5.

the memorized data without increasing the total error of reconstruction from
texts that are not verified as memorized.

Focusing only on the subsets of generated texts that were verified via ac-
cess to the fine-tuning training sets Dorig and Dpatch , Figure 3.9 shows that
the perplexity distributions of the fine-tuned models FT orig (subplot (a)) and
FT patch (subplot (b)) versus their parent model GPT-2 plain largely mimic
the more general distributions from Figure 3.7. Both plots exhibit a distinct
perplexity value where the reference model GPT-2 plain does not overlap the
fine-tuned counterpart. If an attacker were to use one fine-tuned model and a
reference model, such a distribution plot would provide valuable insights into
what the fine-tuned model was trained upon, possibly enabling the attacker to
further refine the data reconstruction methods.

Subplot (c) compares how the patches in Dpatch affect the perplexity distri-
butions for the basic GPT-2 plain model. The perplexity values increased due
to the basic model being unfamiliar with the inserted hash codes.

3.2.4 Discussion
Using the perplexity measurement, it is possible to exploit the probabilistic na-
ture of trained language models to recreate the data they were trained on. The
introduced patches to the data in Dpatch makes it significantly more difficult
for the model to memorize data. Since the patches are a unique 16-digit hash
code, the prediction of a sequence of words could be less accurate since the
hash code itself follows no apparent pattern. As language models operate in a
contextually predictive manner, a unique hash-code in the context is bound to
make it more confusing. Figure 3.8 illustrates how the reconstruction attempt
for the patched version is consistently resulting in less memorized data. This
could be an advantage when attempting to reduce the risk for adversarial data
extraction. However, the patching of training data is also likely reduce the per-
formance of the model, and one would need to assess whether risk mitigation

30 (46)

FOI-R--5396--SE

0 10 20 30 40 50 60
Model perplexity

0

5000

10000

15000

20000

25000

30000

35000

40000

Fr
e
q
u
e
n
cy

Model perplexity on reconstructed data, Dorig

FTorig on Dorig (5k training steps)

GPT-2plain on Dorig

(a) Perplexity measure comparison of mod-
els FTorig (blue), vs GPT-2plain (red) on
Dorig .

0 10 20 30 40 50 60
Model perplexity

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
e
q

u
e
n

cy

Model perplexity on reconstructed data, Dpatch

FTpatch on Dpatch (5k training steps)

GPT-2plain on Dpatch

(b) Perplexity measure comparison of mod-
els FTpatch (yellow), vs GPT-2plain (green)
on Dpatch .

0 10 20 30 40 50 60
Model perplexity

0

500

1000

1500

2000

2500

3000

3500

Fr
e
q
u
e
n
cy

Model perplexity, Dorig and Dpatch, GPT-2plain only

GPT-2plain on Dorig

GPT-2plain on Dpatch

(c) Perplexity measure of GPT-2plain

model on Dpatch and Dorig respectively.

Figure 3.9 – Perplexity distributions for generated texts verified as reconstructions
from training data.

is worth the performance loss.
In accordance to related work [33], one of the biggest factors for data memo-

rization is overly trained models. The training steps, as seen in Figure 3.8, show
that memorization steadily increases with further training, since the model be-
comes more fit to represent its fine-tuning data. To mitigate the risk of data
extraction, keeping the training steps to a lower bound could be very useful.
The models in this case-study were fine-tuned during at least 5,000 steps. This
number is not unusual for GPT-2, but overfitting effects cannot be ruled out
entirely, and at the upper end of 40,000 steps it is almost a certainty. If the
experiment was redone on an interval of [1,000 : 5,000] training steps, the curve
seen in Figure 3.8 would most probably be steeper since the overfitting of the
model is most apparent in the early stages of its training. Success rates at ad-
versarial data reconstruction in related work tend to be lower than in this case
study, usually in the range of 0 − 10 % of the respective datasets. The case
study fine-tuned models to the point of overfitting to more clearly showcase
the overall concept, which explains the higher data reconstruction results. It
also demonstrates that language models can indeed memorize texts word by
word, despite their architecture not being intended for this, so the black box
perspective is not entirely valid.

3.3 Attacking Deep Reinforcement Learning
Reinforcement learning (RL) is an area of machine learning in which an agent
learns to make decisions in an environment by receiving feedback in the form of

31 (46)

FOI-R--5396--SE

rewards. The goal of the agent is to maximize its cumulative reward over time
by learning to choose actions that lead to desirable outcomes. In reinforcement
learning, the agent interacts with the environment by taking actions and re-
ceiving feedback in the form of reward signals. The agent’s goal is to learn a
policy, which is a mapping from states to actions that maximizes its expected
cumulative reward. Most new approaches of RL use deep neural networks to
learn a policy that maps states to actions (policy network) and evaluation of
states (value network). With the knowledge that state-of-the-art image classi-
fier models are susceptible to adversarial examples, it is natural to ask whether
deep RL models are also vulnerable to malicious inputs.

Contrary to supervised learning models that are trained on a fixed dataset,
in RL methods data is generated and gathered throughout the learning process.
This leads to a situation where policies trained for the same task can be signifi-
cantly different, depending on the initial conditions and variations in generated
data. As a result, one might improperly anticipate that reinforcement learning
should be more resilient to adversarial attacks [39], especially RL methods that
employ self-play and due to the adversarial nature of self-play training [40].

This section aims to demonstrate the existence of various types of adver-
sarial attacks on reinforcement learning and provide examples of such attacks.
Attacks on reinforcement learning are divided into four categories based on
the functional components of the RL process, that is: (1) state, (2) action,
(3) reward, and (4) model. Most of the attacks in literature focus on adding
adversarial perturbations to the state space, while only a few target the re-
ward, action or model [16]. The attacks discussed in this section fall under the
first category, which is state space attacks. Nevertheless, they vary in terms
of method of execution, as well as the implication of the attacks on real-world
applications.

3.3.1 Perturbing Observation
The first demonstration of the effectiveness of adversarial attacks against re-
inforcement learning policies is provided by [41, 39], where attacks are tested
on four Atari 2600 games in the Arcade Learning Environment [42]: Chopper
Command, Pong, Seaquest, and Space Invaders. These games are selected to
provide a diverse range of environments and to represent different challenges;
for example, Chopper Command and Space Invaders feature multiple enemies.
Three different deep RL algorithms: asynchronous advantage actor-critic [43],
trust region policy optimization [44], and deep Q-networks [45] are trained for
each game. Two types of attacks are considered, (1) a white-box attack in
which the architecture and parameters of the trained network policy are avail-
able to the adversary, and (2) a black-box attack where gradients for a sepa-
rately trained policy are used to attack the target policy by taking advantage
of the transferability property [46]. In both cases, adversarial attacks are com-
puted using the fast gradient sign method (FGSM) [47], which is a method for
efficiently generating adversarial examples in the context of computer vision
classification. The FGSM constructs a linear approximation of a deep model,
and therefore is a fast, but reliable method able to fool many classifiers for
computer vision problems [39].

Both in the white-box and black-box settings, adversarial attacks can sig-
nificantly reduce the performance of RL methods, even with slight changes that
are imperceptible to humans. This outcome has substantial implications for
real-world deployment of neural network policies, as it demonstrates the feasi-
bility of fooling them with computationally efficient adversarial examples, even
in black-box scenarios. For instance, in a real-world scenario, these adversarial

32 (46)

FOI-R--5396--SE

perturbations could be implemented by adding strategically-placed paint to the
surface of a road to confuse an autonomous car’s lane-following policy [39].

3.3.2 Adversarial Policies
Although deep RL policies are vulnerable to adversarial perturbations of their
observations [41, 39], direct modification of another agent’s observations by an
attacker is typically difficult. A more appealing attack model involves targeting
an RL victim with an adversarial policy that generates seemingly harmless
observations that are adversarial. For example, consider autonomous vehicles
that are controlled by RL models. An instance of an adversarial policy could
be a vehicle that operates in compliance with traffic rules but distracts a victim
car, causing it to collide or run off-road [48].

Gleave et al. [49] have provided evidence for the existence of adversarial poli-
cies by demonstrating that state-of-the-art humanoid robots, trained through
self-play to be resistant to opponents, are still vulnerable. The study em-
ploys the MuJoCo7 robotic simulator [50], which provides an environment for
four two-player zero-sum simulated robotic games created by Bansal et al. [51],
where multiple policies for trained agents are targeted for attacks (Figure 3.10).
In these games, both agents are equipped with the capability to observe their

(a) Kick and defend (b) You shall not pass

(c) Sumo humans (d) Sumo ants

Figure 3.10 – Illustrations of four zero-sum simulated robotics games from [51] that
are used for evaluation of adversarial policies [49].

own position, velocity, and contact forces of joints in their bodies as well as

7MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics
engine that aims to facilitate research and development in robotics, biomechanics, graphics,
animation and machine learning.

33 (46)

FOI-R--5396--SE

the position of their opponent’s joints. The games included in this study are
as follows:

� Kick and defend : A soccer penalty shootout between two humanoid
robots. The positions of the kicker, goalie and ball are randomly ini-
tialized. The kicker is declared the winner if the ball successfully passes
between the goalposts, otherwise the goalie wins (Figure 3.10a).

� You shall not pass: Two humanoid agents are initialized facing each
other. The runner wins if it successfully reaches the finish line, while the
blocker wins if it prevents the runner from doing so (Figure 3.10b).

� Sumo humans: Two humanoid agents compete on a small circular arena.
The initial positions of the players are randomized. A player is declared
the winner if they remain standing after their opponent has been knocked
down (Figure 3.10c).

� Sumo ants: This task is similar to sumo humans, but the opponents
have ant quadrupedal robot bodies. Sumo ants involve a much higher
dimensionality than sumo humans (Figure 3.10d).

It is assumed that the adversary has black-box access to the victim’s policy
but lacks white-box information, such as weights or activations of the network.
Specifically, it is assumed that the weights of the victim’s policy network are
frozen and unknown to the attacker. This is consistent with real-world applica-
tions, where pre-trained models are validated and deployed with static weights.
The weights are generally frozen to prevent introducing any new behaviour due
to retraining. Therefore, a fixed victim policy is a reasonable model for RL-
trained policies in realistic settings, such as autonomous vehicles.

Since the victim policy is held fixed, the two-player game reduces to a single-
player RL problem that the attacker must solve. Gleave et al. [49] train an
adversarial policy using proximal policy optimization [52], which is a gradient-
based RL algorithm (i.e., the space of policies is searched rather than assigning
values to state-action pairs). The trained adversarial policies efficiently beat
their victim despite being trained for less than 3 % of the timesteps initially
used to train the victim policies. Interestingly, the adversarial policies beat
the victim not by performing the intended task and becoming generally strong
opponents, but rather by inducing adversarial observations that exploit weak-
nesses in the victim’s policy, causing them to perform poorly. For instance,
compare the behaviour of a normal and adversarial agent in the game “you
shall not pass”, as illustrated in Figure 3.11. While the normal agent (in red)
tries to block the victim agents (in blue), the adversarial agent falls to the
ground in contorted position and causes the victim to fall to the ground with-
out any contact.8

3.3.3 Defeating Superhuman AIs
A very recent line of research in adversarial policies is the work by Wang et
al. [40], in which the state-of-the-art Go9-playing AI system KataGo10 is at-

8For several interesting videos see https://adversarialpolicies.github.io/
9Go is a two-player strategy game played on a grid of intersecting lines. The players

take turns placing black and white stones on the board, trying to surround and capture the
opponent’s stones while simultaneously securing their own territory. Stones are captured by
surrounding them on all sides with one’s own stones. The game ends when both players pass
their turns consecutively, and the winner is the player with the most territory and captured
stones at the end of the game.

10KataGo is a free and open-source computer Go program, capable of defeating top-level
human players. It is also used in research to study the game of Go and to develop new
algorithms for artificial intelligence (https://en.wikipedia.org/wiki/KataGo).

34 (46)

FOI-R--5396--SE

Figure 3.11 – A sequence of the game of “you shall not pass” where an adversarial
opponent (in red) should hinder a victim (in blue) to reach the finish line. The four
upper figures show how a normal agent tackles an opponent. The four lower figures
show how an adversarial opponent causes the victim to fall to the ground without any
contact [49].

tacked. Similar to Alphazero [53], KataGo uses a self-play method for training
the AI and plays at a strongly superhuman level, wining against other super-
human level Go AIs.11 The main contribution of this work is that it is the first
time an adversary exploits an AI with superhuman capabilities. The attack is
also performed in a discrete action space, which is considered to be a more chal-
lenging setting for the attacker. In the earlier described work, the attack was
focused on disturbing subhuman policies in the MuJoCo environment with a
continuous action space, where adversaries can often win by causing the victim
to make small changes to its actions.

As before, in the attacks on the robotic simulator (Figure 3.11), the adver-
sary is trained with a fraction of the computation used to train the original
KataGo, moreover, the adversary does not win by learning to play Go better
than KataGo, instead it wins by deceiving the KataGo to commit catastrophic
blunders. In fact, the adversary does not play Go very well and loses against
amateur Go players, nevertheless, it beats the superhuman KataGo AI. As such
this is an example of non-transitivity. In game theory, non-transitivity refers
to a situation where the outcome of a game between three or more strategies is
not transitive. In other words, if strategy A is preferred over strategy B, and
strategy B is preferred over strategy C, strategy A is not necessarily preferred
over strategy C (Figure 3.12).

The game of Go is a two-player zero-sum Markov game. The threat model
assumes the attacker (adversary) plays as one of the agents and seeks to win
against the victim agent. The adversary has a grey-box access to the vic-
tim agent. That is, the attacker can evaluate the victim’s neural network on
arbitrary inputs, but it does not have access to the networks weights.

KataGo is a program that uses deep neural networks and Monte Carlo tree
search (MCTS) [54, 55], based on the AlphaZero framework, to determine its
next move. The program learns from its own mistakes through self-play, in
which it plays against itself. KataGo employs a combination of supervised
and reinforcement learning to train its neural network, allowing it to improve
its performance over time. The training process involves generating a large
number of random game positions and playing them out until the end. The
resulting data is then used to train the neural network using backpropagation.

11https://github.com/lightvector/KataGo/blob/master/TrainingHistory.md

35 (46)

FOI-R--5396--SE

Figure 3.12 – The attack on KataGo demonstrates significant non-transitivity;
a human amateur beats the adversarial policy that beats KataGo. This non-
transitivity shows the adversary is not a generally capable policy, and is just exploiting
KataGo [40].

The neural network has two components: the policy head, which outputs a
probability distribution of the next move, and the value head, which estimates
the win rate from the current state.

Figure 3.13 – The adversary (white) wins by capturing a cyclic group (marked by red
circles) that the victim (black) leaves vulnerable. The victim is the strongest KataGo
network using search with 107 visits, which is far more search than is needed to be
superhuman [40].

In regular self-play (e.g., AlphaZero and KataGo), the agent plays many
games against itself to improve its performance. However, in adversarial “self-
play”, the agent is trained through games between a learning adversary and a
fixed victim agent. In this setting, the goal is to train the adversary to exploit

36 (46)

FOI-R--5396--SE

the victim, rather than mimic it. The adversary is trained only on data from
the turns where it is the adversary’s move, therefore, it is called victim-play.
To achieve this, two distinct families of adversarial MCTS12 are introduced by
Wang et al. [40]. Unlike self-play, victim-play requires two separate networks
- one that is frozen and guides the victim, and the other belonging to the
adversary and trained to defeat the victim.

The results are significantly in favour of the adversarial agent. The adver-
sarial attack achieves a 100 % win rate when KataGo plays at top-100 European
player level (i.e., KataGo with no tree-search). The win rate is 97.3 % when
KataGo plays at a superhuman level (i.e., KataGo using search with 4096 vis-
its) and 72 % win rate against KataGo playing far exceeding superhuman level
(i.e., KataGo using search with 107 visits), demonstrating that even excessive
amounts of search is not a practical defence against the adversary.

Figure 3.13 shows a game between the adversary and the strongest KataGo
network using search with 107 visits, which is far more search than is needed
to be superhuman. The adversary (white) wins by luring the victim (black)
into creating a large group of stones in a circular pattern (marked red). This
exploits a weakness in KataGo’s network, which allows the adversary to capture
the group by its move at Tx15 (marked by a star), shifting the score decisively
in the adversary’s favour. Wang et al. [40] also examine the win rate predictions
produced by both the adversary’s and the victim’s value networks at each turn
of a game, finding that the victim predicts that it will win with over 99 %
confidence for most of the game, and often, just one move before its circular
group is captured, realizes it will lose. For an in-depth analysis of different
types of attacks and the results, the reader is referred to [40].

3.3.4 Discussion
The fact that superhuman Go agents are vulnerable to adversarial policies,
does not establish how common such vulnerabilities are. It is still an open
question whether it is possible to construct equally effective attacks against
strong self-play AI systems in other games. One other interesting question
is to evaluate policies trained by other promising multi-agent RL approaches
(e.g., counterfactual regret minimization [56] and regularization methods [57]
both used successfully in imperfect information games) and whether they are
also exploitable.

Regardless of the answers to these questions, the discovery of adversarial
policies on superhuman Go AI provides some food for thoughts. The victory
of AlphaGo over human world champion Lee Sedol in 2016 was seen as a mile-
stone in the development of AI. Lee Sedol considered AlphaGo to be an entity
that could not be defeated by any human player. However, the findings in
adversarial policies seem to cast doubt on this claim.

Recently, the Go player Kellin Pelrine, who is one level below the top am-
ateur ranking, succeeded to win 14 out of 14 games against the strongly super-

12The two adversarial MCTS are as follows:

� Adversarial MCTS: Sample (A-MCTS-S). In A-MCTS-S, the adversary’s search
procedure is modified to sample directly from the victim’s policy head at nodes in the
Monte Carlo search tree where it is the victim’s turn to move (victim-nodes), and
from the adversary’s policy head at nodes where it is the adversary’s turn to move
(adversary-nodes). That is, the victim uses no search and relies only on its policy
network, leading to an underestimation of the strength of the victim.

� Adversarial MCTS: Recursive (A-MCTS-R). To mitigate the problem with un-
derestimating the strength of victims, A-MCTS-R is introduced. A-MCTS-R method
runs Monte Carlo tree search for the victim at each victim-node. However, this change
increases the computational complexity of both adversary training and inference.

37 (46)

FOI-R--5396--SE

human KataGo (using search with 107 visits) without any computer assistance,
after playing one test game assisted by adversarial attacks suggested by Wang
et al. [40]. Pelrine used a strategy of constantly distracting the AI with cor-
ner moves, while slowly connecting the central pieces together to surround the
AI player. For a human player, this strategy is obvious, but the RL agent
cannot perceive the danger even until the last move, when the encirclement is
completed.

The discovery of weakness in state-of-the-art AI Go indicates a fundamental
flaw in deep learning, which is the cornerstone of the current most advanced
AI systems. According to Stuart Russell13, current AI systems can only “un-
derstand” specific situations they have been exposed to in the past and are
unable to generalize in a way that humans find easy. He further suggests that
it might be the case that, once again, we have been far too hasty to ascribe
superhuman levels of intelligence to machines.14

13Stuart Russel is a professor of computer science at the University of California Berkeley
and an AI pioneer.

14Times, February 18 2023, “Man beats machine at Go thanks to AI opponent’s fatal
flaw”

38 (46)

FOI-R--5396--SE

4 Conclusions
Adversarial machine learning has seen rising interest in the scientific commu-
nity, and papers about new attack variants are published on a daily basis.
Virtually any form of machine learning is susceptible to some type of AML,
as this report has demonstrated with a sample of a attack methods. As DL
is adopted in an increasing number of applications, the opportunities for at-
tacks and the potential rewards are likewise on the rise. For example, image
recognition models are being used in situations relevant to adversaries in some
form, whether civilian or military: Airports and stadiums are beginning to
employ face recognition to deny entry to individuals for various reasons [58],
providing motives for said individuals to apply AML to evade the systems. Au-
tomated detection of military vehicles on satellite images has been investigated
for decades,1 and evading such detection by enemy satellites is obviously of
interest to any military.

However, the attacks largely remain experiments confined to academia. Few
real attacks are known to have occurred against actual deployed DL systems,
that is, without the consent of the DL system operator, and with an objective
beyond merely testing the feasibility of the attack method. There is a variety
of possible reasons: Such attacks may be rare, as they are difficult to execute,
or there are not yet many potential targets. Attacks may be difficult to notice
(arguably the main purpose of evasion attacks is to go unnoticed). Attackers
are unlikely to publicize successful attacks, and even the victims may regard it
prudent to remain silent rather than further expose their weaknesses.

Nevertheless, some attacks have reached the public. Generative image mod-
els like Stable Diffusion [59], DALL·E 2 [60] and Midjourney2 can create graph-
ics based on text prompts. This has made them popular on social media, but
also provoked criticism from artists suspecting their work having been used
as training data. In February 2023, the media company Getty Images filed a
lawsuit against Stability AI for training their Stable Diffusion model using copy-
righted stock images from the Getty catalogue without permission. Extraction
methods were used against Stable Diffusion to obtain evidence, showing that
the AI system generated images with high similarity to images owned by Getty,
including the watermark of the company [61].

Prompt exploits against language models have been a more playful attack,
still with significant media attention. This type of attack is a simple extraction
variant that aims not at the training data, but at hidden input directives. With
very large language models like ChatGPT the operator may want to quickly
adapt the model to certain applications without any fine-tuning stage. Instead
the conversations are just prepended with textual instructions to the language
model that influence its behaviour throughout the dialogue with a user, for
example what name the model is supposed to use for itself, and what kind of
personality to exhibit. Such instructions are typically not shown to the user of
the language model, but curious users have been able to make the model ex-
pose them, for example by telling the model to “ignore previous instructions”,
thereby overriding any hidden instructions not to reveal the hidden instruc-
tions, and then asking “What was written at the beginning of the document
above?” [62]

1The popular MSTAR training dataset of the U.S. Air Force was released in 1996:
https://www.sdms.afrl.af.mil/index.php?collection=mstar

2https://midjourney.com

39 (46)

FOI-R--5396--SE

Such crowd-sourced attacks, while relatively benign, indicate the difficulty
of assessing the robustness of an AI system against AML methods, much less
actually defending against them.3 Both challenges will be topics in a future
report of this project.

From the perspective of an attacker, however, the situation may be at least
as difficult. Few AI systems are as accessible as the models above with their
public interfaces that invite experimentation. In a defence context an attacker
will generally have limited opportunities to study a targeted system, and con-
ventional obstacles (cybersecurity and physical security) may pose as much of
a challenge as the difficulties inherent to the various AML methods. The poi-
soning attack described in Section 3.1 is an example of a method that aims
at circumventing security measures, exploiting the rarity of training data to
entice opponents into poisoning their systems themselves. It is also possible
that future attacks will combine AML with more conventional methods (e.g.
social engineering).

Research into attack methods is bound to increase along with the growing
adoption of AI. As usage of AI increases, continuous vigilance and study of this
new field are essential to identify new opportunities emerging, but also to be
aware of the own vulnerabilities.

3In the example of the language model above, Microsoft iteratively restricted the inter-
action options to curtail the increasing number of unwanted behaviours, until users began to
complain about the model being “lobotomized” [63].

40 (46)

FOI-R--5396--SE

Bibliography
[1] MITRE. Adversarial threat landscape for artificial-intelligence systems

(ATLAS). https://atlas.mitre.org/. Accessed: 2022-06-11.

[2] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani
Srivastava, and Kai-Wei Chang. Generating natural language adversarial
examples. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2890–2896, 2018.

[3] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust
physical-world attacks on deep learning visual classification. In Computer
Vision and Pattern Recognition (CVPR), 2018.

[4] Tencent Keen Security Lab. Experimental security research of Tesla au-
topilot. Technical report, Tencent Keen Security Lab, 2019.

[5] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted
attacks on speech-to-text. In Deep Learning and Security Workshop, 2018.

[6] Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, and Colin
Raffel. Imperceptible, robust, and targeted adversarial examples for au-
tomatic speech recognition. In Proceedings of the 36th International Con-
ference on Machine Learning (ICML), volume 97, pages 5231–5240, 2019.

[7] Linus J. Luotsinen, Daniel Oskarsson, Peter Svenmarck, and Ulrika Wick-
enberg Bolin. Explainable artificial intelligence: Exploring XAI techniques
in military deep learning applications. Technical Report FOI-R--4849--SE,
Swedish Defence Research Agency (FOI), 2019.

[8] Nikolaos Pitropakis, Emmanouil Panaousis, Thanassis Giannetsos, Eleft-
herios Anastasiadis, and George Loukas. A taxonomy and survey of attacks
against machine learning. Computer Science Review, 34, October 2019.

[9] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein,
and J. D. Tygar. Adversarial machine learning. In Proceedings of the 4th
ACM Workshop on Security and Artificial Intelligence (AISec), pages 43–
58, 2011.

[10] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak
Verma. Adversarial classification. In Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 99–108,
2004.

[11] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317–331, 2018.

[12] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and
J. D. Tygar. Can machine learning be secure? In Proceedings of the
2006 ACM Symposium on Information, Computer and Communications
Security (ASIACCS), page 16–25, 2006.

[13] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P. Well-
man. Sok: Security and privacy in machine learning. In Proceedings of
the IEEE European Symposium on Security and Privacy (EuroS P), pages
399–414, 2018.

41 (46)

FOI-R--5396--SE

[14] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples:
Attacks and defenses for deep learning. IEEE Transactions on Neural
Networks and Learning Systems, 30(9):2805–2824, 2019.

[15] Elham Tabassi, Kevin J. Burns, Michael Hadjimichael, Andres D. Molina-
Markham, and Julian T. Sexton. Draft: A taxonomy and terminology of
adversarial machine learning. National Institute of Standards and Tech-
nology Interagency or Internal Report (NISTIR) 8269, 2019.

[16] Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Janjua,
Ala Al-Fuqaha, Dinh Thai Hoang, and Dusit Niyato. Challenges and
countermeasures for adversarial attacks on deep reinforcement learning.
IEEE Transactions on Artificial Intelligence, 3(2):90–109, 2021.

[17] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial ex-
amples. In International conference on machine learning, pages 274–283.
PMLR, 2018.

[18] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia con-
ference on computer and communications security, pages 506–519, 2017.

[19] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthe-
sizing robust adversarial examples. In International conference on machine
learning, pages 284–293. PMLR, 2018.

[20] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236, 2016.

[21] Nicholas Carlini and David Wagner. Defensive distillation is not robust
to adversarial examples. arXiv preprint arXiv:1607.04311, 2016.

[22] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into
transferable adversarial examples and black-box attacks. arXiv preprint
arXiv:1611.02770, 2016.

[23] Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot,
Alexey Kurakin, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial
examples that fool both computer vision and time-limited humans. Ad-
vances in neural information processing systems, 31, 2018.

[24] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial exam-
ples: Attacks and defenses for deep learning. IEEE transactions on neural
networks and learning systems, 30(9):2805–2824, 2019.

[25] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

42 (46)

FOI-R--5396--SE

[27] A. Radford, Jeffrey Wu, R. Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. Techni-
cal report, OpenAI, 2019.

[28] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Identi-
fying vulnerabilities in the machine learning model supply chain. In arXiv
preprint arXiv:1708.06733, 2017.

[29] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hid-
den trigger backdoor attacks. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2020.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet clas-
sification with deep convolutional neural networks. In Proceedings of Ad-
vances in Neural Information Processing Systems (NeurIPS), 2012.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

[33] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song.
The secret sharer: Evaluating and testing unintended memorization in
neural networks. In Proceedings of the 28th USENIX Security Symposium.,
pages 268–271, 2019.

[34] Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen
Aghajanyan. Memorization without overfitting: Analyzing the training
dynamics of large language models. CoRR, abs/2205.10770, 2022.

[35] OpenAI. OpenAI token generator. https://beta.openai.com/
tokenizer. Accessed: 2023-01-02.

[36] Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplex-
ity—a measure of the difficulty of speech recognition tasks. The Journal
of the Acoustical Society of America, 62(S1):63, 1977.

[37] Felix Hamborg, Norman Meuschke, Corinna Breitinger, and Bela Gipp.
news-please: A generic news crawler and extractor. In Proceedings of
the 15th International Symposium of Information Science, pages 218–223,
March 2017.

[38] Joel Mackenzie, Rodger Benham, Matthias Petri, Johanne R. Trippas,
J. Shane Culpepper, and Alistair Moffat. Cc-news-en: A large english
news corpus. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, CIKM ’20, page 3077–3084,
New York, NY, USA, 2020. Association for Computing Machinery.

[39] Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and
Pieter Abbeel. Adversarial attacks on neural network policies. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net,
2017.

43 (46)

FOI-R--5396--SE

[40] Tony Tong Wang, Adam Gleave, Nora Belrose, Tom Tseng, Michael D
Dennis, Yawen Duan, Viktor Pogrebniak, Joseph Miller, Sergey Levine,
and Stuart Russell. Adversarial policies beat professional-level go AIs. In
Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

[41] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement
learning to policy induction attacks. In Petra Perner, editor, Machine
Learning and Data Mining in Pattern Recognition, pages 262–275, Cham,
2017. Springer International Publishing.

[42] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The
arcade learning environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47(1):253–279, may 2013.

[43] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Tim Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In Proceedings
of the 33rd International Conference on International Conference on Ma-
chine Learning - Volume 48, ICML’16, pages 1928–1937. JMLR.org, 2016.

[44] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter
Abbeel. Trust region policy optimization. In Proceedings of the 32nd In-
ternational Conference on International Conference on Machine Learning
- Volume 37, ICML’15, pages 1889–1897. JMLR.org, 2015.

[45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing Atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[46] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. In Yoshua Bengio and Yann LeCun, editors, 2nd In-
ternational Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[47] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[48] Aizaz Sharif and Dusica Marijan. Adversarial deep reinforcement learning
for improving the robustness of multi-agent autonomous driving policies,
2021.

[49] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine,
and Stuart Russell. Adversarial policies: Attacking deep reinforcement
learning. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[50] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

[51] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor
Mordatch. Emergent complexity via multi-agent competition. In Interna-
tional Conference on Learning Representations, 2018.

44 (46)

FOI-R--5396--SE

[52] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[53] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

[54] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck.
Monte Carlo tree search: A new framework for game AI. In Proceedings
of the Fourth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, AIIDE’08, pages 216––217. AAAI Press, 2008.

[55] Guillaume M. J. B. Chaslot, Mark H. M. Winands, and H. Jaap van den
Herik. Parallel Monte Carlo tree search. In H. Jaap van den Herik, Xinhe
Xu, Zongmin Ma, and Mark H. M. Winands, editors, Computers and
Games, pages 60–71, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[56] Martin Zinkevich, Michael Johanson, Michael H. Bowling, and Carmelo
Piccione. Regret minimization in games with incomplete information. In
John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors,
Advances in Neural Information Processing Systems 20, Proceedings of the
Twenty-First Annual Conference on Neural Information Processing Sys-
tems, Vancouver, British Columbia, Canada, December 3-6, 2007, pages
1729–1736. Curran Associates, Inc., 2007.

[57] Julien Pérolat, Rémi Munos, Jean-Baptiste Lespiau, Shayegan Omid-
shafiei, Mark Rowland, Pedro A. Ortega, Neil Burch, Thomas W. Anthony,
David Balduzzi, Bart De Vylder, Georgios Piliouras, Marc Lanctot, and
Karl Tuyls. From poincaré recurrence to convergence in imperfect infor-
mation games: Finding equilibrium via regularization. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pages 8525–8535.
PMLR, 2021.

[58] Khari Johnson. Get used to face recognition in stadiums.
https://www.wired.com/story/get-used-to-face-recognition-
in-stadiums/, Feb 2023.

[59] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion mod-
els, 2021.

[60] Pamela Mishkin, Lama Ahmad, Miles Brundage, Gretchen Krueger,
and Girish Sastry. Dall·e 2 preview - risks and limitations. https:

//github.com/openai/dalle-2-preview/blob/main/system-card.md,
2022.

[61] Getty Images, Inc. v. Stability AI, Inc. Case 1:23-cv-00135-UNA. United
States District Court for the District of Delaware, 2023.

[62] Tom Warren. These are microsoft’s bing ai secret rules and why it says it’s
named sydney. https://www.theverge.com/23599441/microsoft-bing-
ai-sydney-secret-rules, Feb 2023.

45 (46)

FOI-R--5396--SE

[63] Ben J Edwards. Microsoft ”lobotomized” ai-powered bing chat, and
its fans aren’t happy. https://arstechnica.com/information-
technology/2023/02/microsoft-lobotomized-ai-powered-bing-

chat-and-its-fans-arent-happy/, Feb 2023.

46 (46)

FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology
development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-
sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number
of fi elds such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

FOI
Defence Research Agency Phone: +46 8 555 030 00 www.foi.se
SE-164 90 Stockholm Fax: +46 8 555 031 00

